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The purpose of this paper is to examine and provide a solution to the output reference tracking problem
for uncertain systems subject to input saturation. As well-known, input saturation and modelling errors
are very common problems at industry, where control schemes are implemented without accounting for
such problems. In many cases, it is sometimes difficult to modify the existing implemented control
schemes being necessary to provide them with external supervisory control approaches in order to tackle
problems with constraints and modelling errors. In this way, a cascade structure is proposed, combining
an inner loop containing any proper controller with an outer loop where a generalized predictive control-
ler (GPC) provides adequate references for the inner loop considering input saturations and uncertainties.
Therefore, the contribution of this paper consists in providing a state space representation for the inner
loop and using linear matrix inequalities (LMI) to obtain a predictive state-vector feedback in such a way
that the input reference for the inner loop is calculated to satisfy robust tracking specifications consider-
ing input saturations. Hence, the final proposed solution consists in solving a regulation problem to a
fixed reference value subjected to a set of constraints described by several LMI and bilinear matrix
inequalities (BMI). The main contribution of the paper is that the proposed solution is a non-linear set-
point tracking approach, that is, it is allowed that the system goes into saturation facing the problem of
setpoint tracking instead of regulating to the origin. An illustrative numerical example is presented.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical models are required at design level in any control
system development. Models cannot represent every aspect of real-
ity, so assumptions must be made in order to use them for control
purposes. On the other hand, most physical processes are con-
strained by several reasons, such as physical limits (e.g. valve posi-
tion), security levels (e.g. pressure levels), or performance criteria
(e.g. working near the optimal operating point) [1]. In practice,
many control techniques implemented at industry work without
taking into account these modelling errors and system constraints.
Fixed-structure models and known parameters are used supposing
that the model exactly represents the real process, and the imperfec-
tions will be removed by means of feedback. Furthermore, detuned
control is usually used in order to cope with system saturations.

As well-know, these problems have widely been addressed by
the scientific control community. Numerous robust control tech-
niques are available in order to face system uncertainties such as
H1 [2], quantitative feedback theory (QFT) [3], or l-synthesis
[4]. In the same way, constrained system problems have been
solved from different points of view including anti-windup
ll rights reserved.
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schemes [5,6], constrained model predictive control [7,8], and
LMI-based synthesis [9]. Furthermore, combinations of these tech-
niques can be found in order to solve both robustness and input
saturation problems [10–13].

All previous approaches can be used in order to control systems
presenting the problems described above. However, many indus-
trial processes are currently controlled by some traditional control
schemes such as PID control with filter in the derivative action or a
generic two degrees of freedom proper controller, being difficult or
even impossible to modify this primal controller. Therefore, in
these cases, an external supervisory control is required in order
to face the problems of the implemented inner loop. In this sense,
the reference governor approach has been presented in several
works as solution to this problem, mainly focused on providing
appropriated references to the inner loop in order to ensure nom-
inal stability in presence of constraints [14–18]. This approach has
also been studied for solving robustness problems due to the pres-
ence of uncertainties in the inner loop [19–23]. However, the exist-
ing reference governor approaches present some limitations, such
as the requirement of knowing the future reference in advance and
that a predictive controller is used in order to avoid the system
going into saturation, that is, the system is working in linear mode.
In the solution presented in this paper, the system can work in
non-linear mode, that is, it is allowed that the system goes into
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saturation. This is a non-linear approach where constrained robust
stability is demonstrated and ensured. In this way, in presence of
uncertainties, a typical reference governor approach could be more
conservative than the solution presented in this work because it
will try to avoid the saturation of the control signal in a robust
way. Notice that, this could eventually lead to unfeasibility.

Therefore, this work presents a robust constrained reference
governor approach based on LMI with the aim of solving the previ-
ous problems in a systematic way [24]. In this approach a GPC con-
troller [25,7] provides adequate references for the inner loop
considering input saturations and uncertainties. Thus, the pro-
posed solution in order to prove robust stability when constraints
are active, is to translate the inner loop problem into a state space
representation, and then using LMI to obtain a predictive state-
vector feedback in such a way that the input reference to this inner
loop is calculated in order to satisfy robust tracking specifications
considering input saturation. This work describes the different
steps required to obtain such solution and how input saturation
in the inner loop can be handled using LMI-based methods. As it
will be shown, non-symmetric limits are also allowed.

The final solution consists in solving a set of constraints defined
by several LMI and BMI, where a Branch and Bound algorithm has
been developed in order to handle the bilinear terms. This solution
could also be solved using the existing methodologies to solve BMI
problems [26], but we are motivated to use our particular solution
because the problem is reduced to searching only for two parame-
ters without an excessive computation burden. This problem can
also be solved without using BMIs, but at expenses of obtaining
much more conservative results.

It is important to notice that the algorithm is implemented for
tracking problems where the aim is to regulate to a fixed reference
value and not to the origin, in the presence of input constraints in
the inner loop of the system what is not usual in the referenced
works. This solution is an extension of the solution proposed by
[27] that it is no obvious due to the uncertainties and the presence
of the saturation term.

The paper is organized as follows: Section 2 describes the state
space representation of the inner loop including the saturation
term. The next section presents the LMI-based solution for this ap-
proach ensuring constrained robust stability. Finally, a numerical
example, which can be found in many industrial plants, is pre-
sented in Section 4.
2. State space representation of the inner loop

The first step necessary before applying a LMI-based solution is
to obtain the state space representation for the inner loop in the
proposed approach (see Fig. 1). The inner loop has been considered
as a typical control scheme with two degrees of freedom for gen-
eral purposes. In order to provide optimal references to the inner
loop, the GPC algorithm has been selected. GPC is based on CARIMA
model, where the following plant representation (P in Fig. 1) is con-
sidered being the time delay included into the Bðz�1Þ polynomial

Aðz�1ÞyðtÞ ¼ Bðz�1Þuðt � 1Þ ð1Þ
Fig. 1. Control system scheme for LMI-based approach.
with

Aðz�1Þ ¼
Yn

i¼1

ð1þ piz
�1Þ;Bðz�1Þ ¼ Kz

Ym
i¼1

ð1þ ciz�1Þ: ð2Þ

The plant parameters Kz, c1; . . . ; cm, p1; . . . ; pn are considered uncer-
tain and supposed to lie within known intervals due to the presence
of uncertainties in the plant time domain parameters. That is

Kz 2 ½Kz;min;Kz;max�;
ci 2 ½ci;min; ci;max�; i ¼ 1; . . . ;m;

pi 2 ½pi;min;pi;max�; i ¼ 1; . . . ;n:

The polynomials Aðz�1Þ and Bðz�1Þ can be rewritten as

Aðz�1Þ ¼ 1þ a1z�1 þ a2z�1 þ � � � þ anz�n; ð3Þ
Bðz�1Þ ¼ b0 þ b1z�1 þ b2z�1 þ � � � þ bmz�m; ð4Þ

where the coefficients a1; . . . ; an, b0; . . . ; bm, depend multilineally on
the parametric vector

/ ¼ ½Kz; c1; . . . ; cm;p1; . . . ;pn�
T
:

That is, each coefficient depends affinely on each element of vector
/. In order to express explicitly the dependence on the vector /, the
coefficients can be expressed as b0ð/Þ; . . . ; bmð/Þ, a1ð/Þ; . . . ; anð/Þ.

