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a b s t r a c t

This paper focuses on the design of a tube-based Model Predictive Control law for the control of
constrained mobile robots in off-road conditions with longitudinal slip while ensuring robustness and
stability. A time-varying trajectory tracking error model is used, where uncertainties are assumed to be
bounded and additive. The robust tube-based MPC is compared with other motion control techniques
through simulation and physical experiments. These tests show the satisfactory behavior of the presented
control strategy.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Mobile robotics comprises an important field of application
for many control techniques, mainly those related to handle con-
straints (i.e., physical limitations of actuators, narrow workspaces,
etc.), and uncertainties (i.e., unmodeled dynamics, simplifiedmod-
els, noisy measurements, etc.). Model Predictive Control (MPC) is a
popular control technique to deal with constrained systems [1–3].
However, in order to tackle uncertainty, robust MPC formulations
such asMin–MaxMPC [4], or feedbackMPC [5]must be considered.

In addition, another fundamental factor that can affect the per-
formance of the motion of off-road mobile robots is the slip effect.
Slip induces traction/velocity loss during the robot motion, which
can adversely influence the mobility and controllability [6,7]. Slip
can be presented in lateral and longitudinal directions. In the case
of wheeled robots, lateral slip occurs due to the deformation of
the pneumatic tire surface and large centrifugal force [8]. Longi-
tudinal slip comes from pneumatic tire compression due to load
on the robot. In the case of tracked robots, lateral slip is only pre-
sented at high velocity turns and it only depends on centrifugal
force [9,10]. Longitudinal slip is mainly caused by the track/soil in-
teraction, such as the sinkage effect. This produces a bulldozing
phenomenon that makes the robot sinks in the soil (particularly
on sandy soils) [6,10].
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In the past few years, some research efforts have been devoted
to the application of predictive control inmobile robotics and some
of them related to off-road robots. For instance, in [9], the authors
use an MPC controller to enable both anticipation of approaching
curvature and to compensate from lateral slip phenomena for path
tracking control of an agricultural vehicle. In [11], anMPC is applied
to the trajectory tracking problem. The control law is analytically
derived,which permits its application to a physicalmobile robot. In
order to avoid vehicle slip, velocity and acceleration are bounded.
The work [12] presents a predictive strategy that permits to avoid
unexpected static obstacles in the robot environment. For the
purpose of MPC real-time implementation, a neural network was
trained. A Smith-predictor-based generalized predictive controller
is discussed in [13]. This control strategy permits dealing with
dead-time uncertainties related to a mobile robot control motion.

Generally, the main issue of robust MPC strategies, which
sometimes prevent its physical application, is related to the
high computation burden [3,14]. Recently, an efficient theoretical
concept, called ‘‘tube-based MPC’’, has been applied to robustify
MPC [15,16]. The term tube-based refers to those control
techniques whose objective is to maintain all the possible
trajectories of an uncertain system inside a sequence of admissible
regions. These regions are determined by taking constraints
satisfaction into account. In the MPC context, the possible
trajectories form a sequence of sets in the state space, which is the
admissible set for each step within the prediction horizon.

The main contribution of this paper is the adaptation and
application of a robust tube-based MPC strategy to the mobile
robotics field. From the theoretical point of view, an extension
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of tube-based predictive control to time-varying systems using
reachable sets is provided. In this case, a trajectory tracking error
model of a mobile robot in slip conditions is considered. In order
to ensure stability, Linear Matrix Inequalities (LMI) formalism
is employed to determine a Lyapunov function constituting the
terminal cost, and a terminal robust positively invariant set
following the ideas of Blanchini [17], and Kolmanovsky and
Gilbert [18] is also calculated. Finally, the robust tube-based MPC
has been compared to other motion control techniques through
simulation and off-road physical experiments. These tests show
the satisfactory behavior of the suggested control strategy and
the efficient real-time execution. In the physical experiments, the
visual odometry approach has been used for robot localization
purposes.

This paper is organized as follows: Section 2 presents the
problem statement. The control objective and the robust tube-
based MPC control law are stated in Section 3. Section 4 shows
a comparison of the proposed controller with other motion
control techniques through simulation and physical experiments.
Finally, Section 5 deals with conclusion and future research.
Videos related to the physical experiments are available at
http://www.ual.es/personal/rgonzalez/videosMPC.htm.

