
D

J
D

a

A
R
R
1
A
A

1

t
a
a
h
s
i
c
o
g
[
c
t
t
a
s
d
l
r
f

s
t
t
t
r

0
d

Journal of Process Control 21 (2011) 685–697

Contents lists available at ScienceDirect

Journal of Process Control

journa l homepage: www.e lsev ier .com/ locate / jprocont

istributed model predictive control based on agent negotiation
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In this paper we consider the control of several subsystems coupled through the inputs by a set of inde-
pendent agents that are able to communicate. We assume that each agent has access only to the model
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and the state of one of the subsystems. This implies that in order to take a cooperative decision, the
agents must negotiate. At each sampling time agents make proposals to improve an initial feasible solu-
tion on behalf of their local cost function, state and model. These proposals are accepted if the global
cost improves the cost corresponding to the current solution. In addition, we provide conditions that
guarantee that the closed-loop system is asymptotically stable along with an optimization based design
procedure that is based on the full model of the system. Finally, the proposed scheme is put to test through

simulation.

. Introduction

Traditionally, control theory has coped with information and
iming constraints in a centralized fashion, that is, under the
ssumption that all the information is available at a single point
t the right time. Unfortunately, there are different factors that
inder the application of centralized schemes. In first place, real
ystems may not have a model that capture correctly their dynam-
cs. Moreover, even if a model can be obtained, it may be too
omplex to be useful to design a controller. Likewise, there are
ther important limitations. For example, the system may be geo-
raphically disperse, just as happens in transportation networks
1]. Other times it is a matter of privacy: the subsystems that
ompose the overall system may be independent and have incen-
ives to keep some information secret. This could be, for example,
he case of a supply chain. It is at this point where decentralized
nd distributed controllers come into play. The idea behind these
chemes is simple: the centralized problem is divided in several
ifferent parts whose control is assigned to a certain number of

ocal controllers or agents. These agents share information with the
est in order to improve closed-loop performance, robustness and
ault-tolerance.

Decentralized and distributed systems have been a subject of
tudy for a long time, but it has not been until the last decade when

hey have been at their very peak. The renewed interest in dis-
ributed and decentralized schemes has been mainly motivated by
he proliferation of low cost wireless transceivers and their wide
ange of applications [2,3]. Wireless autonomous networks provide

∗ Corresponding author.
E-mail address: davidmps@cartuja.us.es (D. Muñoz de la Peña).

959-1524/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jprocont.2010.12.006
© 2010 Elsevier Ltd. All rights reserved.

a mean to measure or actuate much cheaper than the traditional
wired solutions.

There are several important issues that characterize distributed
control problems. Aspects such as the way agents share information
are crucial. The complexity of a distributed control problem roots
in the fact that the performance of the closed-loop system depends
on the decisions that all the agents take. Crossed interactions and
side effects are key ideas to understand why cooperation and com-
munication policies become very important issues. This problem is
not new and has been studied by disciplines such as economics and
game theory. Game theory is a theoretical framework that allows
one to study the problem of cooperation of different agents with,
maybe, conflicting control goals, from a mathematical point of view
[4,5]. In an economic context the role played by undesired interac-
tions between subsystems is studied under the idea of externalities
[6].

In this work we focus on distributed model predictive control
(MPC) schemes. MPC is a popular control strategy for the design of
high performance model-based process control systems because
of its ability to handle multi-variable interactions, constraints on
control (manipulated) inputs and system states, and optimization
requirements in a systematic manner. MPC takes advantage of a
system model to predict its future evolution starting from the cur-
rent system state along a given prediction horizon. The success
of MPC in industrial applications [7] has motivated an important
amount of research on the stability, robustness and optimality of
model predictive controllers. Nevertheless, MPC has strong com-

putational requirements which hinder its application to large-scale
systems. Hence, it is natural to use a distributed approach for this
class of systems. Several distributed MPC schemes have been pro-
posed in the literature in the last years. Next, we provide a review
of the most important contributions that can be found in the liter-

dx.doi.org/10.1016/j.jprocont.2010.12.006
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:davidmps@cartuja.us.es
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MPC

for a scheme of a centralized MPC controller. In distributed MPC
schemes there are several agents that decide all the control inputs.
It can be seen that although the states are not dynamically cou-
86 J.M. Maestre et al. / Journal of

ture in this area. More comprehensive reviews of this topic can be
ound in [8] or [9]. In general, there are three different approaches
o distribute the control problem among the agents. The first one
s the mere decentralization of the problem. In [10] the centralized

PC problem is decentralized considering only a one step horizon,
hich guarantees small deviations in the values of the variables

he agent share. In addition, a sufficient criterion for analyzing a
osteriori the asymptotic stability of the process model in closed-

oop with the set of decentralized MPC controllers is given. This
ork is enhanced in [11] for the case of packet loss. The second
MPC approach is based on information broadcast. In this category
e include those DMPC schemes in which the agents communicate
ith the goal of providing useful information for the decisions of

he rest of their neighbors. For example, in [12] a DMPC scheme for
inear systems coupled only through the state is considered. In this
cheme the agents exchange the predictions about their state at the
nd of each sample step. In [13] the DMPC controllers exchange
ounds of their state trajectories and incorporate this informa-
ion into their local problems. Other algorithms in the literature
re based on an iterative procedure of information broadcast. For
xample, in [14] this procedure is presented as communication-
ased control. In [15] another iterative implementation of a similar
MPC scheme was applied together with a distributed Kalman
lter to a quadruple tank system. Finally, the third approach is
ased on agent collaboration. In this category we include those
MPC schemes in which the agents exchange information trying

o obtain a consensus on the values of the shared variables. For
xample, dual decomposition has been used for DMPC in [16]. An
pplication for the control of irrigation canals can be found in [17].
n [18] a descent direction algorithm is used to control an urban
raffic network. A different gradient-based distributed dynamic
ptimization method based on the exchange of sensitivities is
roposed in [19]. In [20,21] a decentralized control architecture
or nonlinear systems with continuous and asynchronous mea-
urements was presented. Following up on this work, in [22,23]
istributed model predictive control methods for the design of
etworked control systems based on Lyapunov-based model pre-
ictive control were presented. Finally, Jacobi algorithm [24] is the
ore idea of one of the feasible cooperation-based MPC used in
25–27].

In general, most of the previous works assume that the agents
ave full knowledge of the model and the state of the system, which
an be to some extent restrictive. In this paper we assume that each
gent has only local state and model information and propose a
MPC algorithm for multiple agents based on agent negotiation.
his algorithm is a multiagent extension of the two agent scheme
resented in [28]. Agents communicate in order to find a coopera-
ive solution to the problem of controlling a set of constrained linear
ystems coupled through the inputs. At each sampling time, a nego-
iation takes place in which the agents make different proposals,
rom which only one of them is chosen following a social crite-
ion. In addition, we provide sufficient conditions that guarantee
ractical stability of the closed-loop system along with an optimiza-
ion based design procedure that is based on the full model of the
ystem.

