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a b s t r a c t

In this paper we propose a novel economic robust predictive controller for periodic operation. The
proposed controller joins dynamic and economic trajectory planning and robust predictive controller
for tracking in a single layer taking into account bounded disturbances, algebraic constraints and
periodic operation. We study the closed-loop system properties of the proposed controller and pro-
vide a design procedure that guarantees that the perturbed closed-loop system converges asymp-
totically to the optimal economic reachable periodic trajectory, constraint satisfaction and recursive
feasibility. The proposed controller has been applied to control a cluster of interconnected micro-
grids. Each nano-grid is connected to an electric utility and has a renewable energy source, a clus-
ter of batteries and a metal hydride based hydrogen storage system. The cluster must satisfy a periodic
energy demand while maximizing the profit of the energy sold to the electric utility taking into ac-
count time varying prices.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, the increase of the energy demand is an important
problem which is usually faced with limited fossil fuel sources
and with environmental restrictions. A way to deal with this
problem is the increase in the use of renewable energy sources.
In this scenario, micro-grids have gained a relevant role. The
definition of a micro-grid from the U.S. Department of Energy
Micro-grid Exchange Group is the following: “A micro-grid is a
group of interconnected loads and distributed energy resources
within clearly defined electrical boundaries that acts as a single
controllable entity with respect to the grid. A micro-grid can
connect and disconnect from the grid to enable it to operate in
both grid-connected or island-mode”. Because the main aim of a
micro-grid is to satisfy an internal demand and if possible sell or
store the excess of produced energy, the energy storage systems
r project DPI2013-48243-C2-
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have become very important in the optimal management of this
type of systems. The most widely spread storage systems are
batteries, however its discharge rate has motivated the devel-
opment of alternative storage system such as hydrogen based
systems.

The optimal management of this type of networks is a chal-
lenging problem that has received a lot of attention from the
research community. In Ref. [12] a wireless data-link based power
management system for a distributed hydrogen system is pro-
posed. In Ref. [27] the important of smart control strategies for PV-
hydrogen systems is demonstrated through extensive simulations.
In Ref. [18] an experimental small-scaled stand-alone power sys-
tem based on hydrogen is presented. In Ref. [4] a set of wind/
hydrogen energy system modelling tools were validated. Model
predictive control has also been applied to this class of systems, see
for example [19e22,28] and [24].

Model predictive control (MPC) has demonstrated to be an
excellent choice for optimal management of complex control sys-
tems, such as multivariable constrained systems, when the main
objective is to guarantee closed-loop stability and constraint
satisfaction while minimizing a cost function without expert
intervention [3,26]. Of particular interest for the optimal operation
of micro-grids is the use of an economic cost function as stage cost
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function, that is the so-called economic MPC. This control tech-
nique allows the controller to improve its performance during the
transients and take into account economic issues explicitly such as
the energy and/or degradation costs. Some examples are shown in
Refs. [7e9] where MPC designs based on Lyapunov theory have
been developed. These approaches are capable of optimizing
closed-loop performance taking into account economic consider-
ations for a broad class of complex process systems, such as those
subject to asynchronous and delayed measurements and uncertain
variables. In addition, in Ref. [25]; recent results on the stabilizing
design of economic MPC are summarized. Another important
research is presented in Ref. [6] where the terminal constraint is
taken from an economic MPC without loosing the stabilizing fea-
tures of the controller. In Ref. [31]; a single-layer economic MPC has
been proposed integrating the RTO into the MPC.

The previous results try to regulate the system to an optimum
steady state operation point however, in certain cases, the best way
to operate a system from an economic point of view is to follow a
non steady trajectory, usually periodic, see Refs. [10,11,14]. In
renewable energy systems non-steady state operation appears
naturally because of the quasi-periodic disturbances such as
exogenous periodic demands, fluctuating prices (as in the elec-
tricity for instance) and energy generation profiles. A typical solu-
tion to deal with non-steady operation is the use of a predictive
control structure composed by two layer in which the optimal
trajectory is calculated by a dynamic real time optimizer, that is a
RTO which takes into account the dynamic model of process to
control, and a predictive control to move the closed-loop system to
the previous optimal trajectory, see Ref. [30]. However this
approach does not take into account the economic cost function
during the transient which has motivated to several authors to
propose the use of the economic cost function as a stage cost. Ex-
amples of it can be found in Refs. [2,10,11].

A relevant issue that the control system should deal with is
the dependence of the economic cost function on exogenous
parameters that may be changed along the system evolution,
such as energy prices, expected energy demand or unitary
operation costs. These changes in the economic cost function
may lead to a redesign of the predictive controller, including the
constraints of the optimization problem, and the loss of feasi-
bility [5,15]. Recently, a novel MPC formulation that addresses
these problems was presented in Ref. [17]. This controller steers
the closed-loop system to the best economically optimal periodic
trajectory that the system can reach guaranteeing the constraint
satisfaction and asymptotic stability even in the case of changes
on the economic cost function. This controller was applied to a
micro-grid in Ref. [23]. In this work, the control of a non-isolated
micro-grid was considered assuming that periodic predictions of
the demand and generation profiles of the photovoltaic system
were available. The proposed controller did not take into account
disturbances in the model or in the predictions and in spite of the
inherent robustness of the predictive controllers, certain prop-
erties, such as constraint satisfaction, may be lost if the uncer-
tainty is large enough.

