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a b s t r a c t

Min–Max MPC (MMMPC) offers the possibility to consider disturbances and uncertainties in the math-
ematical model used to predict the future trajectory of the system. The explicit consideration of
disturbances and uncertainties in order to obtain a more robust control performance complicates the
practical implementation of MMMPC due to the high computational burden required to compute the con-
trol law. The computational complexity of the optimization problem can be reduced by using approximate
solutions or upper bounds of the worst case cost of the objective function. A computationally efficient
eywords:
in–Max Model Predictive Control
ncertain linear systems
ontinuous stirred tank reactor

MMMPC strategy based on such an upper bound was presented in a previous work also published in this
journal (see Section 1). One of the main drawbacks of that strategy is the lack of a stability guarantee. In
this paper it is shown that input-to-state practical stability of the MMMPC strategy can be guaranteed if
a certain initial condition and a semi-feedback approach are used. Furthermore, the MMMPC strategy is
validated in experiments with a continuous stirred tank reactor in which the temperature of the reactor
is controlled. The behavior of the system and the controller are illustrated by means of experimental

results.

. Introduction

Min–Max Model Predictive Control (MMMPC) offers the pos-
ibility to consider disturbances and model uncertainties in the
rediction model within the framework of Model Predictive Control
MPC). In MMMPC strategies, the optimal control signal is com-
uted minimizing the worst case cost. The mentioned worst case
ost can be calculated maximizing the considered cost function
ith respect to all possible cases of disturbances and uncertainties

1,2]. The main drawback of this approach is the computational bur-
en required to calculate the control signal by solving the resulting
ptimization problem. The optimization usually includes the solu-
ion of an NP-hard problem [3,4]. As a consequence of the numerical
omplexity to determine the control signal, the number of appli-
ations of MMMPC strategies is very small, even when there is
vidence that they work better than standard MPC strategies in
rocesses with uncertain dynamics or disturbances [5].

It is well known that the MMMPC control law based on linear

odels is piecewise affine when a 1-norm [6,7] or quadratic [8]

riterion is used in the cost function. This property enables the pos-
ibility to build explicit forms of the control law with a reduced
omplexity [9]. Such explicit forms can be evaluated very fast pro-
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vided that the complexity of the state space partition is moderate,
which is the case for many applications. However, if the process
model or the controller tuning parameters change, the computation
of the controller has to be redone.

In Ref. [10], a computationally efficient MMMPC strategy in
which the worst case cost is approximated by an upper bound
has been presented. This strategy is based on a diagonalization
algorithm which has a much lower computational burden than
LMI techniques which have been proposed to obtain upper bounds
[11,12]. The mentioned algorithm uses only simple matrix opera-
tions and can be implemented even with programming languages
not destined for mathematical calculations, commonly found in
industrial embedded systems. However, one of the main drawbacks
of that strategy is the lack of a stability guarantee.

In this work, input-to-state practical stability is proven for
the MMMPC strategy presented in Ref. [10]. Stability of the
mentioned MMMPC strategy is guaranteed for a certain initial con-
dition in the optimization procedure and under consideration of
a semi-feedback approach [13]. Furthermore, the control strategy
is validated in experiments with a continuous stirred tank reactor
(CSTR). The used system emulates the heat produced by an exother-
mic chemical reaction using an electric resistance. It has been used

before as a benchmark system for nonlinear and Min–Max Model
Predictive Control strategies [14,15]. The nonlinear process dynam-
ics are approximated by means of a linear model with additive and
bounded uncertainties. The MMMPC strategy is implemented with
the identified model and robustness of the control strategy can be
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http://www.sciencedirect.com/science/journal/09591524
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hown with the help of experimental results. The use of an upper
ound of the worst case cost considerably reduces the computa-
ional burden of the optimization problem and, as a consequence,
llows to employ realistic values for the prediction horizon. It has
o be mentioned that the personal computer used to implement the

MMPC strategy based on an upper bound of the worst case cost
as not enough computing power to solve the exact min–max opti-
ization problem within a reasonable time. The results obtained

n setpoint tracking and disturbance rejection experiments prove
he validity and underline the robustness of the control strat-
gy. A direct comparison of the results shows that the MMMPC
trategy performs better than a standard MPC based on the same
rediction model and controller parameters (but without additive
ncertainty). The low computational burden, the stability guaran-
ee and the simplicity of the tuning parameters suggest that the
roposed strategy is a possible alternative to traditional nominal
PC schemes.
The outline of the paper is the following: Section 2 defines the

eneral min–max optimization problem. Section 3 presents the
omputation of the upper bound of the worst case cost and the
esulting control law. In Section 4 input-to-state practical stability
f the MMMPC strategy is proven. Section 5 gives a description of
he used continuous stirred tank reactor and Section 6 presents the
btained experimental results. Finally, the major conclusions are
rawn in Section 7.

. Min–Max MPC with bounded additive uncertainties

Consider the following discrete-time state space model with a
ounded additive uncertainty [5]:

x(k + 1) = Ax(k) + Bu(k) + D�(k)
y(k) = Cx(k)

(1)

here x(K) ∈Rnx denotes the state vector, u(K) ∈Rnu represents the
nput vector and �(k) ∈ {� ∈Rn� :

∥∥�
∥∥

∞ ≤ ε} is the bounded uncer-
ainty. The system is subject to nc state and input time-invariant
onstraints Fuu(k) + Fxx(k) ≤ bc where Fu ∈Rnc×nu and Fx ∈Rnc×nx .
urthermore, the input signal is given by a semi-feedback approach
13]:

(k) = −Kx(k) + v(k) (2)

here v(k) denotes the input correction vector and the feedback
atrix K is chosen to achieve some desired property such as nomi-

al stability or linear quadratic regulator (LQR) optimality without
onstraints. With the semi-feedback approach (2), the state equa-
ion of system (1) can be reformulated in the form:

(k + 1) = Aclx(k) + Bv(k) + D�(k) (3)

here the new system matrix is given by Acl = (A − BK). Note that
he control strategy proposed in the following sections also works
ithout the semi-feedback approach, i.e. u(k) = v(k). In this case,

he proposed procedure can be used without modification and, in
he case of an open-loop stable process, the stabilizing conditions
presented later in this section) are also valid.