. Problem formulation

We consider the following class of distributed linear systems
n which there are Mx subsystems coupled with their neighbors

hrough Mu inputs

i(t + 1) = Aixi(t) +
∑
j ∈ ni

Bijuj(t) (1)
Fig. 1. Centralized MPC.

where xi ∈ Rqi with i = 1, . . ., Mx are the states of each subsystem,
and uj ∈ Rrj with j = 1, . . ., Mu are the different inputs.1 The set of
indices ni indicates the set of inputs uj which affect the state xi and
the set of indices mj indicates the set of states xi affected by the
input uj. Note that this allow to define mathematically the concept
of neighborhood of agent i as

Ni :=
⋃
j ∈ ni

mj. (2)

Therefore, any agent j included in Ni is a neighbor of agent i. Note
that this does not imply that i ∈ Nj, that is, the neighborhood is not
a symmetrical property in this context.

We consider the following linear constraints in the states and
the inputs

xi ∈Xi, i = 1, . . . , Mx

uj ∈Uj, j = 1, . . . , Mu
(3)

whereXi andUj are closed polyhedra that contain the origin in their
interior defined by the following set of linear inequalities.

xi ∈Xi ↔ Hxi
xi ≤ bxi

, i = 1, . . . , Mx

uj ∈Uj ↔ Huj
uj ≤ buj

, j = 1, . . . , Mu
(4)

Note that, as these polyhedra contain the origin in their interior,
then bxi

> 0 and buj
> 0.

There are many different physical systems that can be modeled
under this formulation. For example, in [18] this model is used to
represent the dynamics of a traffic network. In [17] the dynamics of
an irrigation canal system are described with a similar formulation.
In [28] the beer game, a typical supply chain problem, is described
likewise.

This class of systems can be represented by a graph in which to
each node either the state of one of the subsystems or one of the
inputs available is assigned, and the arcs connect the inputs to the
states they affect.

The control objective is to regulate the states of all the subsys-
tems to the origin while satisfying the state and input constraints.
To this end, centralized MPC follows a receding horizon approach
and at each sampling time obtains the current states and solves a
single finite horizon optimal control problem based on a perfor-
mance index that depends on all the states and inputs. See Fig. 1
pled, the agents need to negotiate in order to decide the value of

1 Throughout the paper the time dependence is omitted when possible for nota-
tional convenience.
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Fig. 2. Distributed MPC.

he shared inputs. There are many possible distributed schemes
epending on the available information and communication con-
traints. Fig. 2 shows a scheme of a distributed controller in which
ach agent has access to partial state information and can commu-
icate with the rest of the agents. This is the class of distributed
ontrol scheme considered in this work that is presented in the
ext section.

emark 1. One of the differences between the proposed approach
nd other cooperative MPC schemes is that in order to implement
he control law, the agents do not need to have a global model of
he system. This may be important in some applications in which
he centralized model is not available or the agents do not want to
hare this information with the rest of the subsystems. In addition,
here is a potential benefit from this assumption because if a dis-
ributed system adds a new subsystem, in the proposed scheme,
nly those agents affected by this new element would have to be
pdated, while in other schemes based on global information, the

nformation would have to be broadcasted. One class of systems in
hich these issues are relevant are transport networks and supply

hains, where new consumers/suppliers can appear dynamically.

emark 2. In the proposed scheme, several agents decide upon
ll or a subset of the control inputs. This implies that the inputs
re not assigned to a particular agent as in most distributed MPC
chemes found in the literature. Moreover, nothing is said about
he magnitudes of Mx and Mu, thus this framework allows model-
ng situations in which there are agents with no associated inputs
r even states. Hierarchical control or the existence of mediators
n the network (agents that suggest an actuation for the rest of
gents based on their own knowledge of the system) are examples
f other interesting possibilities that can be also modeled with this
ramework.

. Proposed DMPC controller

In this paper we propose a distributed scheme assuming that
or each subsystem, there is an agent that has access to the model
nd the state of that subsystem. The agents do not have any knowl-
dge of the dynamics of its neighbors, but can communicate freely
mong them in order to reach an agreement. The proposed strat-
gy is based on negotiation between the agents. At each sampling
ime, following a given protocol, agents make proposals to improve
n initial feasible solution on behalf of their local cost function,

tate and model. These proposals are accepted if the global cost
mproves the cost corresponding to the current solution. To this
nd, the agent that makes the proposal must communicate with
he neighbors affected. Note that a proposal may modify only a sub-
et of inputs, and hence there are agents that may not be affected
s Control 21 (2011) 685–697 687

by these changes. Different negotiation/communication protocols
may be implemented. The only requirement is that the protocol
must guarantee that each proposal is evaluated independently. In
this paper, we propose to implement a controller in which at each
sampling time, a fixed number of proposals made sequentially by
random agents are considered.

The control objective of the proposed scheme is to minimize a
global performance index defined as the sum of each of the local
cost functions. The local cost function of agent i based on the pre-
dicted trajectories of its state and inputs defined as

Ji(xi, {Uj}j ∈ ni
) =

N−1∑
k=0

Li(xi,k, {uj,k}
j ∈ ni

) + Fi(xi,N) (5)

where Uj = {uj,k} is the future trajectory of input j, N is the prediction
horizon, Li( · ) with i ∈ Mx is the stage cost function defined as

Li(xi, {uj}j ∈ ni
) = xT

i Qixi +
∑
j ∈ ni

uT
j Rijuj (6)

with Qi > 0, Rij > 0 and Fi( · ) is the terminal cost defined as

Fi(xi) = xT
i Pixi (7)

with Pi > 0. We use the notation xi,k to denote the state i, k-steps
in the future obtained from the initial state xi applying the input
trajectories defined by {Uj}j ∈ ni

. Note that each of the local cost func-

tions only depends on the trajectories of its state and the inputs that
affect it.

At the end of the negotiation rounds, the agents decide a set of
input trajectories denoted as Ud. The first input of these trajectories
is applied, however, the rest of the trajectories are not discarded,
instead are used to generate the initial proposal for the next sam-
pling round which is given by the shifted future input trajectories
Us of all the inputs. The last input of each of these trajectories is
given by

∑
p ∈ mj

Kjpxp,N (8)

where xp,N is the predicted values of the state xp after N time steps
obtained applying Ud(t − 1) from the initial state xp(t). The set of
shifted input trajectories will be applied in case the agents do not
reach an agreement. This proposal is necessary in order to guaran-
tee closed-loop stability.

We define next the proposed distributed MPC scheme:

• Step 1: Each agent p measures its current state xp(t). The agents
communicate in order to obtain Us(t) from Ud(t − 1). In order to
do this, each agent must receive Kjixi,N from each agent i such that
Kji /= 0 for some j ∈ np. The initial value for the decision control
vector Ud(t) is set to the value of the shifted input trajectories,
that is, Ud(t) = Us(t).