On the other hand, energy distribution networks are modeled
by algebraic-differential equations, where the algebraic equa-
tions typically describe energy balances in the nodes of the grid
that may depend on (possibly varying) energy demand. The
control system must be designed to ensure the fulfilment of
these algebraic constraints along the time together with stability
and recursive feasibility of the grid in presence of uncertainty.
Motivated by these issues, a robust economic model predictive
controller for energy systems subject to constraints on the
operation limits and energy balances under random variations of
the expected demands and the economic cost function is
presented. This controller extends the control scheme presented
in Ref. [17] to deal with the robust case following the constraint
tightening method proposed in Ref. [1] and taking into account
linear differential-algebraic systems. This controller considers
additional decision variables introducing an artificial periodic
reference and minimizes a cost function that accounts for the
economic cost of the artificial variables and the deviation of the
nominal predictions from artificial trajectory. The state and input
constraints are tightened taking into account a semi-feedback
scheme. Due to this linear feedback, the effect of the perturba-
tions is rejected and the controller guarantees robust satisfaction.
The complexity of the resulting optimization problem to be
solved on line is similar to the one of the nominal controller. The
resulting control law guarantees the convergence to a neigh-
borhood of a robust optimal trajectory that minimizes the cost
function and satisfies the constraints for all possible un-
certainties. Equality constraints for the uncertain system are
satisfied thanks to a feed-forward policy.

The proposed controller has been used for the economic
operation of a cluster of interconnected micro-grids. Each nano-
grid has a renewable energy source, a cluster of batteries and a
metal hydride based hydrogen storage system and its connected
to an electric utility. The micro-grid system must satisfy an en-
ergy load at each sampling time and maximize the profit of the
energy sold to the electric utility. It is assumed that expected
profiles of the renewable energy generators and of the load are
available, although there may exist mismatches between the real
and the expected profiles. The mismatches are modeled with a
bounded additive uncertainty. The proposed control system
operates the energy system minimizing a given operation eco-
nomic cost and satisfying the load and the operational con-
straints in spite of the variations on the produced energy, the
load and the unitary prices of the cost function.

1.1. Notation

Bold letters are used to denote a sequence of T values of a tra-
jectory, i.e. z ¼ fzð0Þ;/; zðT � 1Þg. zðqÞ denotes the sequence
zðqÞ ¼ fzð0; qÞ;/; zðT � 1; qÞg. If the cardinality of a sequence is not
T, then the sequence is denoted as zNðqÞ where N is the cardinal.
I½a;b� denotes the set of integer numbers contained in the interval
½a; b� and Ia denotes the set of positive integer numbers including
the origin, that is f0;1;/; ag. The notation ðijkÞ denotes the time
step to which a given variable is referred.

2. Problem formulation

In this work we consider the optimal operation of systems
defined by the following set of linear differential-algebraic equa-
tions subject to both measurable and unknown disturbances:

xðkþ 1Þ ¼ AxðkÞ þ BuuðkÞ þ BddðkÞ þ BwwðkÞ (1)

0 ¼ ExxðkÞ þ EuuðkÞ þ EddðkÞ þ EwwðkÞ (2)

where xðkÞ2ℝn, uðkÞ2ℝm, dðkÞ2ℝs and wðkÞ2ℝq are the state,
input, measurable and unknown disturbance vectors of the system
at time step k respectively. The evolution of the measurable
disturbance signal dðkÞ2ℝs is assumed periodic with period T and
known, i.e. dðkÞ ¼ dðkþ TÞ. The disturbance signal wðkÞ2ℝq is
considered unknown but bounded. It is assumed that the equality
constraints (2) have a solution, that is, they are linearly indepen-
dent and the number of equations is less than the number of inputs.

This class of systems can be used tomodel distribution networks
that must satisfy a demand for which an uncertain prediction is
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available. The algebraic equations can model the network topology
constraints, with energy and/or mass balance equations for
instance, while the demand prediction error is modeled with the
disturbance.

We consider a set of coupled state and input constraints

ðxðkÞ;uðkÞÞ2Z 4ℝnþm (3)

where Z ðkÞ is a closed convex polyhedron that contains the origin
in its interior. It is also assumed that the uncertain signal wðkÞ is
bounded as follows:

wðkÞ2W 4ℝq (4)

being W a known compact polyhedron that contains the origin.
The performance of the evolution of the system (1) is measured

by an economic time varying stage cost function lðk; x;u; pÞ that
depends on the state, input and a parameter p2Rnp, of any
dimension, which could describe the prices and other contract with
the electric utility information. This function and/or the parameter
p may be changed during the operation of the system and this
variation is not known a priori.

Assumption 1. The stage cost function lðk; x;u; pÞ satisfy the
following conditions:

1. lð,Þ is positive, i.e. lðk; x;u; pÞ � 0 for all ðk; x;u; pÞ.
2. lð,Þ is convex in ðx;uÞ for all k.
3. lð,Þ is periodic; that is, lðk; x;u; pÞ ¼ lðkþ T ; x;u; pÞ.
2.1. Controller formulation

Usually the search of the optimal economic performance is the
main control objective of a process. The performance of a system
can be expressed as the average of the economic cost function of
the closed-loop trajectories and it can be posed as follows:

L∞ðx;u∞; pÞ ¼ lim
M/∞

1
M

XM�1

k¼0

lðk; xðkÞ;uðkÞ; pÞ

where x is the initial state and u∞ is the set of the corresponding
closed-loop input trajectories.

In theory, a way to obtain the optimal trajectory to operate the
system (1) is derived from the solution of an infinite horizon
optimal control problem that minimizes the average cost. In gen-
eral this problem cannot be solved, but in particular given the pe-
riodic nature of the cost function and the known disturbances dðkÞ,
and under the assumption of uniqueness of the solution, the
optimal trajectories can be obtained for the nominal system; that is
with wðkÞ ¼ 0, solving a finite horizon open-loop problem that
optimizes the average cost of a period [2,17].

