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Abstract

Min–Max Model Predictive Control (MMMPC) is one of the strategies used to control plants subject to bounded additive uncer-

tainties. The implementation of MMMPC suffers a large computational burden due to the NP-hard optimization problem that has

to be solved at every sampling time. This paper shows how to overcome this by transforming the original problem into a reduced

min–max problem in which the number of extreme uncertainty realizations to be considered is significantly lowered. Thus, the solu-

tion is much simpler. In this way, the range of processes to which MMMPC can be applied is considerably broadened. A simulation

example is given in the paper.
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1. Introduction

Mathematical models, especially control models
which have to be kept simple, can only describe the

dynamics of a process in an approximate way. There

are different approaches for modelling uncertainties

mainly depending on the type of technique used for

designing the controllers. The approach considered here

is that of global uncertainties [5]. In this way, uncertain-

ties will be considered to affect the 1-step ahead predic-

tion equation, i.e. the uncertainties will affect the
prediction capability of the model.

Min–max control techniques have a great computa-

tional burden in common [21,10,19] which limits the

range of processes to which they can be applied. Fur-
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thermore, the computational burden is even greater

when hard constraints are taken into account. Few

applications of Min–Max MPC can be found in the lit-
erature, even for the unconstrained case [9,4]. For fast

dynamics the min–max problem cannot be solved

numerically, and approximate solutions have to be used

[14]. However, these techniques impose great rigidity in

the controller parameters, as well as a certain degree of

approximation error.

Recently, the MMMPC control law, traditionally re-

garded as highly nonlinear, has proven to be piecewise
affine when a quadratic [15] or 1-norm based criterion

[3,8] is used as the cost function. With these results, to-

gether with those obtained when multiparametric math-

ematical programming is applied [3], explicit forms of

the control law can be built. However, the number of

regions in which the state space has to be partitioned

grows with the prediction horizon in a combinatorial

explosion. Thus, storage requirements and searching
time for the appropiate region can be very high for

practical values of the prediction and control horizons.
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A search tree strategy has been proposed to reduce the

searching time in the MPC context [6,20]. If the process

model or the controller tuning parameters change, how-

ever, the computation of the regions has to be done

again. This field continues evolving and new and more

elaborate robust predictive controllers based on multi-
parametric programming have appeared in [17,18].

This paper shows a way of implementing constrained

MMMPC that requires only a fraction of the time re-

quired by usual min–max solvers. The method is based

on transforming the original min–max problem into a

reduced min–max problem whose solution is much sim-

pler. Thus, for many processes in which time constants

are measured in seconds or minutes, the reduced min–
max problem can be solved on line using standard

numerical algorithms. In this paper it is presented a

way to obtain a reduced min–max problem from a can-

didate solution (e.g. the solution of the min–max prob-

lem solved in the previous sampling time). This

reduced problem can be solved in a fraction of the time

required by the original problem.

The paper is organized as follows: Section 2 presents
the standard constrained Min–Max MPC with bounded

global uncertainties algorithm. The efficient implemen-

tation strategy is introduced in Section 3. The procedure

to get a reduced min–max problem equivalent to the

original one is presented in Section 4 and illustrated in

Section 5. Finally, Section 6 presents conclusions and

questions to be addressed in future works.
2. Min–Max MPC with bounded global uncertainties

The objective of MPC control is to compute the fu-

ture control sequence u(t), u(t + 1), . . . , u(t + Nu � 1) in

such a way that the optimal j-step ahead predictions of

the process output y(t + jjt) are driven close to the set

point sequence r(t), r(t + 1), . . . , r(t + N � 1) for the pre-
diction horizon. A cost function J is used to indicate

how well the process follows the desired trajectory. That

cost function depends on the setpoint, process state, pre-

sent and future control signals and uncertainties.