Considering the plant dynamics (1) and the polynomials Aðz�1Þ
and Bðz�1Þ, it results that

yðtÞ ¼ �
Xn

i¼1

aið/Þyðt � iÞ þ
Xm

i¼0

bið/Þuðt � i� 1Þ; ð5Þ

or

yðt þ 1Þ ¼ �
Xn

i¼1

aið/Þyðt � iþ 1Þ þ
Xm

i¼0

bið/Þuðt � iÞ: ð6Þ

The plant dynamics can be represented by a state space representa-
tion, where the proposed state depends on the current output, and
the past outputs and inputs in the following way

xpðtÞ ¼ ½yðtÞ; . . . ; yðt � nþ 1Þuðt � 1Þ; . . . ;uðt �mÞ�T : ð7Þ
This state selection has the advantage that the state xpðtÞ is always
accessible, that is, the value of xpðtÞ is known since it is always pos-
sible to access to the output yðtÞ and input uðtÞ signals. So, the state
space representation is given by

xþp ¼ Apxp þ Bpu; ð8Þ
y ¼ Cpxp; ð9Þ
where

;
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xp denotes the state vector, u the system input, and xþp the next state
xpðt þ 1Þ.

Considering that the coefficients a1; . . . ; an, b0; . . . ; bm depend on
the parametric vector /, the system dynamics can be rewritten as

xþp ¼ Apð/Þxp þ Bpð/Þu; ð10Þ
y ¼ Cpxp: ð11Þ

Notice that state-space realization (9) is not minimal. However, the
problem presented in this work is focused on a system where the
plant is controlled by an existing controller.

The plant disturbances have not been included in the previous
description. Bounded disturbances in the plant represented by
the CARIMA model are given as

Aðz�1ÞyðtÞ ¼ Bðz�1Þuðt � 1Þ þ Tðz�1Þ �ðtÞ
D

; ð12Þ

where D ¼ 1� z�1. It is assumed that the coefficients of the Tðz�1Þ
polynomial depends multilineally on a bounded parametric vector
/T and �ðtÞ is bounded for all t > 0, that is, k�ðtÞk1 < �max, 8t.

Following the same steps as previously, the system dynamics
can be rewritten as

xþp ¼ Apð~/Þxp þ Bpð~/Þuþ Epð~/Þ;
y ¼ Cpxp;

ð13Þ

where ~/ is a parametric vector containing /, /T and, �,
~/ ¼ /T ;/T

T ; �
T

� �T
. Furthermore, it can be assumed that ~/ can only

take values within a convex set (typically an hyperrectangle). Final-
ly, notice that Apð~/Þ, Bpð~/Þ and Epð~/Þ depends multilinearlly on
parametric vector ~/.

2.1. Controller and prefilter representation

Assume available state space descriptions for the prefilter Fðz�1Þ
and controller Cðz�1Þ. Denoting xF as the state vector of the filter
Fðz�1Þ, r the filter input and rF the filter output, it is supposed that
matrices AF , BF , CF , and DF describe the filter dynamics as follows:

xþF ¼ AFxF þ BFr;

rF ¼ CFxF þ DFr:
ð14Þ

In the same way, xC denotes the state vector for the controller Cðz�1Þ
and u the controller output. The matrices AC , BC , CC and DC describe
the controller dynamics as follows:

xþC ¼ ACxC þ BCðrF � yÞ;
u ¼ CCxC þ DCðrF � yÞ:

ð15Þ

Note that the input to the controller is given by the filter output rF

minus the plant output y, and the plant is subjected to uncertainties
and disturbances as discussed above.

2.2. Inner loop representation

As commented previously, the goal is to design a robust predic-
tive controller considering input saturation in the inner loop.
Therefore, the state space representation of the inner loop must
be developed including the saturation.

The input saturation in the inner loop is given by

rpðuÞ ¼
Umin if u < Umin;

u if Umin 6 u 6 Umax;

Umax if u > Umax;

8><
>: ð16Þ

where nonsymmetric saturation can be present.
Firstly, the saturation is redefined in order to use a symmetric

representation to facilitate the calculations. Therefore, the satura-
tion is obtained as
rpðuÞ ¼ Lsr
1
Ls
ðu� ucÞ

� �
þ uc; ð17Þ

where

rðuÞ ¼
�1 if u < �1;
u if � 1 6 u 6 1;
1 if u > 1;

8><
>:

uc ¼
Umax þ Umin

2
; Ls ¼

Umax � Umin

2

ð18Þ

Then, the plant representation (13) is modified to consider input
saturation in the following way

xþp ¼ Apxp þ Bp Lsr
1
Ls
ðu� ucÞ

� �
þ uc

� �
þ Ep;

y ¼ Cpxp;