For the uncertain case, however, the calculation of the optimal
trajectory has to take into account the effect of the unknown
disturbance in the cost and to guarantee constraint satisfaction for
the worst possible case. There are different strategies to deal with
the effect of uncertainty in the predictions, such as mini-max
optimization or the use of stochastic programming. In general,
these strategies are computationally very demanding. In this paper
we propose to follow a different path based on minimizing the cost
for the nominal system, while guaranteeing robust constraint
satisfaction by means of reducing the constraints to account for the
worst possible perturbation.

The aim of this paper is to present a robust model predictive
control technique based on nominal predictions that steers the
plant to (a neighborhood of) the optimal trajectory. One
important issue to take into account in this approach is that the
controller is implemented in a receding horizon scheme, so the
controller can compensate at each time step the effect of the
disturbance at the previous sample time. Including this idea into
the optimization problem leads to nested (or multistage) opti-
mization problems which are also very demanding. To obtain a
suboptimal solution the controller is designed assuming that
there exists a local linear controller that can stabilize the nominal
system while satisfying the algebraic constraints. In particular,
this controller is used to include some degree of feedback in the
open-loop predictions, reducing the effect of the worst possible
uncertainties in the constraints.

To design this local controller, an auxiliary control input vðkÞ is
introduced from the explicit solution of equation (2) in order to
satisfy that equality constraint for any disturbance wðkÞ. The value
of input vector uðkÞ that satisfies the equality constraint (2) is given
by

uðkÞ ¼ MxxðkÞ þMvvðkÞ þMddðkÞ þMwwðkÞ (5)

where vðkÞ2IRmv denotes the new set of control inputs. Matrices
Mx2IRm�n, Mv2IRm�mv , Md2IRm�s and Mw2IRm�q are obtained
from the solution of (2). Matrix Mv is an orthonormal basis for the
null space of Eu obtained from the singular value decomposition.
Matrices Mx;Md and Mw provide a particular solution to the
equation that depend on xðkÞ; dðkÞ and wðkÞ. There are infinite so-
lutions which provide different ways of distributing the power to
satisfy the equation (2) for a given predicted demand. An inap-
propriate selection of these matrices may lead to optimization
problems with a reduced feasibility region.

Using this variable change, the following equivalent model is
obtained

xðkþ 1Þ ¼ bAxðkÞ þ bBvvðkÞ þ bBddðkÞ þ bBwwðkÞ (6)

where

bA ¼ Aþ BuMxbBv ¼ BuMvbBd ¼ Bd þ BuMdbBw ¼ Bw þ BuMw

It is assumed that the pair ðbA; bBvÞ is controllable. This model will
be used to define the reduced set of constraints for the MPC opti-
mization problem.

In order to reject the effect of the uncertainty in the predictions,
a local linear control law vðkÞ ¼ bKeðkÞ is proposed, where eðkÞ is the
deviation of the perturbed predictions from the nominal pre-
dictions obtained the previous sampling time (this will be detailed
in the following sections). This control law is designed for the
system

eðkþ 1Þ ¼ bAeðkÞ þ bBvvðkÞ

which is obtained taking into account the definition of the auxiliary
control variable and assuming that dðkÞ ¼ 0. The local control law bK
is designed to ensure that the dynamics of the deviation of system
in closed-loop with this linear controller eðkþ 1Þ ¼ bAKeðkÞ, where

bAK ¼ bA þ bBv
bK ;

it is asymptotically stable.
On the other hand, the solution of the algebraic equation for

wðkÞ given by (5) is also used to guarantee that the input applied by
the proposed controller guarantees the satisfaction of the equality
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constraint (2) taking into account the current value of the distur-
bance wðkÞ. This is only possible if the current value of wðkÞ can be
measured to compensate its effect by means of a feed-forward
scheme. To this end at each sampling time, the MPC controller
will calculate the optimal control input u�ðkÞ based on the nominal
predictions of the plant (that is, assuming that wðjÞ ¼ 0), and then
the real value of uðkÞ is updated taking into account the measured
value wðkÞ as follows,

uðkÞ ¼ u�ðkÞ þMwwðkÞ
Considering the previous aspects, the robust predictive

controller can be formulated. The parameters that define the
optimization problem at time step k are the current state x and
the (a priori known) values of the measurable disturbance d. As it
is usual in predictive controllers, the predicted N-step control
input trajectory uN is a decision variable optimization control
problem but, following [17]; an artificial reference trajectory
given by the initial state xr0 and the sequence of future T-step
reference inputs ur is considered as additional decision variable.
The cost function of the proposed controller is defined as follows:

VN
�
x;d; xr0;u

r ;uN
� ¼ Vt

�
x;d; xr0;u

r ;uN
�þ Vp

�
d; xr0;u

r�
where

Vt
�
x;d; xr0;u

r;uN
� ¼ XN�1

i¼0

jjxðiÞ � xrðiÞjj2Q þ kuðiÞ � urðiÞk2R

Vp
�
d; xr0;u

r� ¼ 1
T

XT�1

i¼0

lðkþ i; xrðiÞ;urðiÞ;pÞ

The term Vtðx;d; xr0;ur;uNÞ penalizes the tracking error of the
open-loop predicted trajectories with respect to the artificial
reference along the prediction horizon N. The term Vpðd; xr0;urÞ
penalizes the nominal economic cost function of the artificial
reference.