When bounded uncertainties are considered explic-

itly, it would seem that more robust control is obtained

if the controller has tried to minimize the objective func-

tion for the worst situation. Furthermore, if hard con-
straints have to be taken into account the control

sequence will be computed solving the following min–

max problem:

uðxÞ ¼ arg min
u2CðxÞ

max
w2W

Jðw; u; xÞ ð1Þ

where w represents the sequence of future uncertainties,

x the process state and C(x) usually is a convex set which

can be described as {u: Hu 6 Sx + d}. On the other

hand, W ¼ fw 2 RL : h 6 h 6 �hg, where L is usually
N · dim(y) in an input–output description or N · dim(x)

in a state-space approach. Note that a polytopic termi-

nal constraint devised to provide robust stability can

also be included within the constraints Hu 6 Sx + d

(see [7] and references therein). Furthermore, as it is

shown in Section 5, the effect of the uncertainties can
be easily taken into account in the output constraints.

Thus, it is ensured that for all uncertainties values within

the bounds, the constraints would be satisfied. The cost

function of the resulting min–max problem can be writ-

ten as

J sðxÞ ¼ min
u2CðxÞ

max
w2W

Jðw; u; xÞ ¼ min
u2CðxÞ

J 	ðu; xÞ

with

J 	ðu; xÞ ¼ max
w2W

Jðw; u; xÞ ð2Þ

The properties of the min–max problem depend on
the structure and properties of the cost function

J(w, u, x) which in turn is closely related to the model

structure used to predict the future evolution of the

process state. MPC and Min–Max MPC based on linear

prediction models can be formulated either in input–

output description, state space or convolution models

(i.e., FIR and finite step response models) [5]. The re-

sults presented in this paper can be applied to that
descriptions provided that two conditions are fulfilled:


 The prediction equation is an affine function of proc-

ess uncertainties, inputs and state, i.e.

n ¼ Guuþ Gwwþ F xxðtÞ ð3Þ
where n can be either the predictions of process state
or output over the prediction horizon.


 The cost function is a quadratic function of the pre-

dictions and u.

These conditions hold when the bounded additive

uncertainties approach is used. In this approach the

way to model the uncertainties is to assume that all

modelling errors are globalized in a vector of parame-
ters, such that the plant can be described by the follow-

ing family of models:

x̂ðt þ 1Þ ¼ f̂ ðxðtÞ; uðtÞÞ þ wðtÞ ð4Þ

In [5] it is shown that global uncertainties can be related

to other types of uncertainties. The conditions hold for

input–output transfer matrices models (CARIMA or
CARMA), state-space and finite step or impulse re-

sponse [5]. In the case of transfer matrices models, the

state can be considered to be formed by the present val-

ues of process outputs and finite series of the input and

output signals. For finite step or impulse models, the

state can be considered to be formed by the present

value of process output and finite series (normally much

longer than in transfer matrices models) of past inputs.
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Note that the system to be controlled can be either a

linear open-loop system or a linear closed-loop system

(e.g. a linear system with an inner linear feedback gain).

The latter case is preferred whenever the conservative-

ness of the open-loop formulation is a concern.

In the case of transfer function models it is common
to use a linear prediction model like

eAðz�1ÞyðtÞ ¼ z�dBðz�1ÞDuðt � 1Þ þ wðtÞ w 6 wðtÞ 6 w

ð5Þ
with eAðz�1Þ ¼ DAðz�1Þ, D = 1�z�1 being y(t) and u(t) the

output and control sequence of the plant. In this case,

the vector of decision variables in problem (1) would
be composed of the future increments of u(t) over the

control horizon. Note that in this prediction model the

error concept present in CARIMA models (commonly

used in GPC) is extended to incorporate the effect of

modelling uncertainties and disturbances.

State-space models using the bounded additive uncer-

tainties approach can be formulated as

xðt þ 1Þ ¼ AxðtÞ þ BuðtÞ þ Dwðt þ 1Þ
yðtÞ ¼ CxðtÞ

ð6Þ

with w(t) 2 W.