The cost function is a quadratic performance index given by:

(x, v, �) =
N−1∑
j=0

x(k + j|k)T Qx(k + j|k) +
N−1∑
j=0

u(k + j|k)T Ru(k + j|k)

+x(k + N|k)T Px(k + N|k) (4)
here x(k|k) = x is the current state and x(k + j|k) represents the pre-
iction of the state for k + j made at k. The current input signal is
(k|k) = −Kx(k|k) + v(k|k) and the future input for k + j calculated at
is denoted u(k + j|k) = −Kx(k + j|k) + v(k + j|k). The input correc-

ion sequence along the prediction horizon N is defined generally
Control 21 (2011) 194–204 195

as v = [v(k|k)T , v(k + 1|k)T , . . . , v(k + N − 1|k)T ]
T
. Analogously, the

sequence of future values of the uncertainty is denoted by � =
[�(k)T , . . . , �(k + N − 1)T ]

T
and the set of possible uncertainty tra-

jectories is defined by � = {� ∈RN·n� : ||�||∞ ≤ ε}. The matrices
Q, P ∈Rnx×nx and R ∈Rnu×nu are symmetric positive definite matri-
ces used as weighting parameters.

In MMMPC strategies [2], the input correction sequence is com-
puted minimizing the worst case of the predicted evolution of the
process state or output. The worst case cost is calculated maximiz-
ing the cost function (4) with respect to the uncertainty considered
in the prediction model (3). Thus, the input correction sequence is
computed solving the following min–max optimization problem:

v∗ = arg min
v

max
� ∈ �

V(x, v, �)

s.t. Fuu(k + j|k) + Fxx(k + j|k) ≤ bc

j = 0, . . . , N − 1, ∀� ∈ �
x(k + N|k) ∈ ˝, ∀� ∈ �

(5)

where a terminal region constraint x(k + N|k) ∈ ˝, with ˝ being
a polyhedron, has been included in order to ensure stability of
the control law [16]. The terminal region ˝ and the matrix P are
assumed to satisfy the following conditions:

• C1: If x ∈ ˝ then ACLx + D� ∈ ˝, for every � ∈ {� ∈Rn� : ||�||∞ ≤ ε}.
• C2: If x ∈ ˝ then u(x) = −Kx + v ∈ U, where U �{u : Fuu + Fxx ≤ bc}.
• C3: P − AT

CLPACL > Q + KT RK .

Note that the stability of ACL guarantees the existence of a posi-
tive definite matrix P which satisfies condition C3.

With x(k + j|k) and u(k + j|k) depending linearly on x, v and �, the
linear constraints of problem (5) can be rewritten as [5]:

M[i]
x x + M[i]

v v + M[i]
�

� ≤ b[i]
�

, i = 1 . . . , nc, ∀� ∈ � (6)

where M[i]
x , M[i]

v , M[i]
�

denote the ith rows of Mx, Mv and M� , respec-

tively, and b[i]
�

is the ith component of b� ∈Rnc . Then, taking into
account that:

max
� ∈ �

M[i]
�

� = max
||�||∞≤ε

M[i]
�

� = ε||M[i]
�

||1 (7)

the robust fulfilment of the constraints is satisfied if and only if
M[i]

x x + M[i]
v v + ε||M[i]

�
||1 ≤ b[i]

�
for i = 1, . . ., nc [15]. With b[i]

ε = b[i]
�

−
ε||M[i]

�
||1, the set of linear constraints:

Mxx + Mvv ≤ bε (8)

guarantees robust constraint satisfaction. Note that this is a neces-
sary and sufficient condition.

Using the state equation (3) and the semi-feedback approach
(2) in the performance index (4), the cost can be evaluated as a
quadratic function:

V(x, v, �) = vT Mvvv + �T M��� + 2�T M�vv

+2xT MT
vf v + 2�T M�f x + xT Mff x (9)

where the matrices can be obtained from the system and the con-
trol parameters [5]. With (9) being a convex cost function in �, the
solution to the maximization problem in (5) can be found at least
in one of the vertices of �. Then, based on (9), the maximum cost
for a given x and v is denoted as:

V∗(x, v) = max
� ∈ vert(�)

V(x, v, �)

T T (10)
= max
� ∈ vert(�)

� H� + 2� q(x, v) + V(x, v, 0)

where vert(�) denotes the set of vertices of � [5] and V(x, v, 0) is
the nominal cost, i.e. the part of the cost that does not depend on
the uncertainty sequence �.
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With the worst case cost (10) and the robust linear constraints
8), the min–max problem (5) can be rewritten as:

v∗ = arg min
v

V∗(x, v)

s.t. Mxx + Mvv ≤ bε

(11)

nd the system is controlled by u(k|k) = −Kx(k) + v∗(k|k). The
aximization of (10) is an NP-hard optimization problem which

equires the evaluation of the cost function for all vertices. With
he complexity of the maximization problem (10) growing expo-
entially with the considered horizon, the optimization problem
an only be solved in real time for short prediction horizons and
mall dimensions of �.

A computationally efficient MMMPC strategy based on an upper
ound of the worst case cost has been proposed in Ref. [10]. The
sed upper bound is the trace of a diagonal matrix which can be
btained by simple matrix operations. The matrix is computed so
hat the error introduced by the upper bound is minimized. The
ollowing section resumes the MMMPC strategy [10] and defines
he resulting control law.