The optimal trajectories of the proposed robust MPC for tracking
periodic signals can be obtained from the solution of the following
finite horizon optimal control problem P Nðx;dÞ

min
xr0;u

r ;u
VN

�
x;d; xr0;u

r;uN
�

s:t xð0Þ ¼ x (7a)

xðiþ 1Þ ¼ AxðiÞ þ BuuðiÞ þ BddðiÞ (7b)

0 ¼ ExxðiÞ þ EuuðiÞ þ EddðiÞ (7c)

ðxðiÞ;uðiÞÞ2Z i (7d)

xðNÞ ¼ xrðNÞ (7e)

xrðiþ 1Þ ¼ AxrðiÞ þ BuurðiÞ þ BddðiÞ (7f)

0 ¼ ExxðiÞ þ EuuðiÞ þ EddðiÞ (7g)

ðxrðiÞ;urðiÞÞ2Z N (7h)

xrðTÞ ¼ xrð0Þ ¼ xr0 (7i)
where the set Z 0 ¼ Z 2Z w and for i � 1, the set Z i is defined as
follows

Z i ¼ Z 2Z w2RzðiÞ
Z w ¼ fz : ð0;MwwÞ;cw2W g
RzðiÞ ¼ 4

i�1

0
QzðjÞ

QzðjÞ ¼
�
z :

�bAj
K
bBww;Mv

bK bAj
K
bBww

�
;cw2W

�

It is important to remark that the calculation of these sets is
trivial, even for large scale systems [13].

The optimal solution of this optimization problem at time step k
is denoted ðxr*0 ðkÞ;ur*ðkÞ;u�

NðkÞÞ. The value of the control variables
is obtained as follows:

uðkÞ ¼ u�ð0jkÞ þMwwðkÞ (8)

where u�ð0jkÞ is the optimumvalue for the first input at time step k.
Notice that in order to ensure that the real control action uðkÞ is
admissible, i.e. ðxðkÞ;uðkÞÞ2Z , the MPC is designed for a tighter set
of constraints Z 2Z w.

The constraints of the optimization variables are contracted
with every step of the prediction horizon. Constraint (7d) shows
that as the prediction step i increases, the set Z i reduced taking
into account the possible effect to a perturbation on the pre-
dicted system in closed-loop with the auxiliary controller. This
contraction is time invariant and can be calculated off-line.
Constraints (7b)-(7c) are defined by the nominal model, i.e.
considering wðiÞ ¼ 0, and provides the predicted state and input
trajectories. Constraint (7b) imposes that the initial state of the
predicted trajectory is equal to the state of the system at time
step k. Constraint (7e) states that the predicted state must reach
the artificial reference in N steps. Constraints (7f)-(7g) are
defined by the nominal model and provides the artificial refer-
ences state and input trajectories. Note that the initial state of the
artificial reference is a free variable, however, it is constrained to
be a periodic trajectory in constraint (7i). The artificial references
must satisfy the state and input constraints, but because in order
to guarantee recursive feasibility, the artificial reference is used
to define the shifted input trajectory at prediction time N � 1, the
constraint set is contracted by the same set for all steps which
depends on the prediction horizon N. In particular, the artificial
references must satisfy (7d) for i ¼ N. These constraints guar-
antee under certain assumptions recursive feasibility using an
appropriately defined shifted solution.

It is important to note that the constraints of the optimization
problem do not depend on the economic cost function. This implies
that a sudden change in the parameters of this function cannot
cause a loss of feasibility of the optimization problem. This will be
shown in the simulation example. In addition, the proposed
controller only takes into account in an explicit manner the effect of
the uncertainty by tightening the set of constraints. This implies
that the computational complexity is equal to the nominal coun-
terpart controller presented in Ref. [17]. In order to reduce the
computational burden, triggered evaluation could be taken into
account as in Ref. [32].
3. Robust stability of the proposed controller

In this section we prove that under certain assumptions the
controlled system converges asymptotically to a neighborhood of
the trajectory obtained solving the following optimization problem
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min
xr0;u

r
Vp

�
d; xr0;u

r� ¼ 1
T

XT�1

i¼0

lðkþ i; xrðiÞ;urðiÞ; pÞ (9a)

s:t: xrðiþ 1Þ ¼ AxrðiÞ þ BuurðiÞ þ BddðiÞ (9b)

0 ¼ ExxðiÞ þ EuuðiÞ þ EddðiÞ (9c)

ðxrðiÞ;urðiÞÞ2Z N (9d)

xrðTÞ ¼ xrð0Þ ¼ xr0 (9e)

This optimization problem is denoted the robust planner
throughout this paper. The optimal input and state trajectories
provided by (9) are denoted as robust planner trajectories, ðx+;u+Þ.
Because the known disturbance and the parameters of the cost
function are periodic, and the cost function is strictly convex, the
optimal periodic trajectories do not depend on the time step k in
which the optimization problem is formulated. The resulting tra-
jectory takes into account the effect of the uncertainty in the con-
straints in order to guarantee robust constraint satisfaction. In this
case, the robust planner is not independent of the prediction ho-
rizon of the corresponding robust MPC, because the reduction of
the constraint set depends on N. It is important to remark that it is
not necessary to solve the planner optimization problem to define
the MPC controller.
3.1. Robust stability of the robust closed-loop system

In this section we prove that the robust planner trajectory is
robustly stable for the system controlled by the proposed predictive
controller and besides, the equality constraints are satisfied all the
time. To this aim, the proposed controller must be designed
appropriately satisfying the following conditions:

Assumption 2. The weighting matrices Q, R and the controller
gains bK satisfy the following conditions:

1. System (6) is controllable.
2. Matrices Q and R are positive definite.
3. The control gain bK is such that bAK is strictly stable and

bAN�1
K w ¼ 0; cw2W
4. The sets Z i are non-empty for i2IN.
5. The optimization problem (7) is strictly convex.

It is important to remark that from this Assumption, the
optimization problems (7) and (9) are strictly convex and then
the solution is unique. It is also interesting from a practical point
of view that no robust invariant set must be calculated in the
design of the proposed controller, which is computationally
untractable for large scale systems. Besides, an inappropriate
design of the previous local controller may result in empty
feasibility regions of the MPC optimization problems. Design
procedures to guarantee that the resulting optimization problem
has a non-empty feasibility region are not studied in this paper
but the reader can refer to [1] for an LMI based design procedure
for this problem.