• Step 2: Randomly, agents try to submit their proposals. To this
end, each agent asks the neighbors affected if they are free to

evaluate a proposal (each agent can only evaluate a proposal at
any given time). If all the agents acknowledge the petition, the
algorithm continues. If not, the agent waits a random time before
trying again. We will use the superscript p to refer to the agent
which is granted permission to make a proposal.
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Step 3: In order to generate its proposal, agent p minimizes Jp
solving the following optimization problem:

{Up
j

(t)}
j ∈ np

= arg min
{Uj}j ∈ np

Jp(xp, {Uj}j ∈ np
)

s.t.

xp,k+1 = Apxp,k +
∑
j ∈ np

Bpjuj,k

xp,0 = xi(t)
xp,k ∈Xp, k = 0, . . . , N
uj,k ∈Uj, k = 0, . . . , N − 1, ∀j ∈ np

xp,N ∈ �p

Uj = Ud
j

(t), ∀j /∈ nprop

(9)

In this optimization problem, agent p optimizes over a set nprop

of inputs that affect its dynamics, that is, nprop ⊆ np. Based on the
optimal solution of this optimization problem, agent p presents a
proposal defined by a set of input trajectories {Up

j
(t)}

j ∈ np
where

Up
j

(t) stands for the value of the trajectory of input j of the pro-
posal of agent p. From the centralized point of view, the proposal
at time step t of agent p is defined as

Up(t) = {Up
j

(t)}
j ∈ np

� Ud(t) (10)

where the operation � stands for the update of the components
relatives to {Up

j
(t)} in Ud(t) and leaving the rest unmodified.
j ∈ np

Step 4: Each agent i who is affected by the proposal of agent p
evaluates the predicted cost corresponding to proposed solution.
To do so, the agent calculates the difference between the cost
of the new proposal Up(t) and the cost of the current accepted

ig. 3. Flow diagram for a single agent which is granted permission to make a
roposal of the proposed DMPC scheme.
s Control 21 (2011) 685–697

proposal Ud(t) as

�Jp
i
(t) = Ji(xi(t), {Up

j
(t)}

j ∈ ni
) − Ji(xi(t), {Ud

j (t)}
j ∈ ni

) (11)

This difference �Jp
i
(t) is sent back to the agent p. If the proposal

does not satisfy the constraints of the corresponding local opti-
mization problem, an infinite cost increment is assigned. This
implies that unfeasible proposals will never be chosen.

• Step 5: Once agent p receives the local cost increments from each
neighbor, it can evaluate the impact of its proposal �Jp(t), which
is given by the following expression

�Jp(t) =
∑

i ∈ ∪
j ∈ nprop

mj

�Jp
i
(t) (12)

This global cost increment is used to make a cooperative decision
on the future inputs trajectories. If �Jp(t) is negative, the agent
will broadcast the update on the control actions involved in the
proposal and the joint decision vector Ud(t) will be updated to the
value of Up(t), that is Ud(t) = Up(t). Else, is discarded.

• Step 6: The algorithm goes back to step 1 until the maximum
number of proposals have been made or the sampling time ends.
We denote the cost corresponding to the decided inputs as

J(t) =
Mx∑
i=1

Ji(xi(t), {Ud
j (t)}

j ∈ ni
) (13)

• Step 7: The first input of each sequence in Ud(t) is applied and the
procedure is repeated the next sampling time.

In Fig. 3 a flow diagram for a single agent of the proposed DMPC
scheme is shown assuming that all the states are affected by all
the inputs (hence, all the agents are neighbors). It can be seen that
the agent must communicate several times with the rest of the
agents. Note that in order to implement the proposed algorithm, it
is necessary to obtain a set of future input trajectories that satisfy
all the constraints for the initial state; that is, to initialize Us(0).

From a game theory point of view the situation can be described
as a cooperative team game in which the possible strategies for each
player are defined by its own proposals and the proposals of the rest
of the agents. The utility of the proposals for each agent is defined
by its local cost function, however, in order to find a solution, each
agent chooses the option that is best from the global point of view.

Remark 3. The time variable t, which is always used between
parenthesis, references sampling times. The variable k, which is
used always as a subscript, references the future time steps along
the prediction horizon of a given optimization problem and always
takes values between 0 and N.

Remark 4. Several proposals can be evaluated in parallel as long as
they do not involve the same set of agents; that is, at any given time
an agent can only evaluate a single proposal. The communication

protocol to implement the algorithm in parallel is beyond the scope
of this work.

Remark 5. Centralized MPC solves a single large-scale problem
based on the model of the whole system such as the following
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ptimization problem:

{Uc
j
}
j=1,...,Mu

= arg min
{Uj}j=1,...,Mu

Mx∑
i=1

Ji(xi, {Uj}j ∈ ni
)

s.t.

xi,k+1 = Aixi,k +
∑
j ∈ ni

Bijuj,k

xi,0 = xi

xi,k ∈Xi, k = 0, . . . , N
uj,k ∈Uj, k = 0, . . . N − 1, ∀j ∈ ni

xi,N ∈ �i

∀i = 1, . . . , Mx

(14)

. Stability

Stability is a major issue in distributed systems. In general, it is a
ifficult problem because it is not enough to guarantee the stability
f each of the subsystems. Actually, stable subsystems may lead
o an unstable global system. In this section we provide sufficient
onditions that guarantee asymptotic stability of the closed-loop
ystem following a standard region/terminal cost approach [29].

ssumption 1. There exist linear feedback uj = ∑
p ∈ mj

Kjpxp and

ets �i ⊆ Rqi such that if xi ∈ �i for all i = 1, . . ., Mx then the following
onditions hold for all i = 1, . . ., Mx

Mx

i=1

Fi(Aixi+
∑
j ∈ ni

Bij

∑
p ∈ mj

Kjpxp)−Fi(xi)+Li

⎛
⎜⎝xi,

⎧⎨
⎩

∑
p ∈ mj

Kjpxp

⎫⎬
⎭

j ∈ ni

⎞
⎟⎠ ≤ 0

(15a

ixi +
∑
j ∈ ni

Bij

∑
p ∈ mj

Kjpxp ∈ �i (15b)

∑
∈ mj

Kjpxp ∈ Uj (15c)

i ∈ Xi (15d)

The requirements of Assumption 1 are twofold, first, the local
eedbacks must satisfy constraint (15a) which implies that the sys-
em in closed-loop with these set of local controllers is stable.
econd, sets �i such that (15b)–(15d) are satisfied must exist. We
enote these sets as jointly positive invariants for system (1) in
losed-loop with the controllers defined by matrices Kij. It is impor-
ant to note that although the cartesian product of these sets is
positive invariant of system (1), in general it is not possible to

btain the jointly positive invariant sets from an invariant set of
ystem (1) obtained following standard procedures because each

i is defined only in a subspace of the whole state space; that is, in
he space corresponding to the state xi. This property is necessary
n order to define for each agent a set of constraints that depend
nly on its state, and hence, only on its model. See the constraints
f problem (9).

heorem 1. If Assumption 1 holds and at time step t = 0, Us(0) is
iven such that each of the Mx optimization problems (9)2are fea-

s
ible for xi,0 = xi(0) and Uj = U
j
(0) with i = 1, . . ., Mx and j ∈ ni, then

he proposed algorithm is feasible for all time steps t ≥ 0 and sys-
em (1) in closed-loop with the proposed distributed MPC controller
s asymptotically stable.

2 Although we used the index p in the definition of the optimization problems
olved to obtain each proposal, in the proof of Theorem 1 we will use the index i.
s Control 21 (2011) 685–697 689

Proof. The proof consists of two parts. We first prove that there
is always a proposal which satisfies all the constraints (9) and then
we prove that, under the stated assumptions,

J(t) =
Mx∑
i=1

Ji(xi(t), {Ud
j (t)}

j ∈ ni
) (16)

is decreasing sequence lower-bounded by zero.
Part 1. Taking into account that {Ud

j
(t − 1)}

j ∈ ni
satisfies all the

constraints of (9) and Assumption 1, it is easy to prove that
{Us

j
(t)}

j ∈ ni
provides a feasible solution for xi(t). It follows, that Ud(t)

provides a feasible solution for the optimization problem of agent
i because it is chosen among a set of proposals which are required
to be feasible in order to be accepted. Note that a proposal which
is unfeasible for any of the agents cannot be chosen because the
corresponding local cost is infinite. Taking into account that by
assumption, Us(0) satisfies all the constraints for all the agents at
time step t = 0 and using the above result recursively, the statement
of this part is proved.