. Min–Max MPC based on an upper bound of the worst
ase cost

The worst case cost V∗(x, v) (10) can be represented as an aug-
ented optimization problem in matrix form:

∗(x, v) = max
||z||∞≤1

zT M(x, v)z (12)

ith the vector z ∈Rnz and the matrix M(x, v) ∈Rnz×nz given by:

=
[

�

ε
1

]
, M(x, v) =

[
ε2H εq(x, v)

εq(x, v)T V(x, v, 0)

]
(13)

nd nz = Nn� + 1.
Consider the augmented maximization problem (12) and diago-

al matrix S ∈Rnz×nz with the diagonal elements given by S[ii]. For1

≥ M, the statement:

T Mz ≤ zT Sz =
n∑

i=1

S[ii](z[i])
2 ≤ trace(S)||z||2∞ ≤ trace(S) (14)

s true and, as a direct consequence, the trace of S represents an
pper bound of the augmented optimization problem (12).

In order to find the smallest diagonal matrix S satisfying the
nequality S ≥ M, the diagonalization approach proposed in Ref. [10]
an be used. For a given x and v the computation of the upper bound
(M) = trace(S) can be carried out by the following procedure:

rocedure 1. Computation of �(M) such that �(M) ≥ max
||z||∞≤1

zT Mz.

1) Set S = M ∈Rnz×nz .
2) For k = 1 to nz − 1.
3) Let Msub = [S[ij]] for i, j = k, . . ., nz.

4) Compute ˛ =
√

||b||1 for Msub =
[

a bT

b Mr

]
z.

5) Make ϕe = [˛, (−bT /˛)]
T
.

6) Make ϕk = [0, . . . , 0, ϕT
e ]

T
.

7) Diagonalize S by S = S + ϕkϕT
k
.

8) Endfor.
9) Compute the upper bound from �(M) = ∑nz

i=1S[ii].

1 In this work a matrix inequality of the type S ≥ M is fulfilled if and only if S − M
s positive semi-definite.
Control 21 (2011) 194–204

For a detailed description of the diagonalization given in Proce-
dure 1 and an analysis of the suboptimality of the resulting upper
bound �(M) the reader is referred to [10].

The diagonal matrix S computed in Procedure 1 satisfies the con-
dition S ≥ M (note that only positive semi-definite matrices ϕkϕT

k
have been added to S during the diagonalization process) and, as
a consequence, (14) is fulfilled. Then, denoting V̂∗(x, v) = �(M) =
trace(S) and combining (10) and (14), the following statement for
the worst case cost can be made:

V∗(x, v) = max
||z||∞≤1

zT

[
ε2H εq(x, v)

εq(x, v)T V(x, v, 0)

]
z

≤ �

([
ε2H εq(x, v)

εq(x, v)T V(x, v, 0)

])
= V̂∗(x, v)

(15)

Hence, �(M) calculated in Procedure 1 represents an upper bound
of the worst case cost and can be used in an MMMPC strategy where
the input correction sequence is the solution of the problem:

v̂∗ = arg min
v

�

([
ε2H εq(x, v)

εq(x, v)T V(x, v, 0)

])
s.t. Mxx + Mvv ≤ bε

(16)

Finally, the control law K̂MPC (x(k)) resulting from the MMMPC opti-
mization problem can be used in a receding horizon control strategy
with the input defined by û(k|k) = −Kx(k) + v̂∗(k|k).

Remark. Each diagonalization step has a computational complex-
ity of O(n2

z ), leading to a computational complexity of O(n3
z ) of the

procedure. In contrast, the minimization of the original min–max
problem (11) requires approximately 2nz operations. This means
that the use of the proposed upper bound reduces considerably
the number of necessary operations and allows the evaluation of
the cost function in polynomial time. In fact, the diagonalization
procedure can be stopped if at a certain iteration the partially diag-
onalized matrix S has all elements of the submatrix Msub of step 3
nonnegative. In this case, the best upper bound will be the sum of
the absolute values of all entries of matrix S and a further diagonal-
ization would not improve the bound.

3.1. Choosing an initial condition

The computation of the input correction sequence v̂∗ (16) has to
be initialized with a feasible solution to the optimization problem
(11) in order to guarantee stability of the MMMPC strategy (for
the stability proof see Section 4). Therefore, consider the matrix H
(10) which can be used to construct a diagonal matrix T with the
elements on the main diagonal defined by:

T [ii] =
Nn�∑
j=1

|H[ij]| for i = 1, . . . , Nn� (17)

The off-diagonal elements are given by T[ij] = 0 ∀ i /= j, i = 1, . . ., Nn�

and j = 1, . . ., Nn� . With the new matrix T an approximated cost
function

Ṽ(x, v, �) = �T T� + 2�T q(x, v) + V(x, v, 0) (18)

can be defined. With T ≥ H the statement

Ṽ(x, v, �) ≥ V(x, v, �) (19)

holds, i.e. Ṽ(x, v, �) represents a simple upper bound for the cost

function V(x, v, �) given in (9). Then, the maximum of Ṽ(x, v, �),
corresponding to the worst case cost of the approximated cost
function, can be calculated easily by:

Ṽ∗(x, v) = V(x, v, 0) +
∥∥H

∥∥
s
ε2 + 2ε

∥∥q(x, v)T
∥∥

1
(20)
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here
∥∥H

∥∥
s

denotes the sum of the absolute values of the ele-

ents of H or, identically
∥∥H

∥∥
s
= trace(T). With the worst case cost

20) being a convex function in v, the minimization problem can be
olved by quadratic programming (QP). Hence, the optimal solu-
ion based on the simple upper bound of the worst case cost (20) is
efined as:

ṽ∗ = arg min
v

Ṽ∗(x, v)

s.t. Mxx + Mvv ≤ bε

(21)

inally, the solution (21) can be used as an initial feasible solution
o the optimization problem (16). Note that the initial solution ṽ∗

as to be considered in the computation of the matrix M (13) in
rder to guarantee stability (see Section 4).