In practice, the condition 3 in Assumption 2, can be relaxed to
max
w2W

���bAN�1
K w

��� � s

where s is the tolerance of the optimization problem solver.
Now we prove that the optimal trajectory in an economic point

of view is a robustly stable trajectory of the system in the input-to-
state stability sense, which is defined as follows.

Definition 1. The periodic trajectory x+ is an input-to-state stable
trajectory for the controlled system with a domain of attraction X N if
for all xð0Þ2X N , then xðkÞ2X N and there exists a K L function bð,Þ
and a K function sð,Þ such that

jjxðkÞ � x+ðkÞjj � bðjjxð0Þ � x+ð0Þjj; kÞ þ s
�jjwkjj∞

�
for all k � 0jjwkjj∞ denotes the maximum value of kwðiÞk for all
i2Ik�1.

Input-to-state stability (ISS) implies that for all initial state in
X N , the closed-loop trajectory converges asymptotically to a
neighborhood of x+ where it is ultimately bounded (see [16] for
more details).

In the following theorem, input-to-state stability of the robust
planner trajectory is proved. This states the main result of the
paper.

Theorem 1. If the conditions given in Assumption 2 hold, then sys-
tem (6) controlled by the control law (8) is recursively feasible and the
robust planner trajectory x+ is input-to-state stable with a region of
attraction X N .

Proof. First, we prove that the optimization problem is recur-
sively feasible throughout the evolution of the closed-loop system,
that is, if the initial state is inside the feasibility region of the
optimization problem (7) then the closed-loop system will remain
inside this region. Then, we prove that the closed loop system is
input-to-state stable by demonstrating that the function

WðxðkÞ � x+ðkÞÞ ¼ V�
N
�
x;d; xr0;u

r;uN
�� V+

p
�
d; xr0;u

r� (10)

serves as an input-to-state Lyapunov function, see Refs. [16,17].
Finally, it will be proved that the control law (8) ensures that the

controlled system satisfies the constraints on the state and inputs
as well as the equality constraint for any possible value of the
uncertainty.
3.2. Recursive feasibility

Consider the following shifted solution at time kþ 1 (super-
script s) based on the optimal solution at time k (superscript �)
based on correcting the deviation caused by the uncertainty at time
k, wðkÞ, using the local controller K:

xrsð0jkþ 1Þ ¼ xr*ð1jkÞ
ursðijkþ 1Þ ¼ ur*ðiþ 1jkÞ i2IT�2
ursðT � 1jkþ 1Þ ¼ ur*ð0jkÞ
usðijkþ 1Þ ¼ u�ðiþ 1jkÞ þ

	
Mx þMv

bK
ðxsðijkþ 1Þ
�x�ðiþ 1jkÞÞ i2IN�2

usðN � 1jkþ 1Þ ¼ ursðN � 1jkþ 1Þ

we use the notation ðijkÞ to denote the prediction step i for a tra-
jectory evaluated at the sampling step k. Taking into account
equations (7a), (7b) and (7f) it follows that
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xrsðijkþ1Þ¼ xr*ðiþ1jkÞ i2IT�1
xrsðTjkþ1Þ¼ xr*ð1jkÞ
xsð0jkþ1Þ¼AxðkÞþBuu�ð0jkÞþBddðkÞþ bBwwðkÞ
xsðiþ1jkþ1Þ¼Axsðijkþ1ÞþBuusðijkþ1ÞþBddðijkþ1Þ i2IN�1

By definition of the matrices Mx and Mv, if
u�ðiþ1jkÞ;x�ðiþ1jkÞ;dðiþ1jkÞ satisfy constraint (5) for a given
v�ðiþ1;kÞ, then usðijkþ1Þ;xsðijkþ1Þ;dðijkþ1Þ also satisfy the same
constraint for vsði;kþ1Þ¼ v�ðiþ1;kÞ and hence the shifted solution
satisfies constraint (7c).

The deviation of the shifted state trajectory from the previous
optimal state trajectory is defined as follows

xsðijkþ 1Þ ¼ x�ðiþ 1jkÞ þ bAi
K
bBwwðkÞ

Constraint (7e) holds because bAN�2
K

bBwwðkÞ ¼ 0 and hence
xsðN � 1jkþ 1Þ ¼ x�ðNjkÞ ¼ xrsðN � 1jkþ 1Þ and
usðN � 1jkþ 1Þ ¼ ursðN � 1jkþ 1Þ.

Taking into account the definition of the sets Z i it follows that
the shifted solution satisfies constraint (7d) for i ¼ 1;…;N � 1. For
i ¼ N the constraint is satisfies because
usðN � 1jkþ 1Þ ¼ ursðN � 1jkþ 1Þ and
xsðN � 1jkþ 1Þ ¼ xrsðN � 1jkþ 1Þ and the artificial reference is
included in Z N .