ð19Þ

where Ap ¼ Apð~/Þ, Bp ¼ Bpð~/Þ, and Ep ¼ Epð~/Þ will be considered
from now on for the sake of simplicity. The proposed extended vec-
tor x including the inner loop dynamics is defined as

x ¼
xp

xC

xF

2
64

3
75: ð20Þ

Then, the full system described by the plant, prefilter, and controller
has r as input (prefilter input), and y as output (plant output). Then,
xþF and xþC can be described as function of x and r as follows:

xþF ¼ AF xF þ BF r ¼ 0 0 AF½ �xþ BF r; ð21Þ

xþC ¼ ACxC þ BCðrF � yÞ ¼ ACxC þ BCðCF xF þ DFrÞ � BCCpxp

¼ �BCCPxp þ ACxC þ BCCF xF þ BCDF r

¼ �BCCp AC BCCF½ �xþ BCDFr; ð22Þ

being the control signal u obtained in the following way

u ¼ CCxC þ DCðrF � yÞ ¼ CCxC þ DCðCF xF þ DF rÞ � DCCpxp

¼ �DCCpxp þ CCxC þ DCCFxF þ DCDF r

¼ �DCCp CC DCCF½ �xþ DCDF r ¼ Cuxþ Dur: ð23Þ

In this way, using the new plant representation Eq. (19), and the
prefilter and controller state-space dynamics (21) and (22), the
closed-loop state space representation for the inner loop is de-
scribed as

xþ ¼ Axþ Bur
Cu

Ls
xþ Dur � uc

Ls

� �
þ Eþ Brr;

y ¼ Cyx;
ð24Þ

where

A ¼
Ap 0 0
�BCCp AC BCCF

0 0 AF

2
64

3
75; Bu ¼

BpLs

0
0

2
64

3
75;

E ¼
Ep þ Bpuc

0
0

2
64

3
75; Br ¼

0
BCDF

BF

2
64

3
75; Cy ¼ 1 0 0½ �:
3. Robust constrained LMI-based approach

3.1. Tracking problem preliminary ideas

Most of the results obtained for constrained MPC using LMI
have been proposed to regulate the system to the origin. In this
way, the results obtained in [27] can be used to calculate a control
law r ¼ Ksx for the plant (24) considering the system free of
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disturbances (Eð~/Þ ¼ 0) and regulating to the origin. In this partic-
ular case, x ¼ 0 is an equilibrium for the system for all value of ~/.
Therefore, Ks can be calculated ensuring robust stability and in
such a way that the control law r ¼ Ksx regulates to the origin
for all possible initial conditions and any value of ~/ [27,28]. How-
ever, one of the objectives considered in our approach is to make
the output y reach the reference value w. Therefore, the problem
formulation must be oriented to this objective. This work presents
some preliminary ideas based on the extensions proposed in [27]
for set-point tracking.

Firstly, it is necessary to notice that due to the dependence of
additive terms modelled on the parametric vector ~/, it is impossi-
ble to find static values for x and r (xe and re) such that the system
finds a unique equilibrium for all values of the parametric vector ~/
(due to the uncertain additive term). In this work in order to ad-
dress this problem, the following control law is proposed

r ¼ re þ Ksðx� xeÞ; ð25Þ

where xe, re, and Ks will be obtained in such a way that the perfor-
mance of the closed-loop system is enhanced and the system evolu-
tion is ensured to be inside an invariant ellipsoid containing the
problem initial conditions.

Substituting r in Eq. (24) by the desired control law
r ¼ re þ Ksðx� xeÞ, the following expression is obtained

xþ ¼ Axþ Bur
Cuxþ Duðre þ Ksðx� xeÞÞ � uc

Ls

� �
þ Eþ Br

� ðre þ Ksðx� xeÞÞ: ð26Þ

Then, if the change �x ¼ x� xe is considered, and so �xþ ¼ xþ � xe, the
system dynamics can be represented as

�xþ ¼ Að�xþ xeÞ þ Bur
ðCu þ DuKsÞ�xþ Cuxe þ Dure � uc

Ls

� �
þ Eþ Br

� ðre þ Ks�xÞ � xey ¼ Cyx ¼ Cy�xþ Cyxe:

Finally, if the following changes are performed

Ku ¼ Cu þ DuKs; du ¼ Cuxe þ Dure � uc;

it is obtained that

�xþ ¼ ABc�xþ BBcr
Ku�xþ du

Ls

� �
þ EBc;

y ¼ Cy�xþ Cyxe;

ð27Þ

where

ABc ¼ ðAþ BrKsÞ; BBc ¼ Bu; EBc ¼ Eþ Axe þ Brre � xe:

Define }ðPs;qÞ ¼ f�x : �xT Ps�x 6 qg as an ellipsoid where �x0 2 }ðPs;qÞ
with �x0 ¼ x0 � xe. In this way, the tracking problem assuring con-
strained robust stability for the system (27) will be solved using
LMI and fulfilling the following objectives:

(i) Firstly, the decision variables xe, re, Ks, Ps, and q are calcu-
lated in such a way that the ellipsoid }ðPs;qÞ is invariant
containing the system initial conditions �x0 and using the
control law r ¼ re þ Ksðx� xeÞ.

(ii) After that, new constraints will be included in order to fulfill
a certain performance criteria.

These objectives will be addressed in next sections, but the way in
which the saturation term presented in (27) can be taken into
account will be addressed before.

3.1.1. Linear difference inclusion of the saturation term
Notice that due to the input saturation, a nonlinear term ap-

pears in the system dynamics, r Ku�xþdu
Ls

� �
. This nonlinear term can

be approximated using the Linear Difference Inclusion (LDI) results
obtained in [29 and 30] where it is shown that, if b 2 R satisfies
jbj 6 1 then

rðaÞ 2 Cofa; bg; 8a 2 R;

being Co the convex hull. In particular, if jHs�xþ hj 6 1 8�x 2 }ðPs;qÞ
then

r Ku�xþ du

Ls

� �
2 Co

Ku�xþ du

Ls
;Hs�xþ h

� 	
; 8 Ku�xþ du

Ls

� �
2 R;

8�x 2 }ðPs;qÞ:

Therefore, each objective commented above will be translated to
analyze if it satisfies the extremes of the convex hull

�xþ ¼ ABc�xþ BBc
Ku�xþ du

Ls

� �
þ EBc; ð28Þ

�xþ ¼ ABc�xþ BBcðHs�xþ hÞ þ EBc; ð29Þ

as will be shown in next sections.
On the other hand, the inequality jHs�xþ hj 6 1 must be consid-

ered. This inequality can be translated to a LMI in order to be in-
cluded in the final optimization problem. The inequality can be
expressed as two inequalities in the following way

Hs�xþ h 6 1) Hs�x 6 1� h; 8�x 2 }ðPs;qÞ; ð30Þ
Hs�xþ h P �1) Hs�x P �1� h; 8�x 2 }ðPs;qÞ; ð31Þ

where these inequalities must be satisfied in the ellipsoid }ðPs;qÞ.
In the next section, this ellipsoid will be forced to be invariant con-
taining the system initial conditions.