. Stability of the control law

In the first place, some necessary properties to ensure the stabil-
ty of the proposed control strategy will be presented. Consider the
olutions v∗, v̂∗ and ṽ∗ of the minimization problems (11), (16) and
21), respectively. Denote also V∗(x) = V∗(x, v∗), V̂∗(x) = V̂∗(x, v̂∗)
nd Ṽ∗(x) = Ṽ∗(x, ṽ∗). Note that the optimization problems (11),
16) and (21) have the same feasibility region as the constraints
re the same.

roperty 1. The minimum costs V̂∗(x) and Ṽ∗(x) of the optimization
roblems (16) and (21) satisfy:

ˆ ∗(x) ≤ Ṽ∗(x) (22)

hen ṽ∗ is used as initial solution to the optimization problem (16).

roof. Taking into account the definition of V̂∗(x) and that v̂∗ is
he minimizer of V̂∗(x, v) it is evident that

ˆ ∗(x, ṽ∗) ≥ V̂∗(x) (23)

Thus, in order to prove that V̂∗(x) ≤ Ṽ∗(x) it suffices to show
hat Ṽ∗(x, ṽ∗) ≥ V̂∗(x, ṽ∗). First, note that taking into account that
(x, v, 0) ≥ 0:

˜ ∗(x, ṽ∗) = ||M(ṽ∗)||1
∥∥∥∥
[

ε2H εq(x, ṽ∗)
εq(x, ṽ∗)T V(x, ṽ∗, 0)

]∥∥∥∥
s

=
∥∥∥∥
[

a bT

b Mr

]∥∥∥∥
s

= a| + 2||b||1 + ||Mr ||s (24)

On the other hand V̂∗(x, ṽ∗) is equal to trace(S), that is the sum of
he elements of the diagonal matrix computed in Procedure 1 which
lso is equal to ||S||s as S ≥ 0. The initial value of S is S = M(ṽ∗), thus
he sum of the absolute values of S is equal to Ṽ∗(x, ṽ∗). Taking into
ccount the definition ˛ =

√
||b||1 (see Procedure 1), ||S||s after the

rst diagonalization step becomes:

a + ||b||1 0

0 Mr + bbT

||b||1

∥∥∥∥∥
s

≤ |a| + ||b||1 + ||Mr ||s +
∥∥∥∥ bbT

||b||1

∥∥∥∥
1

(25)

Taking into account that
∥∥∥ bbT

||b||1

∥∥∥
1

= ||b||1 it follows that:

a + ||b||1 0

0 Mr + bbT

||b||s

∥∥∥∥∥
1

≤ ||M(ṽ∗)||s (26)
nd thus every diagonalization step decreases ||S||s. This proves
hat:

ˆ ∗(x, ṽ∗) ≤ Ṽ∗(x, ṽ∗) (27)

nd this completes the proof. �
Control 21 (2011) 194–204 197

It is clear that the optimal solution v̂∗ of problem (16) is a sub-
optimal feasible solution for problem (11). As it is claimed in the
following property, the difference between the optimal value of
the original objective function and the value obtained with v̂∗ is
bounded by trace(T)ε2.

Property 2. It holds that:

V∗(x, v̂∗) − trace(T)ε2 ≤ V∗(x) (28)

Proof. Note that V∗(x) = V∗(x, v∗). On the other hand:

Ṽ(x, v, �) = V(x, v, �) + �T (T − H)�. (29)

Taking into account that T ≥ H ≥ 0, ||�||∞ ≤ ε and that T is a diag-
onal matrix, the statement:

Ṽ(x, v, �) ≤ V(x, v, �) + �T T� ≤ V(x, v, �) + trace(T)ε2 (30)

is true. From (30) it can be inferred that:

V∗(x, v∗) ≥ Ṽ∗(x, v∗) − trace(T)ε2 (31)

Then, with ṽ∗ being the minimizer of Ṽ∗(x, v) and V∗(x) =
V∗(x, v∗), (31) can be rewritten as:

V∗(x) ≥ Ṽ∗(x) − trace(T)ε2 (32)

Now, from the relation V̂∗(x) ≤ Ṽ∗(x) (see Property 1) and (32)
follows that:

V∗(x) ≥ V̂∗(x) − trace(T)ε2 (33)

Finally, with the upper bound V̂∗(x, v) ≥ V∗(x, v) and (33), the
statement for the optimal cost:

V∗(x) ≥ V∗(x, v̂∗) − trace(T)ε2 (34)

is satisfied. This completes the proof. �

The following property, which is proven in [17] will be used in
the proof of the stability of the proposed approach (see Theorem 1
below).

Property 3. Consider that assumptions C1, C2 and C3 are satis-
fied. Furthermore, let v = [v(k|k), v(k + 1|k), . . . , v(k + N − 1|k)]T

and vs a shifted version of v computed as vs =
[v(k + 1|k), v(k + 2|k), . . . , v(k + N − 1|k), 0]T . If v is feasible for
problem (11) at x(k), then vs is also feasible at x(k + 1) and there is a
� > 0 such that for every feasible sequence v:

V∗(x(k + 1), vs) ≤ V∗(x(k), v) − x(k)T Qx(k) + �ε2 (35)

Proof. See [17] for a proof. �

Theorem 1. Under the assumption that the conditions C1, C2 and C3
are satisfied, the control law K̂MPC (x(k)) given by û(k|k) = −Kx(k) +
v̂∗(k|k) stabilizes system (1).