Finally, by definition, the shifted artificial reference satisfies
constraints (7g)-(7i).
3.3. ISS stability

Stability is proved by demonstrating that the function (10) is an
ISS Lyapunov function [16]. Using similar arguments to the stability
proof of the nominal case [17], we have that there exists positive
constants a1, a2 and a3 such that

a1kxðkÞ � x+ðkÞk2 � WðxðkÞ � x+ðkÞÞ

a2jjxðkÞ � x+ðkÞjj2 � WðxðkÞ � x+ðkÞÞ

and that DW ¼ Wðxð1jkÞ � x+ðkþ 1ÞÞ �WðxðkÞ � x+ðkÞÞ holds

DW � �a3kxðkÞ � x+ðkÞk2

On the other hand, we have that xðkþ 1Þ ¼ xð1jkÞ þ BwwðkÞ.
Since the optimal cost function V�

Nðx;dÞ is a convex function of x
defined in a compact set, then it is Lipschitz continuous. This means
that there exists a positive constant g such that

kWðxðkþ 1Þ � x+ðkþ 1ÞÞ �Wðxð1jkÞ � x+ðkþ 1ÞÞk � gkwðkÞk

Therefore, we have that

DW ¼ Wðxðkþ 1Þ � x+ðkþ 1ÞÞ �Wðxð1jkÞ � x+ðkþ 1ÞÞ
þWðxð1jkÞ � x+ðkþ 1ÞÞ �WðxðkÞ � x+ðkÞÞ

� gkwðkÞk � a3kxðkÞ � x+ðkÞk2

and then Wð,Þ is an ISS Lyapunov function.
3.4. Robust constraint satisfaction

Taking into account that the optimal control action u�ð0jkÞ is
such that ðxðkÞ;u�ð0jkÞÞ2Z w we have that the real control action
applied to the system uðkÞ ¼ u�ð0jkÞ þMwwðkÞ ensures that
ðxðkÞ;uðkÞÞ2ðxðkÞ;u�ð0jkÞÞ4Z w
2Z 2Z w
¼ Z 2Z w4Z w
4Z

On the other hand, since ExxðkÞ þ Euu�ð0jkÞ þ EddðkÞ ¼ 0, we
have that

ExxðkÞ þ EuuðkÞ þ EddðkÞ þ EwwðkÞ
¼ ExxðkÞ þ Euu�ð0jkÞ þ EddðkÞ þ EuMwwðkÞ þ EwwðkÞ
¼ ðEuMw þ EwÞwðkÞ ¼ 0

for all wðkÞ.
Remark 1. (Changing economic cost function). A relevant
property of the proposed controller is that the recursive feasi-
bility has been proved irrespective of the (possible varying)
parameter of the economic cost p, since the set of constraints in
the optimization problem does not depend on this function.
Therefore this implies that a sudden change of p does not affect
the recursive feasibility property of the closed-loop system, and
if p remains constant for a sufficient period of time, the system
converges to a neighborhood of the optimal reachable trajectory
corresponding to the new value of p.
4. Community micro-grid control problem

In this example we consider a community micro-grid which
consists of three nano-grids based on the model presented in
Refs. [23,29]. Fig. 1 shows a schematic of the topology of the micro-
grid.

Each nano-grid is connected to a local load and to the electric
utility (EU) and is composed by a renewable energy generator, a
cluster of batteries to balance the power of each nano-grid satis-
fying the short peaks of voltages due to its fast dynamic and ametal
hydride based hydrogen storage system, see Fig. 2. The value of the
parameters that define the different elements of the nano-grids can
be found in Ref. [23].

The energy stored in each nano-grid i is controlled with three
manipulable inputs which consists of the power exchanged with
the electric utility denoted by Pigrid, the power exchanged with
the hydrogen based systems denoted by PiH2 and the contribution
of each nano-grid to the local load denoted by Piload. The state of
each nano-grid are the stored energy rate in both storage sys-
tems, that is, the stage of charge of the batteries SOCi and the
level of stored hydrogen in the metal hydride deposit MHLi. The
renewable energy generators are modeled using generation
profiles of photovoltaic energy sources which can be different.
We consider that a prediction with a bounded degree of error of
the generation profiles of each PV generator PiPV and of the local
load Pload that must be satisfied by the micro-grid are available.

In order to design the controller, the dynamics of the SOC and
theMHL of each nano-grid aremodeledwith two integrators taking
into account the power balance equations. We consider the
following model provided in Ref. [23] for a sampling time of
30 min:

SOC1ðkþ 1Þ ¼ SOC1ðkÞ þ 7:6285P1H2ðkÞ � 5:5847P1gridðkÞ
�5:5847P1loadðkÞ þ 5:5847

	
P
1
PV ðkÞ þ ~P

1
PV ðkÞ



MHL1ðkþ 1Þ ¼ MHL1ðkÞ � 3:4495P1H2

(11)

where P
1
PV , ~P

1
PV are the predicted value and the prediction error



Fig. 1. Community micro-grid scheme.

Fig. 2. Nano-grid scheme.
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Table 1
Values of the parameters for the two different cost functions considered.

Parameters Cost function 1 Cost function 2

0 he8h 8 he16 h 17 he24 h 0 he8h 8 he16 h 17 he24 h

c1 10 100 10 10 100 10
c2 0.05 0.05 0.05 0.05 0.05 0.05
c3 40 40 40 200 200 200

SOCref 50 50 50 60 60 60

MHLref 50 50 50 60 60 60

Pof 0 W 1000 W 0 W 0 W 0 W 0 W
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respectively of the power generated in nano-grid 1. In order to
present different behavior for every nanogrid we propose that the
storage systems of the nanogrid 2 are a 30% lower than in the first
nanogrid and in the case of the nanogrid 3, the storage systems are
a 20% higher than in nanogrid 1.

The power sent to the load by the three nano-grids must satisfy
the local demand, which leads to the following algebraic equation

X3
i¼1

PiloadðkÞ ¼ PloadðkÞ þ ~PloadðkÞ (12)

where Pload,~Pload are the predicted value and the prediction error
respectively of the local load.