An usual form of J(w, u, x) is a quadratic criterion

given by

Jðw; u; xÞ ¼
XN
j¼1

ðyðt þ j j tÞ � rðt þ jÞÞ2

þ k
XNu

j¼1

ðDuðt þ j� 1ÞÞ2 ð7Þ

where N denotes the cost horizon, Nu is the control hori-

zon, k > 0 is the control effort penalty factor, r(t + j) is
the set point value for time t + j and y(t + jjt) is the pre-

diction of the output made at time t for t + j taking into

account the disturbance w. On the other hand, for the

state-space approach:

Jðw; u; xÞ ¼
XN
j¼1

xðt þ j j tÞTQjxðt þ j j tÞ

þ
XNu

j¼1

uðt þ j� 1ÞTRjuðt þ j� 1Þ ð8Þ

where x(t + jjt) is the prediction of the state for t + j tak-

ing into account w and Qj ¼ QT
j P 0 and Rj ¼ RT

j > 0

are used as weighting parameters. Note that this cost

function allows us the inclusion of a quadratic terminal

cost x(t + N)TPx(t + N) by making QN = P. This termi-
nal cost along with a terminal region constraint are the

ingredients of the stabilizing strategies used in most pre-

dictive controllers [12,1].

Without loss of generality suppose a zero reference. It

can be seen that both cost functions can be rewritten as
Jðw; u; xÞ ¼ uTMuþ 2ðNxþ nðwÞÞT
uþ xTCx

þ 2dðwÞTxþ hðwÞ ð9Þ

Recall the prediction equation (3). In the case of (7)

the matrices of (9) are M ¼ GT
u Gu þ kI , C ¼ F T

x F x, N ¼
GT

u F x, nðwÞ¼GT
u Gww, dðwÞ¼F T

x Gww, hðwÞ¼wTGT
wGww.

On the other hand, for the state-space model: M¼
GT

uQGuþR, C¼F T
xQF x, N¼GT

uQF x, nðwÞ¼GT
uQGww,

dðwÞ¼F T
xQGww, hðwÞ¼wTGT

wQGww, where Q and R
are diagonal matrices

Q ¼

Q1

. .
.

QN

2664
3775; R ¼

R1

. .
.

RNu

2664
3775

When the conditions stated above hold, then the

objective function J is convex on w and u. This implies

that the maximum of J will be attained at one of the

2N·dim(w) vertices of the polytope W [2]. Also, when

C(x) is convex, any local minimizer of J* will be the glo-

bal minimizer [2]. In the following, Ji(u, x) denotes
J(wi, u, x), where wi is the uncertainty extreme realiza-

tion related to vertex i. Thus,

J iðu; xÞ ¼ uTMuþ 2ðNxþ niÞT
uþ xTCxþ 2dT

i xþ hi

where M, N and C are the same matrices as in (9) and ni,

di, hi are equal to n(wi), d(wi), h(wi).
3. Efficient implementation strategy

In this section the main ideas of the efficient imple-
mentation strategy are introduced. This strategy is based

on the reduction of the number of vertices to be ex-

plored in the maximization part of the min–max prob-

lem. Solving such a reduced min–max problem would

involve a much lower computational burden than that

of the original problem. Thus, the range of processes

to which MMMPC can be applied would be considera-

bly broadened.
A main concept is that of active vertices. Note that

the function J 	ðu; xÞ ¼ maxw2W Jðw; u; xÞ is a piecewise

quadratic function of u. Therefore, the u domain can

be divided into different regions C(x)p so that u 2 C(x)p
if the maximum of J is attained for the polytope vertex

wp [5]. As a consequence of this, the minimum of J* for a

given x will be attained in a value u(x) which can be in-

side of a region C (x)p or in the shared boundary of sev-
eral regions. This is illustrated in Fig. 1 for a simplified

min–max problem with Nu = N = 1 and two constraints.

Those vertices related to the regions on which the mini-

mum is attained are called the active vertices.