Proof. Consider the input sequence v̂∗
s being a shifted version (as

in Property 3) of v̂∗. Due to non-optimality of v̂∗
s for problem (11) it

holds that

V∗(x(k + 1)) ≤ V∗(x(k + 1), v̂∗
s ) (36)

Note that v̂∗
s is feasible for both (16) and (11), thus by Property

3:

V∗(x(k + 1), v̂∗
s ) ≤ V∗(x(k), v̂∗) − x(k)T Qx(k) + �ε2 (37)

Now, taking in account V∗(x(k), v̂∗) ≤ V∗(x(k)) + trace(T)ε2 (see
Property 2) and using (36) and (37) can be rewritten in the form:

V∗(x(k + 1)) − V∗(x(k)) ≤ −x(k)T Qx(k) + (� + trace(T))ε2 (38)
and leads to the set:

˚ε = {x ∈Rn : (11) is feasible and x(k)T Qx(k) ≤ (� + trace(T))ε2}
(39)
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Fig. 2. Continuous stirred tank reactor used to apply the MMMPC based on an upper
bound of the worst case cost.

regnahcxetae
H

v8

F j

F j
T j,out

T j,in

F f,in

F f,out

TT2

T

x(k + 2)

Fig. 1. Evolution of the system state x( · ) and the sets ˝ˇ and ˚ε .

ontaining the origin. As a consequence, the system state is steered
nto ˚ε from any arbitrary x(k). After entering the set ˚ε the state
an remain inside or leave the set as it is not guaranteed that the
ptimal worst case cost decreases within the set ˚ε. Under consid-
ration of −x(k)TQx(k) ≤ 0 and (38), the cost in k + 1 satisfies:

∗(x(k + 1)) ≤ V∗(x(k)) + (� + trace(T))ε2 (40)

Now, for every x(k) ∈ ˚ε holds:

(x(k)) + (� + trace(T))ε2 ≤ max
x ∈ ˚ε

V(x) + (� + trace(T)) = ˇ (41)

It is clear from (40) and (41) that for every x(k) ∈ ˚ε the cost in
+ 1 satisfies:

(x∗(k + 1)) ≤ ˇ (42)

As a consequence, whenever the state enters the set ˚ε the
ystem will evolve into the set:

ˇ =
{

x ∈Rn : V∗(x) ≤ ˇ
}

(43)

Although the state can leave the set ˚ε, it will remain inside the
et ˝ˇ. With the state being in ˝ˇ, the system is steered again and
gain into ˚ε (see Fig. 1). Hence, the state is ultimately bounded
nd the system is input-to-state practical stable using the control
aw K̂MPC (x(k)) given by û(k|k) = −Kx(k) + v̂∗(k|k). �

. Process description

A real process represented by a pilot plant has been chosen for
he application of the proposed algorithm. The process has been
tudied previously by several authors [18,19] and has been used as
benchmark for control purposes [20].

.1. Laboratory process

The pilot plant shown in Fig. 2 is used to emulate a continuous
tirred tank reactor (CSTR) based on temperature changes as done
n Ref. [21]. The main elements of the system are the tank reactor,
n electric resistance, a cooling jacket, a valve to manipulate the
ow rate through the cooling jacket as well as a water tank. The
eneral plant structure with the mentioned elements is given in
he schematic diagram in Fig. 3.

The cooling jacket is used to reduce the caloric energy of the
eactor content. The heat dissipation can be regulated by the valve
8 manipulating the flow rate Fj through the cooling jacket. The
ooling fluid, water, circulating through the cooling jacket is taken
rom a tank with a capacity of 1 m3. After circulating through the
acket the cooling fluid returns to the tank. To maintain the temper-

ture of the cold water constant, the tank has an auxiliary cooler
ontrolled by a thermostat which maintains the temperature TT2
ear to a desired value in an interval of approximately 1◦.

The reactant is supplied to the reactor by the feed Ff,in to keep
he chemical reaction active. Before entering the reactor, the feed

Water tank

Fig. 3. Diagram of the CSTR emulated by the pilot plant showing the emulated feed
Ff,in and outflow Ff,out .
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Table 1
Model parameters and constant variables of the chemical reaction.

Parameter Value Unit

k0 1.2650 × 1017 1/mol s
Cp 4.18 J/K kg
�H −105.57 kJ/mol
E/R 13,550 K

Variable Value Unit
M 25 kg
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CA,in 1.2 mol/l
Ff 0.05 1/s
Tj,in 291.15 K

asses through a heat exchanger in order to reduce the temperature
ifference between the feed and the reactor content. The outflow
f,out is used to keep the volume of the reactor content constant.
s a consequence, as feed and outflow have the same flow rate
nd nearly the same temperature, the two flows hardly provoke
emperature changes in the interior of the reactor.

To emulate exothermic reactions, the reactor possesses an elec-
ric resistance in order to supply caloric energy. The energy to be
upplied by the 14.4 kW electric resistance is calculated with a
athematical model of the reaction (see Section 5.2). The use of
resistance has the practical advantage that no chemical reaction

akes place in the reactor, instead the reaction is emulated on basis
f temperature changes, as done in Ref. [21].

.2. Mathematical model

Although it is not necessary to have a mathematical model for
he design of the min–max predictive controller, this section shows
he process model to emphasize its nonlinear character. The math-
matical model also justifies the way to emulate the heat generated
y the chemical reaction with the aid of the resistance.

The emulated chemical reaction, representing a refinement pro-
ess, was used previously in Ref. [22,14,15]. Considering identical
ow rates for the feed and the outflow, i.e. Ff = Ff,in = Ff,out, the reactor
olume V and the mass M are constant. The temperature changes
f the reactor content can be defined as:

dT

dt
= −Fj

V
(Tj,out − Tj,in) + (−�H) · V

MCp
k0e−E/(RT)C2

A (44)

here the first term considers the heat dissipation by the cool-
ng jacket and the second term denotes the generated heat by the
xothermic chemical reaction. Note that the second term is used
o calculate the heat to be supplied by the electric resistance in the
eactor tank in order to emulate the chemical reaction based on
emperature changes. The variables Fj, Tj,in and Tj,out represent the
ow rate through the cooling jacket and the temperature of the
ooling fluid entering and leaving the cooling jacket, respectively.
A is the concentration of the reactant in the reactor content. It has
een assumed that the feed neither supplies nor removes caloric
nergy from the reactor as the feed passes through a heat exchanger
nd enters the reactor nearly with the temperature of the reactor
ontent.