Considering the first inequality (30) and using the S� procedure,
it is equivalent to studying the existence of parameter k2 P 0 such
that (see Section 2.6.3 in [28] for further details)

Hs�xþ hþ k2ðq� �xT Ps�xÞ 6 1; 8�x: ð32Þ

This can be expressed as

1
��x


 �T k2qþ h� 1 � 1
2 Hs

� 1
2 HT

s �k2Ps

" #
1
��x


 �
6 0; 8�x; ð33Þ

which is satisfied if

1� h� k2q 1
2 Hs

1
2 HT

s k2Ps

" #
> 0: ð34Þ

Then, pre- and post-multiplying by diag½I 2P�1
s � and making

W ¼ P�1
s , V ¼ HsW , it results

1� h� k2q V

VT 4k2W


 �
> 0: ð35Þ

The same procedure can be applied for the second inequality (31)
obtaining

1þ h� k2q V

VT 4k2W


 �
> 0: ð36Þ

For a fixed value of k2, notice that the obtained matrix inequalities
are LMI in the decision variables q, Ps, Hs, and h. The procedure to
find correct values for k2 will be described later.

Notice that the variable k2 is a free variable that is used to sat-
isfy the fulfillment of inequalities (35) and (36) and its value is
modified for this purpose; k2 could also be bounded performing
the variable change k2 ¼ kaux=ð1� kauxÞwhere kaux� ½0;1Þ. As conse-
quence of the previous results, the following property is proposed:

Property 1. Suppose that there exists k2 P 0 such that LMI (35) and
(36) are fulfilled, then:
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r Ku�xþ du

Ls

� �
2 Co

Ku�xþ du

Ls
;Hs�xþ h

� 	
; 8�x 2 }ðPs;qÞ;

where Ps ¼W�1 and Hs ¼ VW�1.
3.2. Robust invariant ellipsoid

As commented previously, one of the objectives is to calculate
the decision variables xe, re, Ks, Ps, and q in such a way that the
ellipsoid }ðPs;qÞ is invariant using the control law r ¼ reþ
Ksðx� xeÞ. Therefore, in order to ensure the ellipsoid being invari-
ant the following inequality must be fulfilled

ð�xþÞT Psð�xþÞ 6 q; 8�x 2 }ðPs;qÞ: ð37Þ

This problem can be reformulated using S� procedure as follows:

ð�xþÞT Psð�xþÞ þ k1ðq� �xT Ps�xÞ 6 q; 8�x; k1 P 0; ð38Þ

or equivalently

ð�xþÞT Psð�xþÞ � k1�xT Ps�xþ qðk1 � 1Þ 6 0; 8�x; k1 P 0: ð39Þ

Lets consider the following property:

Property 2. Suppose that Ps > 0, then

#T Ps# P vT Psv þ 2vT Psð#� vÞ ¼ �vT Psv þ 2vT Ps#;

and

#T Ps# ¼max
v
f�vT Psv þ 2vT Ps#g: ð40Þ

Therefore, using the previous property and the closed-loop system
dynamics (27), the inequality (39) results

� vT Psv þ 2vT PsðABc�xþ BBcr
Ku�xþ du

Ls

� �
þ EBcÞ � k1�xT Ps�xþ qðk1 � 1Þ 6 0; ð41Þ

where this inequality must be satisfied 8�x and 8v .

Notice that in order to address this problem and demonstrate
that the system evolution belongs to an invariant ellipsoid, it is
necessary to obtain a LDI of the saturation term as shown in the
previous section (see Property 1). Therefore, the inequality (41)
must be satisfied for the extremes of the convex hull, Ku�xþdu

Ls
and

Hs�xþ h.

3.2.1. Case Ku�xþdu
Ls

Using Property 2 (40) and (28) in (39) is obtained that

�vT Psv þ 2vT PsðABc�xþ BBc
Ku�xþ du

Ls
þ EBcÞ � k1�xT Ps�xþ qðk1 � 1Þ

6 0; 8�x; 8v :

The matrix representation of the previous inequality is given by

mT

qðk1 � 1Þ � �
0 �k1Ps �

�PsðEBc þ BLBcduÞ �PsðABc þ BLBcKuÞ �Ps

2
64

3
75m 6 0; ð42Þ

8�x;8v , where BLBc ¼ 1
Ls

BBc , m ¼ 1 �x �v½ �T , and � represents the
transpose of the symmetric term. This holds if

qð1� k1Þ � �
0 k1Ps �

PsðEBc þ BLBcduÞ PsðABc þ BLBcKuÞ Ps

2
64

3
75 > 0; ð43Þ

Pre- and post-multiplying by diag½I P�1
s P�1

s � and making W ¼ P�1
s

qð1� k1Þ � �
0 k1W �

ðEBc þ BLBcduÞ ðABc þ BLBcKuÞW W

2
64

3
75 > 0: ð44Þ

Considering that EBc ¼ Eþ Axe þ Brre � xe, BLBc ¼ 1
Ls

BBc ¼ 1
Ls

Bu and
du ¼ Cuxe þ Dure � uc , it results that

EBc þ BLBcdu ¼ Axe xe þ Bre re þ Ee;

where Axe ¼ A� I þ ð1
Ls
ÞBuCu, Bre ¼ Br þ ð1

Ls
ÞBuDu and Ee ¼ E� ð1

Ls
ÞBuuc .

On the other hand, reminding that ABc ¼ Aþ BrKs and
Ku ¼ Cu þ DuKs, it is obtained that

ABcW þ BLBcKuW ¼ AwW þ ByY;

where Aw ¼ Aþ 1
Ls

BuCu, By ¼ Br þ 1
Ls

BuDu, and Y ¼ KsW .
Therefore, the final LMI results as follows:

qð1� k1Þ � �
0 k1W �

Axe xe þ Bre re þ Ee AwW þ ByY W

2
64

3
75 > 0: ð45Þ
3.2.2. Case Hs�xþ h
In order to solve the case for Hs�xþ h, it is easy to see that the

same previous LMI is obtained only substituting Ku by Hs, du by
h, and BLBc by BBc

qð1� k1Þ � �
0 k1W �

ðEBc þ BBchÞ ðABc þ BBcHsÞW W

2
64

3
75 > 0: ð46Þ

Then, knowing that EBc ¼ Eþ Axe þ Brre � xe, BBc ¼ Bu and
ABc ¼ Aþ BrKs:

EBc þ BBch ¼ Anlxexe þ Bnlrere þ Bhhþ Enle;

ðABc þ BBcHsÞW ¼ AnlW W þ BnlY Y þ BvV ;

where Anlxe ¼ ðA� IÞ, Bnlre ¼ Br , Bh ¼ Bu, Enle ¼ E, AnlW ¼ A, BnlY ¼ Br ,
Bv ¼ Bu, Y ¼ KsW , and V ¼ HsW .