At any of the active vertices the cost function will be

equal to the optimal cost Js(x). Thus, the following def-

inition can be given:
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Fig. 1. Possible locations of the solution of constrained min–max problem for two quadratic functions: (a) inside a region (b) as in (a) but attained on

an active constraint (c) in the boundary of two regions (d) as in (c) but attained on an active constraint.
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Definition 1. I(x), the set of active vertices is given by

IðxÞ ¼ fi : J iðuðxÞ; xÞ ¼ J sðxÞg ð10Þ
It is easy to see that the solution of (1) is also the solu-

tion of a reduced min–max problem given by

uðxÞ ¼ arg min
u2CðxÞ

max
i2IðxÞ

J iðu; xÞ ð11Þ

This situation is illustrated in Fig. 2. As the number of

active vertices is generally much lower than the total

number of vertices [16], problem (11) can be solved with

little computational burden. If the process state changes

from x to x + Dx the active set might also change so that
I(x + Dx)6¼I(x). Although I(x + Dx) cannot be obtained

without solving the min–max problem for x + Dx, it will

be shown in this paper that a conservative estimation of

I(x + Dx) can be efficiently computed using I(x) and Dx.

This estimation, which will be denoted as Ie(x + Dx),
(a) (b)

Fig. 2. Two min–max problems with the same solution: (a) full min–

max with all curves; (b) reduced min–max with only curves related to

active vertex intersection.
satisfies that I(x + Dx) ˝ Ie(x + Dx). Thus, the reduced

min–max problem (11) for x + Dx can be substituted
by the following reduced problem:

uðxþ DxÞ ¼ arg min
u2CðxÞ

max
i2IeðxþDxÞ

J iðu; xþ DxÞ ð12Þ

which is also equivalent to the original min–max prob-

lem. As the number of vertices included in Ie will be a

small fraction of the whole 2N·dim(w) vertices, the com-

putational burden will be accordingly much lower.
The procedure to obtain Ie will be given in the next

section. A preliminary proposition that characterizes

the change in a quadratic function Ji(u,x) when its

parameters are perturbed is stated in the following:

Property 1. For a given process state x and uc + Duc, and

for any quadratic function Ji

J iðu; xÞ ¼ uTMuþ 2ðNxþ niÞT
uþ xTCxþ 2dT

i xþ hi

it is true that

J iðuc þ Duc; xÞ ¼ J iðuc; xÞ þ DuT
cMDuc þ 2bT

i Duc

with bi = Muc + Nx + ni.
4. Online estimation of I(x)

This section shows how to build an estimation of the
set of active vertices for a given process state by means

of a suboptimal candidate solution. With this estimation

of I(x), which is denoted by Ie(x), the min–max problem
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to be solved at sampling time t could be replaced by an

equivalent reduced min–max problem. The necessary

steps to compute such an estimation are given by


 First, it is necessary to obtain a candidate solution

uc, which should be close to the optimal solution.
In order to fulfill this requirement a number of pro-

cedures could be followed. Here it is suggested to use

the optimal solution found in the previous sampling

time, u(x(t � 1)). Many of the strategies used to pre-

serve stability in constrained MPC, which can be

used within the min–max strategy, yield control sig-

nals u(x(t � 1)) that can be used to obtain a feasible

control action for x(t) [7,12]. Nevertheless, if
u(x(t � 1)) is unfeasible at sampling time t this

requirement can be fulfilled solving the following

QP problem:

û ¼ arg min knk2

s:t:

Hn 6 Sxþ d � Huðxðt � 1ÞÞ
ð13Þ

where H, S and d are the constraints matrices and

vector of the min–max problem. Then, the candidate

solution would be uc = u(x(t � 1)) + n. Alternatively,

in (13) a shifted version of u(x(t � 1)) can be used,

as it could be a better approximation for u(x(t)) be-
cause of the receding horizon strategy.


 Compute a tight ellipsoidal bounding for Duc, where

uc + Duc is the optimal solution. A procedure to com-

pute such ellipsoidal bounding is given in Section 4.1.


 Taking into account the ellipsoidal bounding, reject

as many vertices as possible using the criterion

given in Section 4.2. Use the remaining vertices to

form Ie(x), which is a conservative estimation of
I(x).