The reactant concentration CA in the plant reactor is calculated
y:

dCA

dt
= Ff

V
(CA,in − CA) − k0e−E/(RT)C2

A (45)

here the first term represents changes in the reactant concentra-

ion due to the feed and the outflow. The second term considers
he reduction of the concentration as a result of the reactant
onsumption by the chemical reaction. CA,in denotes the reactant
oncentration in the feed. The model parameters and the variables
sed with constant values are shown in Table 1.
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The chemical reaction is nonlinear in the dynamics of the tem-
perature and the concentration due to the exponential function and
the quadratic terms of the concentration in the model equations
(44) and (45). Furthermore, the relation between the opening of
the valve v8 and the flow rate Fj through the cooling jacket adds
some static nonlinearity to the model.

5.3. Description of the control system

The sensors and actuators of the plant are connected to a Schnei-
der M340 programmable automation controller (PAC). The M340
is connected by Ethernet to a personal computer that runs a Vijeo
Citect SCADA together with an Unity Pro software package. The
proposed control algorithm has been implemented directly in Mat-
lab/Simulink and the communication with the SCADA is done using
the OPC protocol (OLE for Process Control). Hence, both the SCADA
and the controller implemented in Matlab/Simulink run on the
same personal computer based on a Pentium 4 processor with
3 GHz using Windows XP as operating system.

6. Experimental results

The strategy described in Section 3 has been applied to the
chemical reaction process described in Section 5. In this sec-
tion the experimental results will be exposed and discussed. An
input–output model with integrated bounded additive uncertainty
has been used in the experiments:

A(z−1)y(k) = z−dB(z−1)u(k − 1) + �(k)
�

(46)

with � = 1 − z−1, �(k) ∈ {� ∈Rdy : ||�||∞ ≤ ε}, and dy the dimension
of y(k). The use of this type of prediction models results in a control
law without error in steady state. The main difference between
using the algorithm of Section 3 for a state space model and the
given input–output model with bounded additive uncertainties is
the method used to find the matrices of the cost function (9) [5].
Besides that, the algorithm can be applied as described in Section
3.

In the following section the identification of a suitable predic-
tion model will be presented. Afterwards, the experimental results
obtained from the CSTR controlled by the presented MMMPC strat-
egy will be exposed.

6.1. Identification of the prediction model

A Pseudo-Random Multilevel Step Sequence (PRMSS) has been
applied to the recirculation valve with the objective of collecting
data for the parameter identification of the prediction model. The
periods of the PRMSS have been chosen sufficiently long to observe
the reaction of the pilot plant to changes in the input (see Fig. 4). It
can be observed that the input–output gain is negative and clearly
variable (greater gain for low openings of v8). A first order trans-
fer function model with delay is proposed as prediction model. It
has to be mentioned that the proposed low order prediction model
cannot describe correctly the nonlinear dynamic behavior of the
used process. Therefore, the used process is a good candidate to
be controlled by a control strategy considering uncertainties and
disturbances.

Using the data of Fig. 4 the system delay was approximated

with td = 31.25 s. Taking in account the response time of the sys-
tem, the sampling period has been chosen to Ts = 60 s. The delay
of the system was rounded to 1 sampling time in order to avoid
approximations of the time delay, e.g. Padé approximation. With
the experimental data (see Fig. 4) a least squares identification has
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ig. 4. Experiment for the model identification. From top to bottom: Tank temper-
ture (T), valve opening (v8) and reactant concentration (CA).

een carried out and the following model has been identified:

(k) = 0.941y(k − 1) − 0.061u(k − 2) (47)

Thereby, the following input–output prediction model with
ntegrated bounded additive uncertainty was obtained:

(k + 1|k) = 0.941y(k) − 0.061u(k − 1) + �(k)
�

(48)

Based upon the one step ahead prediction error (see Fig. 5) the
arameter ε has been chosen to ε = 0.4. As a result, in 94% of the sam-
les the one step ahead prediction error is bounded by the chosen
alue. In order to verify the goodness of fit of the identified model a
econd set of experimental data has been used to calculate the one
tep ahead prediction error. Fig. 6 shows the tank temperature and
he one step ahead prediction error of the prediction model (48). It
an be seen from the figure that the one step ahead prediction error
s bounded by ε = 0.4 nearly throughout the whole experiment, only
n a few samples the prediction error exceeds the bound. Therefore,
he verification confirms the election of ε = 0.4 as a valid choice.

Note that in long term plant operation the parameter ε can be

djusted if necessary together with the nominal model. Further-
ore, if the plant works only around an operating point or around
small interval of operating points, a less conservative upper bound
f the uncertainty, i.e. a reduced value for the parameter ε, can be
sed.

er
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ig. 5. One step ahead prediction error during the experiment for the model iden-
ification.
Fig. 6. Experiment to verify the goodness of fit of the prediction model (48). From
top to bottom: Tank temperature (T), one step ahead prediction error.

6.2. Experimental results of the controller

The proposed control strategy was applied to the pilot plant
described in Section 5.1 using (48) as a prediction model. For the
implementation of the MMMPC a prediction horizon of N = 25, a
control horizon of Nu = 15 and a weighting factor for the control
effort of R = 5 were used. The choice of the prediction horizon is
based on the common rule of including 1.5 times the dominant
time constant of the considered process. The control horizon has
been chosen to include one time constant of the process. These
choices offer the possibility to show how the proposed MMMPC
can be applied in real time to a broad class of processes even for
large control and prediction horizons. Naturally, the system can
be controlled with shorter horizons, but the high values of N and
Nu emphasize that the proposed control strategy has a very low
computational burden compared to that of a conventional MMMPC
controller2 and can be used in real time applications. Note that the
use of different prediction and control horizons (N /= Nu) in the cost
function (4) requires minor changes in the matrices Mvv, M�v and
Mvf in the quadratic cost function (9) as well as in the matrix Gv in
the considered min–max problem (11).3 In the implementation of
the proposed control strategy the terminal constraint and the ter-
minal cost have not been considered. With a prediction horizon of
N = 25, including approximately 1.5 times the dominant time con-
stant of the process, the terminal constraint is not active for the
region of interest. Also, the prediction horizon is sufficiently large
and therefore, the effect of not including a terminal cost can be
neglected. For a formal study when it is possible to disregard the
terminal constraint and terminal cost see [23–25].