Part 2. Taking into account the definitions of Ud
i

(t − 1) and Us
i
(t)

it follows that

Ji(xi(t), {Us
j (t)}

j ∈ ni
) − Ji(xi(t − 1), {Ud

j (t − 1)}
j ∈ ni

) (17)

is equal to

Fi

⎛
⎝Aixi,N +

∑
j ∈ ni

Bij

∑
p ∈ mj

Kjpxp,N

⎞
⎠ − Fi(xi,N)

+ Li

⎛
⎜⎝xi,N,

⎧⎨
⎩

∑
p ∈ mj

Kjpxp,N

⎫⎬
⎭

j ∈ ni

⎞
⎟⎠ − Li(xi,0, {uj,0}

j ∈ ni
) (18)

where uj,0 is the first input of Ud
j

(t − 1). Taking into account (15a),
this implies that

Mx∑
i=1

Ji(xi(t), {Us
j (t)}

j ∈ ni
) − J(t − 1) ≤ −

Mx∑
i=1

Li(xi,0, {uj,0}
j ∈ ni

) (19)

As the proposed algorithm chooses Ud(t) as an input trajectory that
improves the cost, it is easy to see that

J(t) ≤ J(t − 1) −
Mx∑
i=1

Li(xi,0, {uj,0}
j ∈ ni

) (20)

Taking into account that recursive feasibility is guaranteed (see the
first part of the proof) and the definitions of Fi and Li and following
the same lines of though as in [29] or [30], attractiveness and stabil-
ity can also be proved. This implies that system (1) in closed-loop
with the proposed distributed MPC controller is asymptotically sta-
ble. �

The proof of Theorem 1 follows the standard terminal
region/terminal constraint approach, see [29]. Stability is inherited
from the set of local controllers defined by matrices Kij which by
(15a) are known to stabilize the system. In fact this result is based
on the well known idea “Feasibility implies stability”, see [31].

Remark 6. The stability properties of the proposed scheme rely

heavily on the fact that Us satisfies all the constraints of the opti-
mization problem. This implies, that in the start-up and when the
controller loses feasibility due to disturbances, Us has to be calcu-
lated either by a centralized supervisor or in a distributed manner
by the agents.
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emark 7. When applied to a real system in the presence of dis-
urbances and/or possible model errors, if the controller operates
lose to the state constraints in practice the shifted input trajec-
ory may become unfeasible and it would have to be evaluated
gain (in a centralized manner or using an appropriate distributed
pproach). This issue must be taken into account in the implemen-
ation procedure of this control strategy.

. Controller design procedure

The local controllers Kij must satisfy two necessary conditions.
irst, the centralized system composed by the Mx subsystems (1) in
losed-loop with the local controllers must be stable. Second, the
ointly invariant sets must exist.

The local controllers that depend on each agent must be
esigned in a way such that (15a) holds. To take this condition into
ccount, we will use the following centralized model of the system

(t + 1) = Ax(t) + Bu(t) (21)

here

= [xT
1, . . . , xMx ]

T
, u = [uT

1, . . . , uMu ]
T

(22)

nd matrices A and B are appropriate matrices that depend of the
odel (1) of each subsystem.
In addition, stability of each subsystem in closed-loop with its

orresponding local feedback must be guaranteed. A sufficient con-
ition to guarantee stability of each of the subsystems is to require
hat the cost function defined by the matrices Pi is a Lyapunov
unction for the subsystem in closed-loop with its corresponding
ocal feedback. To take into account this condition, we will use the
ollowing uncertain model of each of the Mx subsystems

i(t + 1) = Aixi(t) + Bivi(t) + Eiwi(t) (23)

here vi ∈ R
∑

j ∈ ni
rj is made of the part of the inputs that affect xi

nd depend on xi and wi ∈ R
∑

j ∈ ni
rj is the part of the inputs that

ffect xi depend on the rest of the states when the local controllers
re applied; that is,

vi(t) = {Kjixi(t)}
j ∈ ni

wi(t) =

⎧⎨
⎩

∑
p ∈ mj−{i}

Kjpxp(t)

⎫⎬
⎭

j ∈ ni

(24)

n this case, the objective is to design a controller Ki = {Kji}j ∈ ni
that

tabilizes the subsystem considering wi an unknown disturbance.
atrices Bi and Ei are equal and depend of the model (1) of each

ubsystem, in particular

i = Ei = {Bij}j ∈ ni

We provide next a set of linear matrix inequalities (LMI) that
uarantees that (15a) holds and that Ki stabilizes the subsystem i.
hese LMI constraints are obtained following standard procedures,
ee for example [32–34].

heorem 2. Consider system (1). If there exist matrices Wi, Yi with
= 1, . . ., Mx such that the following inequalities hold 3

ϒ � � �
∗ ϒ 0 0
∗ ∗ I 0

⎤
⎥⎦ ≥ 0 (25)
∗ ∗ ∗ I

3 The symbol “∗” stands for the symmetric part of a matrix.
s Control 21 (2011) 685–697

with Ri = ∑
j ∈ ni

Rij , R = diag(R1, . . . , RMx ), K = [K1, . . . , KMx ], KT
i

=
[K1i, . . . , KMui] and

� =

⎡
⎢⎢⎣

W1AT
1 + YT

1 BT
1 YT

1 BT
2 · · · YT

1 BT
Mx

YT
2 BT

1 W2AT
2 + YT

2 BT
2 · · · YT

2 BT
Mx

...
...

. . .
...

YT
Mx

BT
1 YT

Mx
BT

2 · · · WMx AT
Mx

+ YT
Mx

BT
Mx

⎤
⎥⎥⎦

(26)

ϒ =

⎡
⎢⎢⎣

W1 0 · · · 0
∗ W2 · · · 0

∗ ∗ . . .
...

∗ ∗ ∗ WMx

⎤
⎥⎥⎦ , � =

⎡
⎢⎢⎣

YT
1 R1/2

YT
2 R1/2

...
YT

Mx
R1/2

⎤
⎥⎥⎦ ,

� =

⎡
⎢⎢⎢⎣

W1Q 1/2
1 0 · · · 0

∗ W2Q 1/2
2 · · · 0

∗ ∗ . . .
...

∗ ∗ ∗ WMx Q 1/2
Mx

⎤
⎥⎥⎥⎦ , (27)

and⎡
⎢⎣

Wi WiA
T
i

− YT
i

BT
i

WiQ
1/2
i

YT
i

R1/2
i

∗ Wi 0 0
∗ ∗ I 0
∗ ∗ ∗ I

⎤
⎥⎦ ≥ 0 (28)

for i = 1, . . ., Mx then (15a) is satisfied for the matrices Pi = W−1
i

, Ki =
{Kji}j ∈ ni

= YiW
−1
i

and systems (23) are stable in closed-loop with vi =
Kixi.