4.1. Ellipsoidal bounding

In the following, a procedure to find an ellipsoidal

bounding of Duc is given. First, for a given process state

x = x(t) choose the following set:

I	 ¼ Iðxðt � 1ÞÞ [ fn vertices with higher J iðuc; xÞg
ð14Þ

where n is a design parameter closely related to the de-

gree of conservatism of the bounding of Duc. A very
small n (n 6 2) leads to a rather conservative bounding

of Duc, which ultimately results in a too conservative

estimation of the active vertex set. On the other hand,

the authors have found that it is enough to make n equal

to a small fraction of the total number of vertices (about

0.005% or less if the total number of vertices is very

high). Furthermore, no improvement has been observed

by making n much greater.
Due to the optimality of uc + Duc it is true that

J iðuc þ Duc; xÞ 6 J 	ðuc þ Duc; xÞ 6 J 	ðuc; xÞ 8i 2 I	

ð15Þ
Let ki P 0,

P
i2I	ki ¼ 1. Then it holds thatX

i2I	
kiJ iðuc þ Duc; xÞ 6 J 	ðuc; xÞ ð16Þ

Applying Property 1 on the left side of (16):

DuT
cMDuc þ 2

X
i2I	

kib
T
i Duc þ

X
i2I	

kiJ iðuc; xÞ � J 	ðuc; xÞ 6 0

ð17Þ
On the other hand, the constraints u 2 C(x) can be

rewritten as

aT
mu 6 brm; m ¼ 1; . . . ; nr

where nr is the number of constraints in problem (1).

The optimal solution is a feasible one, thus it is true that

aT
mðuc þ DucÞ � brm 6 0

Let bm P 0, m = 1, . . . , nr be scalars. It can easily be

seen that

2
Xnr
m¼1

bmðaT
mðuc þ DucÞ � brmÞ 6 0 ð18Þ

Furthermore, adding inequalities (17) and (18), it is also

true that

DuT
cMDuc þ 2

X
i2I	

kib
T
i Duc þ

X
i2I	

kiJ iðuc; xÞ

� J 	ðuc; xÞ þ 2
Xnr
m¼1

bmðaT
mðuc þ DucÞ � brmÞ 6 0 ð19Þ

which can be expressed as

DuT
cMDuc þ 2

X
i2I	

kibi þ
Xnr
m¼1

bmam

 !T

Duc

þ
X
i2I	

kiJ iðuc; xÞ � J 	ðuc; xÞ þ 2
Xnr
m¼1

bmðaT
muc � brmÞ 6 0

ð20Þ

Inequality (20) describes an ellipsoid which can be

rewritten as

ðDuc � aÞTAðDuc � aÞ 6 1 ð21Þ
where

A�1 ¼
X
i2I	

kibi þ
Xnr
m¼1

bmam

 !T

M�1
X
i2I	

kibi þ
Xnr
m¼1

bmam

 !0@
þ J 	ðuc; xÞ �

X
i2I	

kiJ iðuc; xÞ � 2
Xnr
m¼1

bmðaT
muc � brmÞ

!
M�1

ð22Þ
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a ¼ �M�1
X
i2I	

kibi þ
Xnr
m¼1

bmam

 !
Ellipsoid (21) bounds Duc, and its size is related to some

extent to ki, bm. Thus, it makes sense to find such ki, bm

which makes (21) as small as possible. This can be

achieved solving the following QP problem:

min
X
i2I	

kibi þ
Xnr
m¼1

bmam

 !T

M�1
X
i2I	

kibi þ
Xnr
m¼1

bmam

 !

�
X
i2I	

kiJ iðuc; xÞ � 2
Xnr
m¼1

bmðaT
muc � brmÞ

s:a: ki P 0; i 2 I	

bm P 0; m ¼ 1; . . . ; nrX
i2I	

ki ¼ 1

The optimal values of ki, bm allow us to define the least

conservative ellipsoidal bounding of Duc, which will be

used in the exclusion criterion given in Section 4.2.

Finally it is noteworthy that the ellipsoid may not

completely lay within the feasible space of problem

(1). However, this is not a problem, it just leads to

greater conservatism in the estimation of I(x).

