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Teodoro Alamo�, David Muñoz de la Peña��, Ignacio Alvarado���,
and Daniel Limon����
Departamento de Ingeniería de Sistemas y Automática, Escuela Superior de Ingenieros Universidad de Sevilla,
Av. Camino de los Descubrimientos s/n, Sevilla 41092, Spain

The paper by J.V. Salcedo and M. Martı́nez addresses
the problem of obtaining a robust generalized pre-
dictive control (GPC) for the control of uncertain
systems. The uncertainty structure of the plant has
been modelled to be linear fractional. The proposed
synthesis strategy is based on the formulation of the
design problems by means of linear and/or bilinear
matrix inequalities (LMIs and/or BMIs). The selec-
tion of the parameters of the GPC becomes a non-
convex problem. The authors use a multi-objective
genetic algorithm to address the non-convex optimi-
zation issue.

In many situations, the exact and deterministic
solution of a robust design problem is intractable from
a computational point of view (see e.g. [11]). Therefore,
it is not surprising that the authors finally resort to the
use of a genetic algorithm to obtain the design para-
meters of the proposed robust controller. In this dis-
cussion paper we briefly recall different strategies to
circumvent the unaffordable computational require-
ments often associated to robust design problems.

If � represents the set of possible design para-
meters, a worst-case approach to the robust synthesis
of controllers consists in obtaining �2� such that
the corresponding closed-loop system satisfies a set
of specifications for every possible realization of the
uncertainty. Generally, the uncertainty is assumed to
belong to a bounded set �. If the set � exhibits an
infinite cardinality, the corresponding worst-case
design problem can be often formulated as a semi
infinite programming problem. There exists, however,
a good number of vertex results that, when applicable,
allow one to affirm that in order to guarantee robust
satisfaction of the constraints of the problem, only
a specially chosen subset of finite cardinality of �
has to be considered. For example, the celebrated
Karitonov’s theorem is only one of the vertex results

that can be used to study stability when interval
uncertainty affects the coefficients of a given char-
acteristic polynomial (see [7] for details). Other vertex
results are applicable in presence of interval matrix
uncertainty [3,17,18,23,31]. However, the number of
extreme realizations of the uncertainty required to
guarantee robust satisfaction of the constraints grows
exponentially with the dimension of the uncertain
interval matrix.

In the case when no vertex result is applicable, or
when the required number of extreme realizations
is too large, other strategies have to be taken into
account.As it ismentioned in the paper by J.V. Salcedo
and M. Martı́nez, it is possible to bound the effect of
the uncertainty bymeans of scaling techniques.We cite
here the classical scaling techniques from�-theory [32],
and those used in the realm of robust optimization
[9,10]. See also the review paper on LMI relaxations
[24]. All these techniques provide sufficient conditions
for robustness.

In addition to the fact that worst-case control design
problems are often intractable from a computational
point of view, they have proved to yield conservative
results. An alternative to worst-case design is the
randomized approach to robust control [25,26,29]. The
use of randomization is based on the notion of "-
level probabilistic solution [8]. Given a probabilistic
measure Pr� on the uncertainty set �, we say that the
design parameter � is an "-level probabilistic solution if
the probability that the closed-loop system corre-
sponding to � violates the constraints of the problem
is not greater than ". This randomized approach is of
practical relevance because in many industrial pro-
cesses and applications, allowing a (small) probability
of failure allows one to considerably reduce the pro-
duction costs. For example, consider a process inwhich
the cost of rejecting a reduced number of products that
do not satisfy the specifications is much smaller than
the cost of running a process inwhich the probability of
failure is minimized.

Resorting to the notion of "-level probabilistic
solution not only provides less conservative results
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than the worst-case approach, but it also reduces the
complexity of the design problem. Under the assump-
tion that the robust constraints of the problem depend
in a convexway on the design parameter �, it is possible
to obtain an "-level probabilistic solution in poly-
nomial time (provided that the original robust problem
is strictly feasible) [25].

There exists a good number of efficient strategies to
obtain a probabilistic solution to a convex robust design
problem. For example, we mention here the sequential
algorithms based on stochastic gradient [15,16,21] or
ellipsoid iterations [19]; see also [4,14] for other classes
of sequential algorithms. A non-sequential strategy,
denotedas the scenario approach, has been introduced in
[12,13]. In this approach, the original robust control
problem is reformulated in terms of a single convex
optimization problem with sampled constraints which
are randomly generated. See also [1] and [22].

A classic approach for not necessarily convex
uncertain problems is based upon statistical learning
theory, see [27] and [28] for further details. In parti-
cular, the use of this theory for feedback design of
uncertain systems has been initiated in [29]; subsequent
work along this direction include [30] and [20].
Statistical learning theory states that it is possible to
obtain an "-level probabilistic solution to a robust non-
convex optimization problem by means of a single
optimization problem with sampled constraints ran-
domly generated. An a priori upper bound of the
number of samples required to guarantee that the
obtained solution is an "-level probabilistic solution
with probability no smaller than 1� � can be obtained
using the results of this theory. See [2] for recent results
on this topic.

We conclude that the use of randomization not only
provides a way to circumvent the possible non-finite
cardinality of the uncertain set �, but it also serves to
reduce the conservativeness of the results obtained
with a worst-case robust design. Extensions of the
paper by J.V. Salcedo andM.Martı́nez could be easily
obtained by the use of statistical learning theory. The
GPC design parameters could be obtained by means
of the solution of a non-convex optimization problem
subject to constraints randomly generated. It would
be also interesting to consider the possibility of
formulating the closed-loop performance specifica-
tions without using Lyapunov functions. As it is
shown in [6] and references therein, this allows one to
greatly reduce the number of decision variables. The
resulting non-convex optimization problem stemming
from the use of randomization and the formulation
of the constraints without using Lyapunov functions
could be solved by means of non-smooth optimiza-
tion [5,6].
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Final Comments by the Authors
J.V. Salcedo and M. Martı́nez

The authors think that some commentsof the discussion
by VanAntwerp and Braatz must be clarified. First, the
satisfaction of constraints on the manipulated and state
variables is not taken into account in the paper, and also
any comment about them is not present. However,
constraints can be easily incorporated following similar
ideas of work [1] as matrix inequalities, which is treated
in detail in the authors work [2].

Second, the mass-spring example requires a com-
putation time of 300� 2 hr. However, the problem
solved is not a standard problem of minimization
subject to bilinear and linear matrix inequalities
(BMIs and LMIs) regarding multiple objectives. Here
a multiobjective optimization problem is solved [see
Eq. (33) in the paper] with two objectives:

� Maximization of uncertainty range of K.
� Minimization of 1-norm of reference/output

channel.

The solution to this problem is not a single con-
troller, it is an approximation to the optimal Pareto

front (see Fig. 4 in the paper) composed by a big
number of controllers. Each controller in the Pareto
front is optimal in the sense that the uncertain range is
maximized given a certain level of 1-norm, or con-
versely, the 1-norm is minimized given a certain
uncertainty range.

In each generation (300 in total) for a population of
2000 generalized predictive control (GPC) controllers,
the set of matrix inequalities is checked for every GPC.
This explains the computation time of one generation.
The big number of generations is required to reach an
approximation of Pareto front.
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