The corresponding matrices of the whole micro-grid are the
following:

Bu ¼
2
4bu 0 0

0 1:3bu 0
0 0 0:8bu

3
5 bu¼

�
7:6285 5:5847 5:5847
�3:4495 0 0

�

Bd ¼Bw

2
4bd 0 0 0

0 1:3bd 0 0
0 0 0:8bd 0

3
5 bd

��5:5847
0

�

where

x ¼
h
SOC1 MHL1 SOC2 MHL2 SOC3 MHL3

iT

u ¼
h
P1H2 P1grid P1load P2H2 P2grid P2load P3H2 P3grid P3load

iT

d ¼
h
P
1
PV P

2
PV P

3
PV Pload

iT

w ¼
h
~P
1
PV

~P
2
PV

~P
3
PV

~Pload
iT

Constraint (12) can be modeled with the following matrices:

Eu ¼ ½0 0 1 0 0 1 0 0 1 �

Ed ¼ Ew ¼ ½0 0 0 �1 �

Ex ¼ 0

We consider the following technological constraints on the
power and energy storage systems that define the set Z

�0:9kW � PiH2
� 0:9kW

�2:5kW � Pigrid � 2kW

�0:2kW � P
i
load � 2kW

45% � SOCi � 90%

20% � MHLi � 90%

The prediction errors in the load ~P
i
load and energy generation

~P
i
PV , with i ¼ 1;2;3 are assumed to be lower than 0.3094, 0.3279,

0.3752 and 0.34 kW respectively.
4.1. Economic cost function

The main control objectives can be described as follows:

(i) Maximize the profit of the energy exchange between the
micro-grid and the EU taking into account the prices of the
intraday electricity market, the contract constraints, gener-
ation disturbances and distribution of the charge for each
nano-grid.

(ii) Fulfill a real demand described by a predicted periodic term
denoted as Pload with a prediction error denoted as ~Pload.

(iii) Fulfill the operational constraint in order to prevent damage
the equipments.

Taking into account these objectives, the economic cost function
is composed by the following terms:

l1 ¼ c1ðkÞjPof ðkÞ �X3
i¼1

PigridðkÞj
2

l2 ¼ c2
X3
i¼1

SOCref � SOCiðkÞ
2 þ MHLref �MHLiðkÞ

2

l3 ¼ c3
X3
i¼1

PiH2ðkÞ2 þ PigridðkÞ2 þ PiloadðkÞ2
The first term l1 tries to maximize the profit of the energy ex-

change between the micro-grid and the EU. To this end, it penalizes
the square of the deviation from the agreed power reference Pof ðkÞ.
The parameter c1ðkÞ varies periodically with time, depending on
the prices of the intraday electricity market, to take into account
that in general is more profitable to satisfy the agreed power when
the prices are higher. The second term l2 tries to extend the life time
of the storage systems of the nano-grids by penalizing the deviation
from a desired operation point. The third term l3 tries to reduce the
amount of power exchange by each nano-grid by minimizing the
powers. The weights c1; c2 and c3 can be tuned to change the
relative relevance of each term. In the simulations, we consider two
different set of daily values, defined in Table 1, for the parameters of
the cost function to demonstrate that a sudden change in the
economic cost function does not affect the stability and constraint
satisfaction properties of the proposed controller.
4.2. Controller design

To design the proposed controller, a solution defined by
matrices Mv2IR9�4 and Mw ¼ 2IR9�8 for the algebraic equation is
obtained. MatrixMv is an orthonormal basis for the null space of Eu
obtained from the singular value decomposition. Matrix Mw pro-
vides a particular solution to the equation EwwðkÞ ¼ 0. There are
infinite solutions to this equation. An inappropriate selection of
matrix Mw may lead to optimization problems with a reduced



Fig. 3. (a) Predicted renewable generation profile 1; (b) Predicted renewable generation profile 2; (c) Predicted renewable generation profile 3; (d) Predicted local load profile.
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feasibility region. In these simulations Mw is obtained from the
solution to the equation EuuðkÞ þ EwwðkÞ ¼ 0 using the Moore-
Penrose pseudo-inverse. We assume that the effect in the system
produced by the predicted disturbances and its corresponding
prediction error are the same and Ed ¼ Ew. Therefore, the matrices
Mw and Md are equal.

To define the local controller bK , a LQR control law has been
designed based on the following weightingmatrices QK and RK that
penalizes each state and input inversely to the difference between
its maximum and minimum values.

QK ¼ diag
	
1
.	

xmax
i � xmin

i




RK ¼ 0:1MT

v diag
	
1
.	

umax
i � umin

i




Mv

(13)

The control gain obtained using these weights satisfies the un-
certainty rejection assumption and yields a MPC optimization
problem with a nonempty feasibility region. In particular, the
maximum eigenvalue of the matrix ðAþ bBKÞ47 is 0:1252$10�23

thus s is lower than the precision of the simulations carried out
with Matlab.
1 These profiles are obtained from Ref. [23]. Special thanks to Valverde, L. and the
energy engineering department of the University of Seville.
4.3. Simulations results

To demonstrate the different properties of the proposed
controller a ten day simulation in which three different prediction
errors behaviors and two different economic cost functions have
been taken into account has been carried out. The simulations have
been made with Matlab 2014b using the solver cplex to solve the
resulting QP optimization problem. The number of decision vari-
ables is 2208 because a simultaneous formulation was used in
which the level of all storage systems, powers of each nano-grid
and auxiliary control input for both the predicted and the artifi-
cial trajectories were included as decision variables. For this
simulation, the initial level of energy in batteries and the metal
hydride deposit of each nano-grid is
½74:9823 73:0028 74:8227 73:6751 75:4939 73:8573�T .

The renewable generation power profiles has been obtained
using combinations of sunny/cloudy day profiles1. The expected
values of the local load of the community micro-grid, P

i
load, shown

in Fig. 3(d), correspond to the standard daily demand of a house.
These profiles are assumed to be periodic with a period of 24 h. All
the profiles have been discretized using a sampling time of thirty
minutes. Fig. 3(a,b,c) shows the profiles used in the simulations for
expected values P

i
PV .