4.2. Exclusion criterion

In this section an exclusion criterion devised to reject

the majority of vertices not in I(x) is presented. Suppose

that k 2 I(x), then from the min–max concept:

J iðuc þ Duc; xÞ 6 Jkðuc þ Duc; xÞ 8i ð23Þ
Let ci be scalars satisfying ci P 0 and

P
ci ¼ 1, where

i 2 I*. Then it is true thatX
i2I	

ciJ iðuc þ Duc; xÞ 6 Jkðuc þ Duc; xÞ ð24Þ

Applying Property 1,

X
i2I	

ciJ iðuc; xÞ � Jkðuc; xÞ 6 2 bk �
X
i2I	

cibi

 !T

Duc ð25Þ

Furthermore, it is true thatX
i2I	

ciJ iðuc; xÞ � Jkðuc; xÞ 6 2bT
k Duc

þ max
Duc 2E

X
i2I	

�2cib
T
i Duc ð26Þ

where E is the ellipsoidal bounding of Duc, computed as

described in Section 4.1. This bounding can be expressed

as

E ¼ fDuc : ðDuc � aÞTAðDuc � aÞ 6 1g ð27Þ
The maximization problem in (26) can be solved analyt-

ically, thus (26) can be rewritten as
X
i2I	

ciJ iðuc; xÞ � Jkðuc; xÞ

6 2bT
k Duc þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2I	

cibi

 !T

A�1
X
i2I	

cibi

 !vuut
� 2

X
i2I	

cib
T
i a ð28Þ

Furthermore, grouping terms it yieldsX
i2I	

ciðJ iðuc; xÞ þ 2bT
i aÞ

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2I	

cibi

 !T

A�1
X
i2I	

cibi

 !vuut
6 Jkðuc; xÞ þ 2bT

k Duc ð29Þ

Inequality (29) describes a condition that must be ful-

filled by all vertices k 2 I(x) and any valid ci, including

those ci that maximize the left side of (29). On the other

hand, it can easily be seen that if a given vertex k does

not satisfy (29) then k 62 I(x). Thus, this fact can be

exploited to reject many of the vertices which are not ac-

tive for x. These values of ci that maximize the left side
of (29) can be found solving:

min
ci

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2I	

cibi

 !T

A�1
X
i2I	

cibi

 !vuut
�
X
i2I	

ciðJ iðuc; xÞ þ 2bT
i aÞ

s:a: ci P 0; i 2 I	X
i2I	

ci ¼ 1

ð30Þ

This is clearly a convex problem which can be solved

using standard algorithms.

The computed values of ci together with those ki and

bi found when computing the ellipsoidal bounding can

be used to reject non active vertices. Taking into account

(25) an online estimation of I(x) can be obtained reject-
ing any vertex k that fulfills:

X
i2I	

ciJ iðuc; xÞ � Jkðuc; xÞ > max
Duc2E

2 bk �
X
i2I	

cibi

 !T

Duc

ð31Þ
which can be expressed asX
i2I	

ciJ iðuc; xÞ � Jkðuc; xÞ

> 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bk �

X
i2I	

cibi

 !T

A�1 bk �
X
i2I	

cibi

 !vuut
þ 2 bk �

X
i2I	

cibi

 !T

a ð32Þ
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The set Ie(x), i.e. the conservative estimation of I(x), is

then built from all vertices not rejected with (32). Finally

it is noteworthy that computing the ellipsoidal bounding

as described in Section 4.1 and the values of ci obtained

solving (30) requires solving a QP problem and a tracta-

ble convex problem only once per sampling time. The
percentage of rejected vertices is so high that for the

usual values of N the whole procedure (i.e. computing

the ellipsoidal bounding and the optimal values of ci,
testing all vertices and solving the reduced min–max

problem) takes only a fraction of the time required to

solve the complete min–max problem.
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ig. 3. Simulation example, top to bottom: process output, control

ignal and control moves.
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Fig. 4. Number of vertices included in Ie(x).
5. Simulation examples

The results obtained in Section 4 will be illustrated

with simulation examples. Two examples are given, first

a SISO process described by an input–output model and

then a MIMO process modelled using a state-space

description.