Due to the varying delay of the real process a correction in the

prediction of y(k + 1) has been used. With the Smith like predictor
the predicted output at time k + 1 using the nominal model, ŷn(k +

2 In fact, a conventional MMMPC controller with such horizons could not be
implemented on the pilot plant using the hardware described in Section 5.3.

3 Defining the variable 	 = N − Nu (the difference of the two horizons), the nec-
essary adjustment of the matrices Mvf , Gv , M�v and Mvv due to different prediction
and control horizons leads to the elimination of the last 	 rows of Mvf , the last 	
columns of Gv and M�v and the last 	 rows and columns of Mvv .
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ical reaction was held constant during the entire experiment. Due
to the strong influence of the parameter E on the dynamics of the
system, the mentioned parameter was increased only by 3% of the
original value. The experimental results in Fig. 8 show that the con-
trol strategy stabilizes the system output in the desired reference
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|k), is corrected as:

ˆ(k + 1|k) = ŷn(k + 1|k) + (ŷn(k|k) − y(k)) (49)

eing y(k) the real process output at instant k. The use of a Smith
ike predictor is a proven approach to deal with varying and uncer-
ain system delays (also in the field of nominal MPC [26]) which has
he additional benefit of not increasing the complexity of the MPC
lgorithm. It has to be emphasized that MMMPC algorithms inherit
he sensitiveness to uncertain and varying system delays [5] from
onventional MPC controllers (although using a worst case design
ased on global uncertainties does help to some extent). Thus, the

nclusion of a correction of the prediction by means of a Smith like
redictor will help to reduce the effect of the uncertain and vary-

ng system delay. Also, this correction will improve the robustness
f the controller as it is known that it can cope with other model-
ng errors. However, in this case, the consideration of a worst case
esign through a min–max formulation is responsible for much of
he improvements in robustness. This can be seen later in this sec-
ion in the comparisons with a nominal constrained MPC which
lso uses the Smith predictor correction.

In order to restrict the system input and output in the experi-
ents, the following constraints have been used:

30 ≤ ŷ(k + j|k) ≤ 70, k = 2, . . . , 26, ∀� ∈ vert(�)
5 ≤ k + j|k) ≤ 100, k = 0, . . . , 14
−20 ≤ �u(k + j|k) ≤ 20, k = 0, . . . , 14

(50)

he output constraints4 are based on the physical limits of the pilot
lant and include the temperature interval covered by the data sets
sed in the identification and validation of the prediction model
note that the upper limit of 70 ◦C has been chosen to avoid that the
ystem reaches the permitted maximum temperature of the plant
f 80 ◦C at which the pilot plant is automatically switched off). The
onstraints in the control signal represent the physical limits of the
sed valve which manipulates the flow through the cooling jacket
in fact, the valve can be closed completely, i.e. it can adopt a value
f 0%, but for values below 5% the pump is automatically switched
ff leading to a zero flow like that of a completely closed valve).
inally, the constraints in the increments of the control signal have
een chosen to avoid a too aggressive control that could move the
ystem too fast and far away from the operating points considered
uring the identification process (in which the maximum step size

n the input signal was about 20%).
In order to analyze the closed-loop behavior of the system con-

rolled by the proposed MMMPC strategy, several experiments
ncluding reference tracking and disturbance rejection have been
arried out. In the first place, a setpoint tracking experiment with
he presented min–max control strategy was carried out (see Fig. 7).
tarting in steady state with a reference of 55 ◦C, the setpoint is
hanged in t = 30 min to 65 ◦C and in t = 90 min to 45 ◦C. It can be
bserved in the experimental results that the min–max control
trategy applies the new setpoint changes rapidly to the system
nd stabilizes the temperature in the setpoint in less than 20 min
fter the application of the changes in the reference. After the first
etpoint change no overshoot can be observed whereas a marginal
vershoot (approximately −0.7◦C) appears after the second set-
oint change. After reaching steady state the control signal shows
nly small variations without periodic oscillations and the concen-
ration CA remains in a constant level.
In the second place a setpoint tracking experiment with an error
n the model of the exothermic reaction was carried out. It has to
e emphasized that the heat generated by the exothermic chem-

cal reaction is emulated by means of an electric resistance. This

4 Note that in the output constraints the effect of the uncertainty has to be con-
idered.
t [min]

Fig. 7. Reference tracking experiment. From top to bottom: Tank temperature (T),
valve opening (v8), reactant concentration (CA) and cold water temperature (TT2).

approach allows a simple modification of the emulated chemical
reaction by changing parameters of the model (44) and (45) that
it is used to compute the duty cycle of the electric resistance. The
error introduced in the activation energy E of the emulated chem-
C
A
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Fig. 8. Reference tracking experiment with a persistent disturbance in the emulated
chemical reaction. From top to bottom: Tank temperature (T), valve opening (v8) and
reactant concentration (CA).
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perature can be observed. Furthermore, a disturbance rejection
experiment with a disturbance in the feed Ff was carried out with
the GPC (see Fig. 11). It can be observed that the GPC shows a
slow reaction to the disturbance applied in t = 80 min and needs
approximately 30 min to compensate the output error. The direct
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ig. 9. Disturbance rejection experiment with a disturbance in the feed Ff . From top
o bottom: Tank temperature (T), valve opening (v8), reactant concentration (CA)
nd feed (Ff).

ithout difficulties. Nevertheless, as a result of the model mis-
atch, some overshoot can be observed after the setpoint changes

approximately 0.9 ◦C and −2◦C after the first and the second step,
espectively). Comparing the results of Figs. 7 and 8 it is evident
hat the observed overshoot is mainly a result of the introduced

odel mismatch. However, the min–max control strategy shows
ts capability to stabilize the system in presence of a model uncer-
ainty.