So, the resulting LMI is

qð1� k1Þ � �
0 k1W �

Anlxexe þ Bnlrere þ Bhhþ Enle AnlW W þ BnlY Y þ BvV W

2
64

3
75 > 0:

ð47Þ

For a fixed value of k1, notice that the obtained matrix inequalities
are LMI in the decision variables xe, re, q, Ps, Ks, Hs, and h. The pro-
cedure to find correct values for k1 will be described later.

Property 3. Suppose that there exists k1 P 0 and k2 P 0 such that
the LMI (35) and (36), (45) and (47) are fulfilled. Then, }ðPs;qÞ is an
invariant ellipsoid using the control law r ¼ re þ Ksðx� xeÞ and
containing the system initial conditions, where Ps ¼W�1 and
Ks ¼ YW�1.

Remark 1. Notice that the previous LMI depends multilineally on
the parametric vector ~/ 2 U due to the dependence of Ap ¼ Apð~/Þ,
Bp ¼ Bpð~/Þ, and Ep ¼ Epð~/Þ. Then, Properties 1 and 3 must be satis-
fied for all extreme plants of the hyperrectangle U.
3.3. Including performance inequality

Consider the representation of system (27) for the instant time k

�xþk ¼ ABc�xk þ BBcr
Ku�xk þ du

Ls

� �
þ EBc;

yk ¼ Cy�xk þ Cyxe;

ð48Þ
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and suppose the following equality

w ¼ Cyxe: ð49Þ

For an initial condition x0 and the reference w, it is desired to calcu-
late the system input rk by the law rk ¼ re þ Ksðxk � xeÞ such that the
the following functional is minimized

J ¼
XN

k¼0

ðyk �wÞ>Qðyk �wÞ þ xk
T K>u RuKuxk

� 

; ð50Þ

where Q > 0 and Ru > 0 are symmetric matrices positive definite.
From the equality (49), it results that the functional J can be

rewritten as

J ¼
XN

k¼0

�x>k C>y QCy�xk þ xk
T K>u RuKuxk: ð51Þ

Defining LJð�xkÞ ¼ xk
>C>y QCy �xk þ xk

T K>u RuKuxk, it results that

J ¼
XN

k¼0

LJðxkÞ: ð52Þ

In the following property a strategy is defined for a correct selection
of Ks, xe and re in order to fulfill the performance criteria (50).

Property 4. Suppose that

�x>kþ1Ps�xkþ1 � �x>k Ps�xk 6 �LJð�xkÞ þ c; 8~/ 2 U; 8�x;

and that an initial condition is equal to x0. Suppose also that the control
law rk ¼ re þ Ksðxk � xeÞ is applied to the system, then

J 6 �x>0 Ps�x0 þ Nc;

where �x0 ¼ x0 � xe.

Proof 1. The assumption of the property leads to

�x>kþ1Ps�xkþ1 � �x>k Ps�xk 6 �LJð�xkÞ þ c; 8~/ 2 U; 8k P 0:

Therefore

�x>1 Ps�x1 � �x>0 Ps�x0 6 �LJð�x0Þ þ c;
�x>2 Ps�x2 � �x>1 Ps�x1 6 �LJð�x1Þ þ c;

..

.

�x>N Ps�xN � �x>N�1Ps�xN�1 6 �LJð�xN�1Þ þ c;
�x>Nþ1Ps�xNþ1 � �x>N Ps�xN 6 �LJð�xNÞ þ c:

If the previous inequalities are added, it is obtained that

�x>Nþ1Ps�xNþ1 � �x>0 Ps�x0 6 �J þ Nc;
J 6 �x>0 Ps�x0 þ Nc� �x>Nþ1Ps�xNþ1;

J 6 �x>0 Ps�x0 þ Nc; �

So, from the previous property the following optimization prob-
lem can be proposed (from now on the subindex k will be omitted
for the sake of simplicity)

min
Ps ;Ks ;xe ;re ;c

�x>0 Ps�x0 þ Nc 8~/ 2 U; 8�x

s:t: ð�xþÞT Psð�xþÞ � �xPs�x < ��x>C>y QCy�x� �xT K>u RuKu�xþ c;

ð53Þ

in order to calculate the control law that minimizes an upper limit
of the functional. Notice that N is a design parameter absent from
problem constraints. If N is very large, the problem solution will
tend to minimize c. The following interpretation can be considered
for c

lim
N!1

J
N
6 limN!1

�x>0 Ps�x0 þ Nc
N

¼ c: ð54Þ
Therefore, if N is very large the initial transitory is almost not con-
sidered (the initial condition �x0 does not play a relevant role) and
the emphasis is placed on improving the future behavior. On the
other hand, if N takes very small values, the initial condition and
the initial transitory gains relevance. Then, the problem (53) can
be reformulated as

min
Ps ;Ks ;xe ;re ;c;as

as

s:a: �xT
0Ps�x0 þ Nc < as;

ð�xþÞT Psð�xþÞ � �xT Ps�x < ��xT CT
y QCy�x;

� �xT KT
uRuKu�xþ c:

ð55Þ

The problem inequalities will be translated to LMI form in order to
address the optimization problem. Firstly, the upper inequality is
considered

�xT
0Ps�x0 þ Nc < as: ð56Þ

This can be easily expressed as a LMI using the Schur complement
[28] in the form

as � Nc �xð0ÞT

�xð0Þ W

" #
> 0: ð57Þ

On the other hand, and remembering the presence of the saturation
term in (48), the another inequality

ð�xþÞT Psð�xþÞ � �xT Ps�x < ��xT CT
y QCy�x� �xT KT

uRuKu�xþ c; ð58Þ

must be satisfied for two extreme vertices of the LDI, Ks�xþdu
Ls

and
Hs�xþ h, in the same way that for the invariant ellipsoid. The first
step consists in using Property 2 on the previous inequality, where
it is obtained that

�vT Psv þ 2vT PsðABc�xþ BBcr
Ku�xþ du

L

� �
þ EBcÞ � �xT Ps�x

< ��xT CT
y QCy�x� �xT KT

uRuKu�xþ c:

Following a similar procedure that in Section 3.2, this inequality re-
sults in the following LMIs for the two extreme vertices of the LDI
(the detailed procedure can be found in Appendix A [24])

c � � � �
0 W � � �

Axexe þ Brere þ Ee AwW þ ByY W � �
0 Q 1=2CyW 0 I �
0 RW W þ RY Y 0 0 I

2
6666664

3
7777775
> 0; ð59Þ

c � � � �
0 W � � �

Anlxexe þ Bnlrere þ Bhhþ Enle AnlW W þ BnlY Y þ BvV W � �
0 Q 1=2CyW 0 I �
0 RvV 0 0 I

2
6666664

3
7777775
> 0:

ð60Þ

Finally, the equality (49), which was supposed before, must be in-
cluded in the optimization problem. Therefore, the optimization
problem has been reformulated to minimize the value of as subject
to a set of LMI. The following section describes the final optimiza-
tion problem and the different obtained LMI.