Proof. We will prove the theorem in two parts. In the first part we
will prove that if (25) holds, then (15a) is satisfied for the matrices
Pi = W−1

i
, Ki = {Kji}j ∈ ni

= YiW
−1
i

. In the second part, we will prove

that if (28) holds then system (23) is stable in closed-loop with
vi = Kixi.

Part 1: In this part, we will prove that (25) is equivalent to (15a).
Taking into account the definition of the centralized system (21),
(15a) can be posed as follows

(A + BK)T P(A + BK) − P + Q + KT RK ≤ 0 (29)

with

R = diag(R1, . . . , RMx )
Q = diag(Q1, . . . , QMx )
P = diag(P1, . . . , PMx )

(30)

with Ri =
∑

j ∈ ni
Rij . Taking into account that the P and P−1 are pos-

itive defined matrices, if we multiply (29) by minus one and apply
the Schur’s complement we can recast (29) as the following con-
straint[

P − Q − KT RK (A + BK)T

(A + BK) P−1

]
≥ 0 (31)

This LMI can be transformed into an equivalent one by pre and post
multiplying it by a positive definite matrix[

P−1 0
0 I

][
P − Q − KT RK (A + BK)T

(A + BK) P−1

][
P−1 0
0 I

]
≥ 0 (32)
The resulting equivalent matrix inequality is given by[
P−1 − P−1QP−1 − P−1KT RKP−1 P−1(A + BK)T

(A + BK) P−1 P−1

]
≥ 0 (33)
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n order to obtain a LMI inequality let ϒ = P−1 =
iag(W1, W2, . . . , WMx ) with Wi = P−1

i
for i = 1, 2, .., Mx and

= Kϒ = [Y1 Y2 . . . YMx ]. It follows that

ϒ − ϒQϒ − YT RY ϒAT + YT BT

Aϒ + BY ϒ

]
≥ 0 (34)

sing the decomposition Q = Q1/2Q1/2 and applying Schur’s comple-
ent we obtain

ϒ − YT RY ϒAT + YT BT

Aϒ + BY ϒ

]
−

[
ϒQ 1/2

0

]
I
[

Q 1/2ϒ 0
]

≥ 0 (35)

ϒ − YT RY ϒAT + YT BT ϒQ 1/2

Aϒ + BY ϒ 0
Q 1/2ϒ 0 I

]
≥ 0 (36)

he same procedure is repeated for R = R1/2R1/2 obtaining

ϒ ϒAT + YT BT ϒQ 1/2

Aϒ + BY ϒ 0
Q 1/2ϒ 0 I

]

−
[

YT R1/2

0
0

]
I
[

R1/2Y 0 0
]

≥ 0 (37)

ϒ ϒAT + YT BT ϒQ 1/2 YT R1/2

Aϒ + BY ϒ 0 0
Q 1/2ϒ 0 I 0
R1/2Y 0 0 I

⎤
⎥⎦ ≥ 0 (38)

efining � = ϒAT + YTBT, � = ϒQ1/2 and � = YTR1/2, the following
MI constraint is obtained and hence the proof is completed

ϒ � � �
∗ ϒ 0 0
∗ ∗ I 0
∗ ∗ ∗ I

⎤
⎥⎦ ≥ 0 (39)

Part 2: In this part, we will prove that if (28) holds then system
23) is stable in closed-loop with vi = Kixi. To this end, we will prove
hat (28) is equivalent to the following constraint

Ai + BiKi)
T Pi(Ai + BiKi) − Pi + Qi + KT

i RiKi ≤ 0 (40)

hich implies that Vi(x) = xT
i
Pixi is a Lyapunov function of the

losed-loop system and hence is stable. To prove this part of the
heorem the constraint (40) is transformed in its equivalent LMI
onstraint (28) following the same procedure used in the first
art. �

emark 8. Additional constraints can be added to the design pro-
edure so that there is no need to know the state xi in order to
alculate the input uj. This is relevant because in order to evaluate
he shifted input trajectory, all the subsystems whose state affects

given input must communicate, so in certain cases, it may be
esirable to limit these communications.

Once the local controllers and the terminal cost functions are
xed, in order to design a distributed MPC scheme that satisfies
he assumptions of Theorem 1 one needs to find sets �i such that
15b)–(15d) hold. In general this is a difficult problem because each
f the sets depends on the others. The size of the terminal region for
gent i is determined by the magnitude of the disturbances induced

y its neighbor agents and viceversa. A similar class of invariant sys-
ems was studied in [35] within the polytopic games framework.

e provide next an optimization based procedure to solve this
roblem. In order to present the algorithm we need the following
efinitions.
s Control 21 (2011) 685–697 691

Definition 1. Given the following discrete-time linear system sub-
ject to bounded additive uncertainties

x+ = Âx + B̂u + Êw (41)

with w ∈ Ŵ, subject to constraints in the state and the input
x ∈ X̂, u ∈ Û and a linear feedback u = K̂x; a set � is said to be a robust
positive invariant set for the system if the following constraints
hold

x ∈ � → (Â + B̂K̂)x + Êw ∈ �, ∀w ∈ Ŵ
K̂x ∈ Û
� ⊆ X̂

(42)

Given system matrices Â, B̂, Ê, K̂ and the sets X̂, Û, Ŵ, there
exists several methods to find a set � that satisfies these con-
straints, see for example [36] for a procedure to find the maximal
robust positive invariant and [37] for a procedure to find an
approximation of the minimal robust positive invariant. We denote
�(Â, B̂, Ê, X̂, K̂, Û, Ŵ) the corresponding maximal robust positive
invariant set.

In order to obtain sets �i such that Assumption 1 is satisfied, we
will use the uncertain model (23) of each agent; that is, each agent
assumes that the contribution of its neighbors to the inputs that
affect its dynamics are an unknown bounded disturbance. The size
of the set in which these disturbances are bounded depend on the
size of the sets �i. This implies that finding these sets is in general a
complex problem. In order to decouple the design of each set, each
agent i limits its contribution to each input j by a factor �ji ∈ (0, 1]
with

∑
i ∈ mj

�ji ≤ 1; that is,

Kjixi ∈ �jiUj, ∀i, j (43)

Using the same notation introduced in (23), this implies that

vi ∈Vi(	), wi ∈Wi(	) (44)

with

Vi(	) = �1iU1 × . . . × �MuiUMu

Wi(	) = (
∑

p ∈ m1−{i}
�1p)U1 × . . . × (

∑
p ∈ mMu −{i}

�Mup)UMu (45)

where 	 = {�ij}∀i,j
is a vector made of all the parameters �ij. Note

that the maximum contribution of a given agent inside �i is the
maximum contribution to the disturbance for the rest of the agents.
In order to decouple the computation of the jointly invariant sets
�i, we use the following result based on finding a robust positive
invariant set for each subsystem:

Lemma 1. Given constants �ji ∈ (0, 1) with
∑

i ∈ mj
�ji ≤ 1, if the sets

defined as

�i = �(Ai, Bi, Ei,Xi, Ki,Vi(	),Wi(	)) (46)

are not empty, they satisfy the constraints (15b)–(15d).