5.1. SISO system

This example uses a prediction model for a first order

system, which is one of the more common choices for a

wide class of industrial processes. The integrated uncer-

tainties prediction model used is given by

ykþ1 ¼ 1:9048yk � 0:9048yk�1 þ 0:0129Duk þ wkþ1 ð33Þ
It describes the dynamics of a heat exchanger [14]. The

efficient implementation of Constrained Min–Max

MPC presented here has been applied with the following

controller parameters: Nu = 10, N = 10, k = 1 and the

expected uncertainty values are �0.05 6 w(t) 6 0.05.
Constraints on process output, control signal and con-

trol moves have been taken into account. Their values

are: �0.5 6 y 6 1.5, 0 6 u 6 8 and �0.75 6 Duk 6 0.75.

The reference is set to 1, and the initial conditions are

yk = yk�1 = 0 . The min–max problem has been solved

using standard solver provided with the fmincon func-

tion of Matlab. Fig. 3 shows the process output, control

signal and control moves. In the simulation a random
disturbance has been added to the plant output to sim-

ulate more realistic conditions. On the other hand, at

sampling time t = 61 an stationary step disturbance sud-

denly hits the process output, causing the great devia-

tion from the set point seen in the output plot. This

step disturbance disappears at t = 101. It can be seen

in Fig. 3 that control signal and control moves become

saturated when the output is far from the set point.
The number of vertices included in Ie(x) at each sam-

pling time is shown in Fig. 4. In this example, the

parameter n in (14) is set to 5. It can be seen that most

of the 1024 vertices are rejected every sampling time. In

fact, on the average 99.35% of the vertices are rejected.
F

s

5.2. MIMO system

As stated in section 2, the results presented in this

paper are not constrained to SISO systems and may be

used with different types of process descriptions. To

illustrate this, consider the two-tank network shown in

Fig. 5. For this process, liquid streams flow into tanks
1 and 2 at respective volumetric rates F1 and F2; the out-

flow from each tank is assumed to be proportional to the

respective liquid levels h1 and h2 in each tank. The liquid

leaving tank 2 is split into two with a fraction F, exiting,

and the remainder R pumped back to the first tank.

Thus, this is a two-input, two-output system, with the

flow rates of the two inlet streams as the two inputs,

and the liquid level in each tank as the two output var-
iables.



Fig. 5. A two-tank network.
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Fig. 6. Liquid levels and inlet flows for the MMMPC (tank 1 solid

plot, tank 2 dashed plot).

1 Note that all the results given in Tables 1 and 2 were obtained

using a set I* of 30 vertices.
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Let the section for tank 1 be 3 m2 and that of the sec-

ond tank 2 m2. Moreover, assume that the constants of

proportionality are identical and given as a1 = a2 = 0.5
m2 min�1 and that 40% of the amount of liquid leaving

tank 2 is recycled back to tank 1. With these assump-

tions the following continuous time state-space model

can be obtained (see Chapter 20 of [13] for details):

_x ¼
� 0:5

3
0:2
3

0:5
2

� 0:5
2

" #
xþ

1
3

0

0 1
2

" #
u

y ¼
1 0

0 1

� �
x

ð34Þ

A discrete time model has been obtained from (34)

sampling at 0.2 min using a zero-order holder. Fig. 6
shows the results of a min–max MPC applied to the

two-tank model. The set-point for the liquid level of

each tank was 0.4 and 0.5 m respectively. The prediction

and control horizons were N = 10 and Nu = 4 respec-

tively. Note that being this a two-input, two-output sys-

tem the number of vertices to be considered is 220

instead of 210. Furthermore, the number of decision var-

iables in the optimization problem is doubled. The
weighting matrices were

Q ¼
1 0

0 1

� �
; R ¼

12 0

0 12

� �
An uncertainty of ±0.02 m is considered to affect
both liquid levels. Note that a random noise of that

amplitude has been added to the liquid levels in the sim-
ulation. Finally, in the simulation the following con-

straints were taken into account when computing the

control signal:

0

0

� �
6 xðkÞ 6

0:6

0:7

� �
ð35Þ

0

0

� �
6 uðkÞ 6

0:5

0:5

� �
ð36Þ

�0:05

�0:05

� �
6 DuðkÞ 6

0:05

0:05

� �
ð37Þ

In this example the set I* defined in Section 4.1 was com-

puted by making n such that the total number of vertices

in I* was always 30.