3.4. Final optimization problem

Notice that in Section 2.2, it was considered that Ap ¼ Apð~/Þ,
Bp ¼ Bpð~/Þ, and Ep ¼ Epð~/Þ for simplifying reasons. That is, it is nec-
essary to remind that the matrices of the plant depend multilineally
on the parametric vector ~/. In this way, the previous LMI that were
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formulated for the nominal case, must be satisfied for all extreme
values of the hyperrectangle U. Hence, the final problem can be for-
mulated to calculate the decision variables xe, re, Ks, Ps, q, Hs, and h,
in such a way that using the control law r ¼ re þ Ksðx� xeÞ, }ðPs;qÞ
is an invariant ellipsoid and the system fulfills the performance cri-
teria given by J (50). The final optimization problem is given by

min
Ps ;Ks ;xe ;re ;c;as

as

s:a: �xT
0Ps�x0 þ Nc < as;

ð�xþÞT Psð�xþÞ � �xT Ps�x < ��xT CT
y QCy�x;

� �xT KT
uRuKu�xþ c:

ð61Þ

Then, considering the results obtained in previous section, a conser-
vative way to solve the optimization problem consists in solving the
following constraints

w ¼ Cyxe; ð62Þ
as � Nc �xð0Þ>

�xð0Þ W


 �
> 0; ð63Þ

q �xð0Þ>

�xð0Þ W


 �
> 0; ð64Þ

c � � � �
0 W � � �

Axeð~/Þxe þ Breð~/Þre þ Eeð~/Þ Awð~/ÞW þ Byð~/ÞY W � �
0 Q 1=2Cyð~/ÞW 0 I �
0 RW ð~/ÞW þ RY Y 0 0 I

2
666664

3
777775 > 0;

ð65Þ
qð1� k1Þ � �

0 k1W �
Axeð~/Þxe þ Bre ð~/Þre þ Eeð~/Þ Awð~/ÞW þ BY Y W

2
4

3
5 > 0; ð66Þ

c � � � �
0 W � � �

Anlxeð~/Þxe þ Bnlreð~/Þreþ
þBhð~/Þhþ Enleð~/Þ

AnlWð~/ÞW þ BnlY Yþ
þBvð~/ÞV

W � �

0 Q1=2Cyð~/ÞW 0 I �
0 RvV 0 0 I

2
66666664

3
77777775
> 0;

ð67Þ
qð1� k1Þ � �

0 k1W �
Anlxeð~/Þxe þ Bnlreð~/Þreþ
þBhð~/Þhþ Enleð~/Þ

AnlWð~/ÞW þ BnlY Yþ
þBvð~/ÞV

W

2
6664

3
7775 > 0; ð68Þ

1� h� k2q V
V> 4k2W


 �
P 0; ð69Þ

1þ h� k2q V
V> 4k2W


 �
P 0; ð70Þ

where it is necessary to incorporate constrains for each extreme va-
lue of the hypercube U. Also, as observed from the resulting con-
straints, some of them are BMI (bilinear matrix inequalities)
containing different bilinear terms qð1� k1Þ, k1W , k2qÞ, and 4k2W .
So, in order to obtain a stable MPC controller with good perfor-
mance, it is necessary to choose k1 and k2 in a convenient way.

Property 5. Suppose that there exist k1 P 0 and k2 P 0 such that the
constraints (62)–(70) are feasible for every extreme of the hypercube
U. Then, there exits a control law r ¼ re þ Ksðx� xeÞ providing that
}ðPs;qÞ is an invariant ellipsoid and the system fulfills the perfor-
mance criteria given by J (50), where P ¼W�1 and Ks ¼W�1Y.
3.5. Branch & Bound algorithm for bilinear terms

Due to the presence of bilinear terms in the final optimization
problem, a Branch & Bound algorithm is proposed to find the opti-
mal solution. Before describing the algorithm, some aspects must
be considered [24]:

– From the constraints it is easy to see that k1 2 ½k1; k1Þ ¼ ½0;1Þ
and k2 2 ½k2; k2Þ ¼ ½0;1Þ, respectively. Notice that ki and ki

represent the minimum and maximum values for ki with
i ¼ 1;2.

– A lower bound solution is that obtained considering that
there exist k1 2 ½k1; k1Þ and k2 2 ½k2; k2Þ such that the con-
straints (62), (63), (64), (65), and (67) are feasible, and also
the following constrains are satisfied

qð1� k1Þ � �
0 k1W �

Axe ð~/Þxe þ Bre ð~/Þre þ Eeð~/Þ Awð~/ÞW þ BY Y W

2
64

3
75 > 0; ð71Þ

qð1� k1Þ � �
0 k1W �

Anlxeð~/Þxe þ Bnlreð~/Þreþ
þBhð~/Þhþ Enleð~/Þ

AnlWð~/ÞW þ BnlY Yþ
þBvð~/ÞV

W

2
6664

3
7775 > 0; ð72Þ

1� h� k2q V

VT 4k2W

" #
> 0; ð73Þ

1þ h� k2q V

VT 4k2W

" #
> 0: ð74Þ

The list of lower bound solutions is called Ol.
– An upper bound solution is that obtained for specific values

of k1 and k2. Given a lower bound solution defined by
½k1; k1Þ and ½k2; k2Þ, specific values for k1 and k2 are obtained
as k1 ¼ ðk1 þ k1Þ=2 and k2 ¼ ðk2 þ k2Þ=2. The list of upper
bound solutions is called Pl.