The lemma stems from the definition of the operator �. If all the
sets exist, then they satisfy the stability constraints. Note that there
exists an infinite number of possible values of �ji such that these
sets exist. In order to chose one, we propose to solve the following
optimization problem which maximizes the feasibility region of the
distributed MPC controller:

max�ji
f (�1 × �2 . . . × �Mx )
�i = �(Ai, Bi, Ei,Xi, Ki,Vi(	),Wi(	))
�ji ∈ (0, 1), ∀j, i∑ (47)
i ∈ mj

�ji ≤ 1, ∀j

where function f( · ) is a measure of the size of a polyhedron (for
example, its Chebyshev radius).
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Solving problem (47) may be difficult in general, however, under
ertain assumptions it can be posed as a convex problem. In [35]
t was proved that the feasibility region of this problem is convex.
n the next lemma we prove that the jointly invariant sets �i are
olyhedra defined by a set of inequalities whose right hand side
an be expressed as an affine combination of the constants �ij. This
mplies, that if an appropriate function f( · ) is chosen, problem (47)
an be cast into a convex optimization problem.

emma 2. If Ai +
∑

jBijKji is stable, then the set

i = �(Ai, Bi, Ei,Xi, Ki,Vi(	),Wi(	)) (48)

s a polyhedron that can be defined as a set of inequalities whose
ndependent term can be expressed as an affine combination of the
onstants �ij, that is,

i = {xi : Mixi ≤ bi +
∑
j ∈ ni

∑
p ∈ mj

�jpbij} (49)

roof. The calculation of the robust invariant for a linear system is
well known problem and several procedures can be found in the

iterature, for instance in [38] or [36]. In order to prove the lemma,
e will follow the procedure presented in [36]. The main idea is

o find the set of states such that the trajectories of the closed-
oop system starting from these states fulfill all the state and input
onstraints for all possible disturbances. This is done in an iterative
anner. The set of states that fulfill the constraints after k steps is

etermined for increasing values of k. This process is repeated until
onvergence is obtained, that is, the same set of states is obtained
or k and k + 1. The resulting set is the maximum invariant set. Note
hat each value of k adds new constraints that the invariant set

ust fulfill, so the number of restrictions grows with each iteration.
irst of all, we will define the state constraints that the closed-loop
ystem has to satisfy taking into account the constraints in uji, the
ontribution of the state xi to the different inputs uj. By definition
f �i, uji has to verify

ji = Kjixi ∈ �jiUj, j ∈ ni (50)

ence, the input constraint condition for the input j (4) can be
ransformed into the following set of inequalities:

uj
Kjixi ≤ �jibuj

, j ∈ ni (51)

ote that as �ji ∈ (0, 1), the set of inequalities is equal or more
estrictive than the original input constraints. These inequalities
ave to be taken into account in the state constraints of the closed-

oop system. The new set of state constraints can be written as

ˆ xi
xi ≤ b̂xi

(52)

or example, if ni = {1, 2, . . ., Mu}, that is, subsystem i is affected by
ll the inputs, then

ˆ xi
=

⎡
⎢⎢⎣

Hxi

Hu1 K1i
...

HuMu
KMui

⎤
⎥⎥⎦ , b̂xi

=

⎡
⎢⎢⎣

bxi

�1ibu1
...

�MuibuMu

⎤
⎥⎥⎦ (53)

ote that the right hand side of the inequalities can be expressed
s an affine combination of the constants �ij with j ∈ ni. Let ACLi

=∑

Ai + jBijKji). If ACLi

is stable, then for each value of 	, the robust
nvariant set �i can be determined in a finite number of steps
orward k(	). Let k∗ = max 	k(	). We can compute the robust
nvariant set for all possible values of 	 as the set of states such
hat its k-steps ahead predictions satisfy all the constraints for all
s Control 21 (2011) 685–697

possible future disturbances; that is,

Ĥxi

⎛
⎝Ak

CLi
xi+

k−1∑
g=0

Ag
CLi

∑
j ∈ ni

∑
p ∈ mj−{i}

Bijujp

⎞
⎠ ≤ b̂xi

, k = 1, . . . , k∗ (54)

for all ujp ∈ �jpUj with j ∈ ni and p ∈ mj − {i}. Taking into account that
for all ujp ∈ �jpUj with p ∈ mj − {i} there exists zj ∈Uj such that

zj

∑
p ∈ mj−{i}

�jp =
∑

p ∈ mj−{i}
ujp (55)

constraint (54) is equivalent to

Ĥxi
(Ak

CLi
xi +

k−1∑
g=0

Ag
CLi

∑
j ∈ ni

Bijzj

∑
p ∈ mj−{i}

�jp) ≤ b̂xi
, k = 1, . . . , k∗ (56)

for all zj ∈Uj with j ∈ ni. In order to eliminate the disturbance from
the constraints and obtain a deterministic set, let us focus on each
of the nr rows of Ĥxi

(which define a different constraint for each
time step k taken into account in the definition of the invariant set).
To denote the r-th row of a matrix A we will use the [A]r. Using this
notation, constraint (56) is equivalent to

[Ĥxi
Ak

CLi
]
r
xi ≤ [b̂xi

]r −

⎡
⎣Ĥxi

k−1∑
g=0

Ag
CLi

∑
j ∈ ni

Bijzj

∑
p ∈ mj−{i}

�jp

⎤
⎦

r

,

k = 1, . . . , k∗, r = 1, . . . , nr

(57)

Let us define


gr
ij

= maxzj ∈Uj
([(Ĥxi

Ag
CLi

Bij)]
r
zj) (58)

Note that 
gr
ij

is a scalar that can be calculated from the system
model and constraints. This definition allows us to rewrite con-
straint (57) as:

[Ĥxi
Ak

CLi
]
r
xi ≤ [b̂xi

]r −
k−1∑
g=0

∑
j ∈ ni


gr
ij

⎛
⎝ ∑

p ∈ mj−{i}
�jp

⎞
⎠ ,

k = 1, . . . , k∗, r = 1, . . . , nr (59)

Taking into account that the second term of each of the constraints
of (59) is an affine combination of the constants {�ip} it is possible
to find matrix Mi and vectors bi and bij with j ∈ ni such that

�i = {xi : Mixi ≤ bi +
∑
j ∈ ni

∑
p ∈ mj

�jpbij} (60)

�

Using this result, the problem of finding a matrix 	 that
maximizes a measure of the distance can be cast into a convex
optimization problem. For instance, let us suppose that our cri-
terium to compare the invariant sets is the radium of a Chebyshev
ball inside the invariant region. In this case we are interested in
obtaining the maximum xTx as function of 	 that verifies all the
constraints, which is a convex problem.