This example will be used to discuss how the increas-

ing horizons affect the number of rejected vertices and

the relative speed-up obtained, as well as the total num-
ber of floating point operations. Table 1 shows the per-

centage of rejected vertices when the prediction horizon

takes progressively higher values. Note that as the pre-

diction horizon grows, the percentage also grows. This

suggests that this strategy will perform better as the pre-

diction horizon gets higher.

The overall computational burden of the proposed

strategy also includes all the floating operations needed
to compute the set Ie(x), i.e. the online estimation of the

active vertices set. Table 2 shows the number of floating

operations (as counted by Matlab) needed to compute

the full min–max problem and the proposed strategy.

In the latter case all additional computations to obtain

Ie(x) are taking into account. 1 For both cases, the



Table 1

Percentage of rejected vertices (minimum, average and maximum) and retained vertices (maximum only) for different values of the prediction horizon

(N) in the simulation example of Section 5.2

N Total vertices Rejected (min) % Rejected (avg) % Rejected (max) % Ret. (max)

4 256 96.48 99.49 99.609 9

5 1024 98.7 99.8 99.9 13

6 4096 98.63 99.4 99.97 56

7 16,384 98.63 99.2 99.99 225

8 65,536 99.59 99.73 99.998 272

9 262,144 99.656 99.77 99.999 905

10 1,048,576 99.71 99.8 99.999 3037

Table 2

Number of floating point operations (minimum, average and maximum) for different values of the prediction horizon (N) in the simulation example

of Section 5.2

N Full (min) Full (avg) Full (max) Prop. (min) % Prop. (avg) % Prop. (max)

4 3.09 · 106 4.29 · 107 5.87 · 107 4.55 · 107 4.61 · 107 4.66 · 107

5 2.06 · 108 2.7 · 108 4.404 · 108 5.85 · 107 5.94 · 107 6.02 · 107

6 1.82 · 108 1.803 · 109 4.456 · 109 8.261 · 107 8.904 · 107 1.009 · 108

7 2.967 · 109 9.175 · 109 1.835 · 1010 1.483 · 108 2.272 · 108 3.593 · 108

8 2.546 · 109 4.281 · 1010 8.198 · 1010 4.082 · 108 4.519 · 108 5.541 · 108

9 7.545 · 1010 2.225 · 1011 3.458 · 1011 1.597 · 109 1.907 · 109 2.164 · 109

10 2.374 · 1011 1.313 · 1012 2.1 · 1012 7.163 · 109 8.724 · 109 9.793 · 109
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Fig. 7. Average speed-up for different values of the prediction horizon.

T. Alamo et al. / Journal of Process Control 15 (2005) 149–158 157
min–max problem was solved using the same numerical

solver provided with fmincon function of Matlab. Fig. 7

shows the average speed-up for each value of the predic-

tion horizon. It can be seen that when the number of

vertices is small (i.e., N small) the speed-up is not very

high. This means that the computations needed to ob-

tain Ie(x) overcome the number of operations needed
to solve the full min–max problem. As N grows higher,

the speed-up increases clearly. Again, this means that

the proposed strategy performs better as the prediction

horizon grows.
6. Conclusions

An efficient implementation of the Constrained

MMMPC control law has been presented. The results

presented in this paper broaden the range of processes

to which, in practice, MMMPC can be applied. The

strategy proposed in this work ensures much lower com-

putational burden in most cases. This is accomplished

by reducing the number of uncertainty extreme realiza-

tions to be considered, from 2N·dim(w) to only a small
fraction of them.

However, many open questions remain to be ad-

dressed. It is worth investigating how to extend this ap-

proach to other formulations of Constrained Min–Max

MPC such as quasi-min–max methods [11] and closed

loop formulations [19,3]. Also, techniques such as

branch and bound could be applied to obtain nearly

optimal solutions to the reduced min–max problem with
lesser computational burden.
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