– The ranges ½k1; k1Þ and ½k2; k2Þ define an initial square which
determines the search space. Such square will be divided
until the optimal solution is obtained.

Therefore, the proposed Branch & Bound algorithm presents the
following steps:

(i) Initialize Ol ¼ fg, Pl ¼ fg, ½k1; k1Þ ¼ ½0;1Þ, and ½k2; k2Þ ¼ ½0;1Þ.
(ii) Obtain the initial node no as an optimistic solution using the

initial values for ½k1; k1Þ and ½k2; k2Þ; Ol ¼ fnog.
(iii) The best node from the optimistic list Ol is selected obtaining

½k1
0; k1

0Þ and ½k2
0; k2

0Þ:

(a) For odd iterations, the node will be that containing the

square with bigger area.
(b) For even iterations, the node will be that with better

performance.

(iv) New upper bound solution is calculated using the best node

calculated in the previous step, ½k1
0; k1

0Þ and ½k2
0; k2

0Þ. The solu-
tion is calculated trying to solve the optimization problem for
k1 ¼ k01m ¼ ðk1

0 þ k1
0Þ=2 and k2 ¼ k02m ¼ ðk2

0 þ k2
0Þ=2. If the

optimization problem has solution for these values of k1

and k2, the new value is included in the list of pessimistic
solutions Pl. Then a local search is performed trying to
improve the found solution. The local search is based on the
following heuristic steps:

(a) The values obtained for k1 and k2, and the obtained

performance solution are considered as initial
variables.

(b) Solve the optimization problem (61) using k1 and k2

and obtaining values for W and q. If a better perfor-
mance solution is obtained, then the new upper
bound solution is included in the upper bound list
Pl. The best performance solution is updated with
the new one.
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(c) Reformulate the LMI considering k1 and k2 as decision
variables and, W and q as constant values. Solve the
optimization problem obtaining new values for k1

and k2.
(d) Return to step (b) while better performance solutions

are obtained or until a finite number of iterations is
reached.
(v) Remove worst lower bound solutions. The lower bound solu-
tions with worst performance than the best upper bound one
are removed from the lower bound list Ol.

(vi) New lower bound solutions are obtained. That is, four new
nodes are calculated from the node obtained in the previous
step as follows

n1 ¼ f½k1
0; k01m�; ½k2

0; k02m�g;
n2 ¼ f½k1

0; k01m�; ½k
0
2m; k2

0�g;
n3 ¼ f½k01m; k1

0�; ½k2
0; k02m�g;

n4 ¼ f½k01m; k1
0�; ½k02m; k2

0�g:

The lower bound solution calculated for ni; i ¼ 1; . . . ;4 will be
removed if the solution is empty (the optimization problem is
not feasible), the obtained performance is worst than the best
upper bound solution, or the square defined by the associated
ranges on k1 and k2 is too small. Otherwise, it will be included
in the lower bound list Ol.

(vii) Return to 3 until the optimal solution is reached or while
there exist lower bound solutions.
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Fig. 2. PI control using Ziegler–Nichols
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Fig. 3. PI control using Skogestad
Notice that the convergence of the optimal solution is ensured
using the previous algorithm. This is due to the fact that the search
is not always performed looking for the best solution, since in odd
iterations the solution is chosen based on the greatest search space
of k1 and k2.
4. Numerical example

As a process representative of a common industrial problem,
an integrator plant plus time delay (as well-known a wide range
of industrial processes can be represented by this transfer func-
tion [1]) with uncertainty in the gain has been selected in order
to show the main features of the proposed control structure,
which can be easily applied to more complex plants. The plant
is given by PðsÞ ¼ Kp

s e�s where Kp 2 ½1;10� and being the control
signal limited to ½�0:3;0:3�. This plant is very similar to that pre-
sented in [31,11] where robust and input saturation problems are
also studied.

Suppose that this plant has been attempted to be controlled by
a typical PI controller. For the PI tuning, two different methods
have been considered in this example. First, it is supposed that
the PI parameters have been obtained using the well-known Zie-
gler–Nichols rules [32], and on the other hand, a more robust
and recent method developed by Skogestad [33] is used. In both
cases, PðsÞ ¼ 1

s e�s has been chosen as nominal plant in order to
show better the features of the control architecture presented in
this work.
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Figs. 2 and 3 show the control results. The thick lines represent
the results for the free uncertainty case where acceptable results
are obtained in both cases. As expected, a more aggressive
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Fig. 4. LMI-based approach for the inner loop
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Fig. 5. LMI-based approach for the inner lo
response is provided by the Ziegler–Nichols method where the
control signal reaches the two saturation limits during the transi-
tory period.
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However, if this control loop is studied in presence of uncertain-
ties, poor performance results and stability problems appear for
both design methods. This fact is presented in Figs. 2 and 3, where
thin lines represent the evolution of the system due to the uncer-
tainty influence. At this point, a robust control strategy, such as
those commented in the introduction section, could be used in or-
der to solve this problem. However, in the following, these prob-
lems are solved using the LMI-based solution presented in this
paper in order to control the proposed inner loop considering input
saturation and ensuring constrained robust stability. Consider the
sample time Tm ¼ 0:01, N ¼ 20, Ru ¼ 1, Q ¼ 1, w ¼ 1, and
x0 ¼ ½0 0 0 0�T . So, for the inner loop designed with the Ziegler–
Nichols method, the Branch and Bound algorithm found an optimal
solution for k1 ¼ 0:99707 and k2 ¼ 0:0051 (after 6544 iterations)
obtaining

Ks ¼ �0:4030 �0:003½ �;

Fig. 4 shows the results of applying the obtained solution consider-
ing all plants of the family. It can be seen how the system reaches
the proposed reference w ¼ 1 obtaining good performance. Com-
paring the results with the previous ones, the proposed LMI-based
approach presents acceptable performance results, but also ensur-
ing constrained robust stability.

Consider now the control loop for the Skogestad method. The
same design parameters that in the previous case are used where
for this inner loop the obtained solution is given by k1 ¼ 0:9981
and k2 ¼ 0:001123 (after 5877 iterations) being

Ks ¼ �1:860623 �0:00125½ �;

Fig. 5 shows the results where it can be observed how similar re-
sults that in the Ziegler–Nichols case are obtained. For both cases,
the proposed architecture present very similar performance results,
but the references provided for the inner loops are different in each
case.