Remark 9. Although in order to implement the proposed con-
troller, the agents do not need information about the state or the
dynamics of the rest of the subsystems, a centralized model of the

full system is needed in order to design the terminal region and
the terminal constraint using the proposed design method so that
closed-loop stability is guaranteed. Note that it is not mandatory to
design the controller to satisfy the stability assumptions in order
to implement the proposed distributed strategy.
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. Example

Consider a system of the form (1) defined by the following matri-
es

A1 =
[

1 0.8

0 0.7

]
, B11 =

[
0

1

]
, B12 =

[
0

0.15

]
, B13 =

[
0

0.15

]
, B14 =

[
0

0

]
A2 =

[
1 0.6

0 0.7

]
, B21 =

[
0

0.15

]
, B22 =

[
0

1

]
, B23 =

[
0

0

]
, B24 =

[
0

0.15

]
A3 =

[
1 0.9

0 0.8

]
, B31 =

[
0

0.15

]
, B32 =

[
0

0

]
, B33 =

[
0

1

]
, B34 =

[
0

0.15

]
A4 =

[
1 0.8

0 0.5

]
, B41 =

[
0

0

]
, B42 =

[
0

0.15

]
, B43 =

[
0

0.15

]
, B44 =

[
0

1

]
(61)

ubject to the following linear constraints in the state and the inputs

|x1|∞ ≤ 1, |x2|∞ ≤ 2, |x3|∞ ≤ 1, |x4|∞ ≤ 2

|u1|∞ ≤ 1, |u2|∞ ≤ 1, |u3|∞ ≤ 1, |u4|∞ ≤ 1
(62)

A graph that represents the couplings between the individual
ubsystems can be seen in Fig. 4. The boxes represent the subsys-
ems while the arrows represent the coupling between neighbors.

e assume that each agent can communicate with all the neigh-
ors to evaluate the shifted input trajectory as well as the global
ost of the proposals. The weighting matrixes that define the cost
unction of the MPC controller are the following:

Qi =
[

1 0
0 1

]
, Rij = 10 (63)

ith i = {1, 2, 3, 4} and j ∈ ni.
In order to implement the proposed DMPC control scheme we

eed to design the local feedbacks and the terminal cost functions
ccording to LMI constraints presented in Theorem 2 to find matri-
es Kij and Pi such that all the stability conditions are satisfied. In
articular, matrices W, Y such that constraints (28) and (25) hold
hile maximizing the sum of the traces of the matrices Wi. Applying

he variable change presented in Theorem 2, the following matrices
and P such that the stability assumptions hold are obtained

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.27 −0.01 0 0
−0.59 −0.02 0 0
0 −0.28 0 −0.01
−0.01 −0.5 0 −0.02
0 0 −0.24 −0.01
−0.01 0 −0.68 −0.02
0 −0.01 0 −0.30
0 −0.02 0 −0.48

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.92 5.76 0 0 0 0 0 0
5.76 11.30 0 0 0 0 0 0
0 0 5.65 5.42 0 0 0 0
0 0 5.42 8.82 0 0 0 0
0 0 0 0 4.45 5.81 0 0
0 0 0 0 5.81 13.74 0 0
0 0 0 0 0 0 5.61 5.80
0 0 0 0 0 0 5.80 8.95

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)

The controller defined by matrix K stabilizes not only the central-
zed system but also the four subsystems individually considered.

ote that in the optimization problem, additional constraints
here imposed consisting in the absence of communication

etween some of the agents for the purpose of computing the local
ontrol law. This specification is reflected in the presence of zeros
n the matrix. For example, agents 1 and 4 do not have to exchange
Fig. 4. Graph of the system (61).

any information in order to compute the shifted input trajectory.
This class of additional constraints are particularly relevant when
more involved communications protocols are taken into account.

The next step in the design procedure is to find the set of 	 that
maximizes the size of the jointly invariant sets. In particular, we
measure the size by the Chebyshev radius of the resulting central-
ized invariant set. The resulting optimization problem is convex
problem (in particular, it can be posed as a LP problem) and has
been solved using Matlab’s fmincon function. The optimal matrix
	 is

	 =

⎡
⎢⎣

0.4568 0.0931 0.0115 0
0.0116 0.4576 0 0.0699
0.0805 0 0.4908 0.0235
0 0.1635 0.0354 0.4128

⎤
⎥⎦ (65)

where the element of the i-th row and the j-th column corresponds
to the constant �ij. Note that the constants �ji that correspond to
matrices Kji = 0 are set to zero.

The properties of the equivalent centralized system provide
useful information to establish a comparison with the distributed
approach. In particular, the size of the maximum invariant set for
the centralized nominal case provides an upper bound of the size
of the invariant set obtained from the jointly invariant sets. In this
case, the radium of the largest Chebyshev ball is 0.74. The invari-
ant set calculated for the distributed system has a radium of 0.66, a
value very close to the centralized case. The reduction of the invari-
ant region is 11%. In Fig. 5 the invariant set of each subsystem can
be seen along with the corresponding projection of the centralized
invariant set.

In general, the closed-loop stability properties are independent
on how many proposals are evaluated or how this proposals are
generated. This implies that the proposed controller scheme can
be implemented using different proposal generation protocols. In
this simulation, a communication protocol based on broadcast dif-
ferent from the one presented in Section 3 is used. At each sample
time, each agent makes a single proposal optimizing its local cost
function with respect to all the manipulated variables that affect
him. All the proposals are compared (including Us) and the one
with the lower cost function is applied.

Fig. 7 shows the closed-loop state trajectories of all the subsys-
tems with the corresponding jointly invariant sets. The simulations
presented were done for a prediction horizon N = 12, for the initial
state [

−0.2311
] [

−1.3558
]

x1(0) =
0.9072

, x2(0) =
0.9929

,

x3(0) =
[

−0.6533
−0.2228

]
, x4(0) =

[
−1.0419
1.1576

]
(66)
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Fig. 6 shows the proposal chosen at each time step. Numbers 1–4
ndicate the agent that made the chosen proposal while 0 indicates
hat the shifted trajectory was chosen.
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Fig. 6. Proposal chosen at each time step.
rresponding projection of the centralized invariant set (dashed lines).

7. Application to a supply chain problem

In this section, we apply the proposed controller to a linear
supply chain, which can be defined as the set of structures and
processes used by an organization to provide a service or a good
to a consumer. It is clear that the nodes of a supply chain may
not have incentives to share other information about their models
than their control actions. Supply chain flows usually present three
interesting phenomena from the control point of view: oscillation,
amplification and phase lag [39]. Due to material or informational
delays production and inventories overshoot and undershoot the
optimal levels. The magnitude of the fluctuations increase as they
propagate from the customer to the factory, in what is commonly
known as the bullwhip effect. For these reasons supply chains
dynamics have been deeply analyzed and have been used as an
application example in several distributed control papers [40,28].

In this paper, we consider a cascade of Mx firms. In particular,
the discrete time equations that define the dynamics of firm i are
given by:

si(t + 1) = si(t) + ui−1(t − di−1,i) − ui(t) (67)

The super-scripts i − 1 and i + 1 represent, respectively, the dynam-

ics of the upstream and downstream nodes. Variable si(t) is the
stock level; that is, the number of items available for shipment
downstream. The manipulated variable at each stage is ui(t) which
stands for the number of items sent to the downstream node. This
is a difference with respect to models in which there is one variable
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Fig. 7. (a) Agent 1 state evolution. (b) Agent 2 state evol

hat stands for the order rate and another, which is usually modeled
s a disturbance, that stands for the shipment itself. The informa-
ion flows are assumed to have no time delays and the material
ows have a delay modeled by di,j which corresponds to the time
aken by the shipments from node i to node j (Fig. 8).

The only information shared by the agents is their inputs. In
articular, the model of a node needs to keep track of the shipments
ade by its upstream node. This implies that a model of the form

1) can be obtained assigning a different subsystem to each firm i
ith the following state vector xi

i(t) =

⎡
⎢⎢⎢⎢⎣

si(t)
ui−1(t − 1)
ui−1(t − 2)
...