The prediction errors of each signal are assumed to be lower
than 20% of the maximal value of its daily evolution which are
0.3094, 0.3279, 0.3752, 0.34 KW respectively.

For the first 80 h the real prediction errors of load and the PV
generation are constant and take the following value and sign



Fig. 4. Trajectory of predicted local demand (blue) and real local demand (black with circle). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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ws1ðkÞ ¼ ½ � 0:3094 � 0:3279 � 0:3752 0:34�T ;ck

This prediction error is the worst disturbance that can be
applied to the control-loop system because in this case the real
generation is decreased and the load is increased, thus the storage
systems are emptied. The objective of the first stage is to demon-
strate robust constraint satisfaction for the worst possible case.
Fig. 5. Trajectory of predicted total generation (blue) and real total generation (black with c
referred to the web version of this article.)
Note that we assume that the real generation power is always
greater than or equal to zero. From the hour 80 to 160, the pre-
diction errors switch randomly between the extreme values of the
set W , that is between ws1ðkÞ and �ws1ðkÞ. The objective of this
stage is to show a more realistic behavior of the controller. During
this stage the parameters of the cost function change abruptly after
120 h. This transition shows that the constraints are satisfied even
when the cost suddenly changes in a way shown in Table 1 where
ircle). (For interpretation of the references to colour in this figure legend, the reader is



Fig. 6. Trajectory of the SOC of all nano-grids: robust controller with disturbances (blue), robust planner (black discontinuous), level constraints (cyan), desired operation point (red
discontinuous). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the previous and new values of the cost function parameters are
presented. From the hour 160 to the end of the simulation, the
prediction error is assumed equal to zero showing the convergence
of the robust controller closed-loop trajectories to the new optimal
trajectory provided by the robust planner. The real and predicted
total generation for each stage is shown in Fig. 5 and the real and
predicted local load is shown in Fig. 4.

Figs. 6 and 7 show the trajectories of the energy stored in the
batteries and the hydrogen systems of both the closed loop
Fig. 7. Trajectory of theMHL of all nano-grids: robust controller with disturbances (blue), rob
discontinuous). (For interpretation of the references to colour in this figure legend, the rea
system (blue) and the robust planner (black with circle). In the
first stage, the robust controller drives the closed-loop system as
close as possible to limits (cyan) without violating the constraints
but without reaching the trajectory provided by the robust
planner. In the second stage, the robust controller drives the
closed-loop system to a neighborhood of the robust planner
trajectory. In addition, in this stage the economic cost function
changes showing how the closed-loop system maintains recur-
sive feasibility and stability even in this extreme situation. In the
ust planner (black discontinuous), level constraints (cyan), desired operation point (red
der is referred to the web version of this article.)



Fig. 8. Trajectories of Power PH2 of all nano-grids: robust planner (black discontinuous), robust controller (blue). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

M. Pereira et al. / Renewable Energy 100 (2017) 3e1714
third stage, the robust controller converges to the trajectory
provided by the robust planner (black discontinuous), which is
the best trajectory that the disturbed system can follow when the
closed loop system is minimizing the proposed economic cost
function without violating the constraints. The trajectory pro-
vided by the robust planner does not reach the constraint limits
in order to guarantee robust constraint satisfaction in the pres-
ence of disturbances.

Figs. 8e10 shows the power trajectories of each nano-grid
Fig. 9. Trajectories of Power Pgrid of all nano-grids: robust planner (black discontinuous), rob
the reader is referred to the web version of this article.)
presenting similar results. Fig. 11 shows the evolution of the
cost of the closed-loop system (blue) with the robust controller
and how it changes after five days from the previous cost value
(green discontinuous) to the new cost value (red discontinuous).
Due to the sudden change in the economic cost function in the
second stage, the trajectory of the robust planner is different for
both economic cost function. Their corresponding costs are
3:3824$103 and 5:6825$104 respectively. The simulation shows
that the robust MPC optimization cost converges to a
ust controller (blue). (For interpretation of the references to colour in this figure legend,



Fig. 10. Trajectories of Power Pload of all nano-grids: robust planner (black discontinuous), robust controller (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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neighborhood of the cost of the original trajectory, and then
changes suddenly to the new optimal cost without loosing
feasibility or violating any constraints and without the necessity
to calculate any robust invariant set.

Fig. 12 shows the total Pgrid, the desired Pof and the parameter
c1ðkÞ trajectories. This figure shows how the total Pgrid tries to
follow the desired offered power Pof taking into account that the
penalty for not fulfilling the contract varies with time as shown by
Fig. 11. Trajectory of the optimal cost of the robust controller without disturbances (blue
discontinuous). (For interpretation of the references to colour in this figure legend, the rea
the cost parameter c1ðkÞ. The change in this cost shows how the
controller adapts its operation cycle to the economic cost.
5. Conclusions

In this paper, a novel robust economicMPC for periodic signals is
applied to uncertain discrete time algebraic-differential linear
model. The control objective is to optimize the periodic behavior of
discontinuous), robust controller (blue) and the robust planners 1 and 2 (green/red
der is referred to the web version of this article.)



a

b

Fig. 12. (a) Pgrid (blue continuous) and Pof (black discontinuous) evolution; (b) Trajectory of parameter c1ðkÞ (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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this type of process while guaranteeing robust constraint satisfac-
tion. The proposed controller provides closed-loop robust
constraint satisfaction even in the presence of sudden changes in
the economic cost function and asymptotic convergence to the
corresponding new optimal trajectory. The proposed controller is
based on the solution of a single quadratic programming optimi-
zation problem. The controller is defined without the necessity of
the computation of a robust positive invariant set. These features
are very important in practical applications and make this
controller an appropriate approach to control large scale systems.
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