On the other hand, the Branch and Bound algorithm has pre-
sented a good behavior in finding optimal values for k1 and k2. This
fact can be observed from Fig. 6 where it is shown how, for the pre-
vious example, the algorithm divides correctly the search space in
order to find optimal values.

Notice that, the LMI-based approach is implemented with low
computational load where the feedback gain Ks is calculated off-
line. However, the optimization problem could be solved on-line
at each instant time in order to obtain more optimal results, where
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Fig. 6. Search space division by the Branch and Bound algorithm.
the feedback gain Ks is always calculated based on the current state
of the system. Then, in this case, the LMI-based approach would re-
quire bigger computational load than some of the approaches pre-
sented in [34], being this fact the main drawback with respect to
the other reference governor techniques.

Remark 2. For off-line design our approach is a plausible approach
to look for a global solution. When the approach presented in this
paper is desired to be used online for the control of fast processes,
local searches can be performed using as initial conditions the
values of k1 and k2 calculated in the previous instant time. Some
other solutions could be the use of fast optimization algorithms to
solve BMIs [26].
5. Conclusions

A robust constrained LMI-based approach has been developed
as solution to the problem of controlling an uncertain system sub-
ject to input saturation. One of the main contributions of this work
is that the system can work in non-linear mode, that is, it is al-
lowed that the system goes into saturation. This is a non-linear ap-
proach (remark the use of the linear difference inclusion) where
constrained robust stability is demonstrated and ensured. In this
way an a priori existing control loop has been translated into state
space representation, and LMI have been used to obtain a state-
vector feedback in such a way that the input reference to the inner
loop is calculated in order to satisfy robust tracking specifications
considering input saturation. The proposed solution consists in
solving a set of constraints described by several LMI and BMI,
where a Branch and Bound algorithm has been developed in order
to account for the bilinear terms. Notice that the algorithm is
implemented for tracking problems where the aim is to regulate
to a fixed reference value and not to the origin, and also input con-
straints are present in the inner loop of the system. The algorithm
is very useful for a wide range of industrial processes controlled by
classical control algorithms where the presence of input con-
straints and/or uncertainties cause problems in the stability and
performance of the system. The extension to other types of con-
straints is practicable. In the presented formulation, a contractive
ellipsoid has been used and therefore the problem could be ex-
tended imposing that new constraints (states, output) are fulfilled
in this ellipsoid. This could be performed in a similar way that in
[27].
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Appendix A. The second inequality of (55)

ð�xþÞT Psð�xþÞ � �xT Ps�x < ��xT CT
y QCy�x� �xT KT

uRuKu�xþ c; ðA:1Þ

must be satisfied for two extreme vertices of the LDI, Ks�xþdu
Ls

and
Hs�xþ h.

A.1. Case Ks�xþdu
Ls

Considering that �xþ is described by (28), the previous inequality
results as

� vT Psv þ 2vT PsðABc�xþ EBcÞ � �xT Ps�xþ �xT CT
y QCy�xþ �xT KT

uRuKu�x� c

þ 2vT PsBBc
Ku�xþ du

Ls

� �
6 0:
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The matrix representation is given by

mT

�c � �
0 �Ps þ CT

y QCy þ KT
uRuKu �

�ðPsEBc þ PsBLBcduÞ �ðPsABc þ PsBLBcKuÞ �Ps

2
64

3
75m 6 0;

ðA:2Þ

where BLBc ¼ 1
Ls

BBc , m ¼ 1 �x �v½ �T , and the previous LMI must be
satisfied 8�x and 8v . Therefore, it is obtained that

c � �
0 Ps � CT

y QCy � KT
uRuKu �

PsðEBc þ BLBcduÞ PsðABc þ BLBcKuÞ Ps

2
64

3
75 > 0; ðA:3Þ

where pre- and post-multiplying by diag½I P�1
s P�1

s � and making
W ¼ P�1

s , it is obtained that

c � �
0 W �WCT

y QCyW �WKT
uRuKuW �

ðEBc þ BLBcduÞ ðABc þ BLBcKuÞW W

2
64

3
75 > 0: ðA:4Þ

From the Schur complement the LMI results as follows:

c � � �
0 W �WKT

uRuKuW � �
ðEBc þ BLBcduÞ ðABc þ BLBcKuÞW W �

0 Q 1=2CyW 0 I

2
6664

3
7775 > 0: ðA:5Þ

Using the Schur complement again, it is obtained that

c � � � �
0 W � � �

ðEBc þ BLBcduÞ ðABc þ BLBcKuÞW W � �
0 Q 1=2CyW 0 I �
0 R1=2

u KuW 0 0 I

2
6666664

3
7777775
> 0; ðA:6Þ

or equivalently

c � � � �
0 W � � �

Axexe þ Brere þ Ee AwW þ ByY W � �
0 Q 1=2CyW 0 I �
0 RW W þ RY Y 0 0 I

2
6666664

3
7777775
> 0; ðA:7Þ

where Axe ¼ A� I þ 1
Ls

� �
BuCu, Bre ¼ Br þ 1

Ls

� �
BuDu, Ee ¼ E� 1

Ls

� �
Buuc ,

Aw ¼ Aþ 1
Ls

BuCu, By ¼ Br þ 1
Ls

BuDu, Y ¼ KsW and

R1=2
u KuW ¼ R1=2

u ðCu þ DuKsÞW ¼ R1=2
u CuW þ R1=2

u DuKsW

¼ RwW þ RyY:
A.2. Case Hs�xþ h

In this case, it is easy to see that the same LMI (A.7) is obtained
only replacing Ku by Hs, du by h, and BLBc by BBc . So, it is obtained
that

c � � � �
0 W � � �

ðEBc þ BBchÞ ðABc þ BBcHsÞW W � �
0 Q 1=2CyW 0 I �
0 R1=2

u KuW 0 0 I

2
6666664

3
7777775
> 0: ðA:8Þ

Then, using the same notation that in previous sections where,
EBc þ BBch ¼ Anlxexe þ Bnlrere þ Bhhþ Enle, ABc þ BBcHs ¼ AnlW W þ BnlY Y
þBvV , R1=2

u HsW ¼ R1=2V ¼ RvV , Y ¼ KsW , and V ¼ HsW , the LMI
can be represented as follows:
c � � � �
0 W � � �

Anlxexe þ Bnlrere þ Bhhþ Enle AnlW W þ BnlY Y þ BvV W � �
0 Q 1=2CyW 0 I �
0 RvV 0 0 I

2
6666664

3
7777775
> 0:

ðA:9Þ
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