⎤
⎥⎥⎥⎥⎦
ui−1(t − di−1,i)

ote that this model takes into account the different delays by aug-
enting the state vectors. The inputs are defined by the different

hipments variables uj.

Producer Firm 1 Firm 2

u2 (u1 ( t ) u0 ( t ) 

d2 ,3d1 ,2 d0 ,1 

s2 ( t ) s1 ( t ) 

Fig. 8. Linear sup
x1
4

(c) Agent 3 state evolution. (d) Agent 4 state evolution.

In this model the first firm, with state x1(t) is the supplier which
demands items directly to the factory by u0(t) which is modeled as
a pure delay of value d0,1. The last firm is the retailer which must
satisfy the external demand uMx (t) which is an external signal not
controlled by the system. The control objective is to regulate the
stock levels to a desired value ri(t). In addition, the last node of
supply chain, the retailer, has to satisfy the external demand.

To this end, we consider the following local cost function for
each firm

Ji =
N∑

k=1

2i

⎛
⎝ri

k − si
k −

di−1,i∑
l=k−1

ui−1
k−l

⎞
⎠

2

where N is the prediction horizon, the subindex k denotes the
k-steps predicted value of a signal. No terminal cost function is con-

sidered. The cost penalizes the deviation of the sum of current stock
and the items traveling from the upstream node from the desired
reference. Note that if the controller ignores those units that have
to arrive in the future, it would ask for more units than needed.
The weights of the local cost grow with 2i, that is, the closer a node

Firm Mx Demand

 t ) uMx ( t ) 

 dMx -1, Mx 

sMx ( t ) 

ply chain.
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Table 3
Simulation results for SUPPLY20

Controller J̄cum 
 J t̄ss tss Nprop

DMPC 5.84e+11 1.24e+11 162.49 199.80 1
DMPC 2.66e+11 6.02e+10 132.96 187.00 3
DMPC 1.46e+11 2.83e+10 93.34 137.50 5
DMPC 1.30e+11 1.48e+10 76.09 112.90 7
DMPC 9.85e+10 1.73e+10 60.21 88.90 10
DMPC 8.23e+10 1.11e+10 49.48 73.40 15
DMPC 6.19e+10 7.09e+9 42.24 61.70 20
DMPC 5.55e+10 4.52e+9 39.02 56.40 30
DMPC 5.24e+10 3.01e+9 32.38 46.70 50
DMPC 5.07e+10 1.38e+9 31.15 44.30 70
DMPC 5.01e+10 9.34e+8 30.36 42.90 100
DMPC 4.98e+10 8.90e+8 29.91 42.10 125
DMPC 4.97e+10 5.79e+8 29.65 41.80 150
96 J.M. Maestre et al. / Journal of

s to the retailer the more important is. This way of weighting the
rror is natural since the most important goal of a supply chain is
o satisfy the external demand.

The class of linear supply chains considered in this example is
efined by the number of firms Mx and the delay parameters di,j.

n the following tables we show the results of a set of simulations
ith three different supply chains of 5, 10 and 20 firms. We denote

hese scenarios as SUPPLY5, SUPPLY10 and SUPPLY20 respectively.
he delay parameters of each supply chain have been randomly
hosen with values between 2 and 5. The initial stock si(0) was
hosen randomly between 100 and 300. In all these simulations,
e assume that the external demand uMx (t) is null and that the

bjective of the controller is to regulate the stocks to their refer-
nces. The references ri(t) were supposed to be constant and were
hosen randomly between 180 and 280. The simulation times Tf
ere set respectively to 50, 100 and 200 sample times.

In order to study the effect of the number of proposals consid-
red at each sampling time in the performance of the proposed
MPC scheme, we have applied several controllers which consider
different number of proposals Nprop. Given that the proposals are
ade randomly, each simulation was repeated 10 times. In addi-

ion, a centralized MPC controller has also been applied to the three
cenarios as a reference of the performance that can be obtained
ith a centralized approach.

Tables 1–3 show the cumulated cost mean J̄cum and the corre-
ponding standard deviation 
J of each controller. The cumulated
ost of each simulation was computed as:

cum =
Tf∑

t=0

Mx∑
i=1

2i(ri(t) − si(t))
2

n addition the tables show the mean number of sample times t̄ss

hat an agent needs to have less than a 5% of error with respect to

ts reference, as well as the average number of sample times tss that
he slowest agent needs to have less than a 5% of error with respect
o its reference. These two entries provide additional information
n the performance of each controller.

able 1
imulation results for SUPPLY5.

Controller J̄cum 
 J t̄ss tss Nprop

DMPC 2.36e+6 1.80e+6 25.57 30.70 1
DMPC 9.39e+5 2.99e+6 15.20 18.30 3
DMPC 6.64e+5 3.05e+5 11.25 13.80 5
DMPC 5.53e+5 1.40e+5 9.85 12.20 7
DMPC 5.39e+5 1.69e+5 9.05 11.30 10
DMPC 4.34e+5 8.30e+4 8.25 10.50 15
DMPC 3.88e+5 1.25e+4 7.70 9.50 20
DMPC 3.86e+5 1.24e+4 7.65 9.30 30
MPC 3.71e+5 – 7.50 9.00 –

able 2
imulation results for SUPPLY10.

Controller J̄cum 
 J t̄ss tss Nprop

DMPC 8.50e+7 1.95e+7 58.32 93.50 1
DMPC 4.57e+7 1.20e+7 29.48 46.30 3
DMPC 2.61e+7 3.28e+6 21.78 34.30 5
DMPC 2.62e+7 4.23e+6 20.34 29.50 7
DMPC 2.06e+7 2.98e+6 16.18 24.20 10
DMPC 1.71e+7 1.98e+6 13.81 21.30 15
DMPC 1.70e+7 2.00e+6 13.68 21.50 20
DMPC 1.63e+7 1.25e+6 12.82 20.50 30
DMPC 1.53e+7 9.56e+5 12.91 20.50 50
DMPC 1.52e+7 7.07e+5 12.36 20.10 70
DMPC 1.52e+7 6.51e+5 12.07 20.10 100
MPC 1.45e+7 – 13.00 20.00 –
DMPC 4.98e+10 4.03e+8 29.23 41.90 175
DMPC 4.95e+10 6.09e+8 28.31 41.10 200
MPC 3.84e+10 – 19.53 26.00 –

In general, the simulations show that increasing the number of
proposals Nprop improves the performance of the proposed DMPC
scheme. It can be seen that J̄cum and 
J are decreasing functions
of the parameter Nprop. However, communications can be a scarce
resource for some systems and it is important to find a trade-off
between the number of communications and the performance. In
our example it can be seen that a good trade-off happens when Nprop

is around 5Mx communications, where Mx is the number of agents.
This implies that each agent makes an average of 5 proposals to its
neighbors.

8. Conclusions

In this work we presented a novel distributed MPC algorithm
based on negotiation for a class distributed linear systems coupled
through the inputs. We assume that each agent has access only to
the model and the state of one of the subsystems and that the agents
must communicate in order to reach a cooperative solution. The
proposed algorithm provides a negotiation protocol on behalf of a
global cost function that can be implemented in parallel and pro-
vides a feasible solution to the centralized problem. In addition, we
provide sufficient conditions that guarantee asymptotic stability of
the closed-loop system as well as an optimization based procedure
to design the controller so that these conditions are satisfied.
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