In the last experiment (see Fig. 9) with the pilot plant the dis-
urbance rejection capabilities of the min–max control strategy
ere tested by means of a disturbance in the feed Ff. Starting

he experiment with the nominal feed Ff = 0.05 l/s, the disturbance
Ff = − 0.02 l/s was applied to the system in t = 60 min. After the

pplication of the disturbance it can be observed that the con-
entration CA decreases and, as a consequence, the temperature
alls below the given setpoint and reaches a maximum divergence
f −2.5 ◦C. With an increasing error in the system output, the
in–max control strategy partially closes the valve v8 and compen-

ates the effect of the reduced feed. The control strategy rejects the
isturbance in approximately 20 min, but shows afterwards small
scillations in the temperature and the valve opening, totally jus-
ified by the magnitude of the disturbance (�Ff corresponds to an
rror of −40% with respect to the nominal feed).

Finally, some of the experiments carried out with the MMMPC
ere repeated with a constrained Generalized Predictive Control

GPC) strategy in order to compare the performance of a standard
inear MPC with the one of the MMMPC strategy. A fair compari-
on between the two predictive controllers can only be carried out
hen the cost functions are the same or at least close to be equal.

herefore, the GPC was implemented with the same linear pre-

iction model (48) and adjusted with the same tuning parameters
prediction horizon N = 25, control horizon Nu = 15 and weighting
actor for the control effort R = 5) with exception of the uncertainty
ounds that are not present in the GPC. As a result, the cost func-
Fig. 10. Reference tracking experiments of the MMMPC (solid line) and the GPC
(dash-dotted line). From top to bottom: Tank temperature (T) and valve opening
(v8).

tion to be minimized by the GPC is as similar as possible to the one
of the MMMPC. Furthermore, the predicted output was corrected
by the same Smith like predictor (49) used before in combination
with the MMMPC and the same constraints (50) as in the case of
the MMMPC were considered.

The results obtained in a setpoint tracking experiment with the
GPC (see Fig. 10) show significant oscillations both in the measured
output and the computed input signal after the applied setpoint
changes. Moreover, a considerable overshoot in the controlled tem-
t [min]

Fig. 11. Disturbance rejection experiment with a disturbance in the feed Ff with
the MMMPC (solid line) and the GPC (dash-dotted line). From top to bottom: Tank
temperature (T) and valve opening (v8).
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Fig. 12. Simulation results for different disturbances in the feed Ff with the MMMPC
(solid line) and the GPC (dash-dotted line). Comparison of the tank temperature for
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Table 2
Maximum, minimum and average computation times of the MMMPC and GPC to
calculate the input sequence in the presented experiments.
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MMMPC 0.397 3.277 0.772
GPC 0.021 0.112 0.031

omparison of the results obtained with the MMMPC and the GPC
see Figs. 10 and 11) shows the generally better performance of
he MMMPC with a more efficient stabilization in the setpoint and
ess oscillations in the system input and output. Furthermore, the

MMPC reacts faster to the applied disturbance and compensates
he resulting output error more efficiently. Although both con-
rollers are based on the same linear prediction model, the explicit
onsideration of an additive uncertainty in the MMMPC strategy
eads to better results and a more robust control behavior. This

ore robust behavior is further illustrated in Fig. 12. This figure
hows the simulated5 responses of each controller for different val-
es of the feed Ff. It can be seen that the envelope that comprises all
he responses of the MMMPC is tighter than that of the GPC, which
mplies a more robust behavior of the MMMPC.

The MMMPC strategy showed in the presented experiments a
ood behavior, both for setpoint tracking and disturbance rejec-
ion. The minimum, maximum and average computation times of
he MMMPC to calculate the input sequence in the presented exper-
ments are given in Table 2. The necessary time to compute a new
nput sequence is quite low (taking into account the large predic-
ion horizon of N = 25) and lies clearly inside the used sampling time
f ts = 60 s. For comparison purposes, Table 2 also shows the compu-
ation times of the GPC. Obviously, the GPC solves the constrained
ptimization problem in less time than the MMMPC, but will not
ave the benefits of a worst case cost design. Finally, it is important
o underline that the original maximization problem would require
number of operations that is proportional to 2Nn� for each evalu-
tion of the cost function and could not be solved within the used
ampling time.

. Conclusions
In this paper an MMMPC strategy, originally proposed in
ef. [10], has been considered. The control strategy considerably
educes the computational complexity as the maximization prob-

5 Simulation is used in this case to ensure that all conditions are exactly the same
n each experiment. Nevertheless it is noteworthy that the simulation results are
ongruent with the experimental results shown in Fig. 11.
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lem, normally carried out by the evaluation of all 2Nn� possible
vertices of the disturbance, is replaced by an algorithm of poly-
nomial complexity. New conditions necessary to guarantee the
input-to-state practical stability of the closed loop system have
been presented. The control strategy has been successfully applied
to a continuous stirred tank reactor.

The obtained results underlined the capability of the MMMPC
strategy to stabilize the benchmark system even in presence
of strong disturbances. Furthermore, some of the results of the
MMMPC strategy were compared to the ones obtained with a
standard GPC. The comparison of the results showed that the
MMMPC strategy leads to better results in the presence of mod-
eling errors. These experimental results together with the stability
guarantee suggest that the proposed MMMPC is a valid alterna-
tive to control uncertain processes. Also the reduced computational
complexity allows the use of realistic prediction and control
horizons.
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