2. Problem statement

In this section, the time-varying trajectory tracking errormodel
of a mobile robot in slip conditions is considered. This model is
discretized and an additive uncertainty term has been included.

Trajectory tracking consists in the problem in which a robot
must follow a reference or virtual mobile robot representing the
desired positions and velocities [19]. Hence, the objective is to find
a feedback control law such that the error between the desired
location and the real location of the mobile robot approaches zero
(regulation problem).

These errors are expressed in the real robot frame asex(t)
ey(t)
eθ (t)


=

 cos(θ sl(t)) sin(θ sl(t)) 0
− sin(θ sl(t)) cos(θ sl(t)) 0

0 0 1

 xrf (t) − xsl(t)
yrf (t) − ysl(t)
θ rf (t) − θ sl(t)

 ,

(1)

where t ∈ R+ is the continuous time, ex ∈ R is the longitudinal
error, ey ∈ R is the lateral error and eθ ∈ R is the orientation error.
The rest of terms are defined in what follows.

In this work, the reference robot is defined by the kinematic
model of a differential-drive robot [20]

ẋrf (t) =
v
rf
r (t) + v

rf
l (t)

2
cos θ rf (t),

ẏrf (t) =
v
rf
r (t) + v

rf
l (t)

2
sin θ rf (t), (2)

θ̇ rf (t) =
v
rf
r (t) − v

rf
l (t)

b
,

where [xrf yrf θ rf
]
T

∈ R3 represents the location (position and ori-
entation) of the reference mobile robot, vrf

r ∈ R+ and v
rf
l ∈ R+ are

the reference linear velocities of right and left wheels, respectively,
and b ∈ R is the distance between the wheel centers.

Assumption 1. Assume that reference robot wheel velocities
are known positive (vrf

r > 0, vrf
l > 0) and bounded (vrf

r ∈

[v
rf ,m
r , v

rf ,M
r ], v

rf
l ∈ [v

rf ,m
l , v

rf ,M
l ]).
On the other hand, the real robot ismodeled taking into account
an extended kinematic model where some terms related to
longitudinal slip appear. Such kinematic model is given by [10,21]

ẋsl(t) =
vsl
r (t) + vsl

l (t)
2

cos θ sl(t),

ẏsl(t) =
vsl
r (t) + vsl

l (t)
2

sin θ sl(t), (3)

θ̇ sl(t) =
vsl
r (t) − vsl

l (t)
b

,

where [xsl ysl θ sl
]
T

∈ R3 represents the location of themobile robot,
and

vsl
r (t) = vr(t)


1 − ir(t)


,

vsl
l (t) = vl(t)


1 − il(t)


, (4)

where vsl
r ∈ R and vsl

l ∈ R are the linear velocities taking into
account slip effects, vr ∈ R and vl ∈ R are the linear velocities of
the right and left wheels, respectively, and ir ∈ R+ and il ∈ R+ are
the terms representing the longitudinal slip component. Note that,
by definition, ir , il ∈ [0, 1), for details see [6,21].

Assumption 2. It is assumed that the real mobile robot moves at
low velocities (≤2 (m/s)).

Remark 1. Note that from Assumption 2, lateral slip and forces
arising from dynamic effects are neglected. As stated in [10,22],
lateral slip is zero for straight-line motions and it can be neglected
when the vehicle turns ‘‘on the spot’’ or at low velocities. However,
longitudinal slip is an unavoidable effect of the robot-terrain
interaction [6].

As shown in [21], differentiation of Eq. (1) with respect to time
and defining the following virtual control signals for linearization
purposes

u1(t) = −vsl(t) + vrf (t), (5)

u2(t) = −θ̇ sl(t) + θ̇ rf (t), (6)

where vsl
= (vsl

r + vsl
l )/2 is the linear velocity of the robot taking

into account slip effects and vrf
= (v

rf
r +v

rf
l )/2 is the linear velocity

of the reference. Previous process leads to the following linear,
time-varying, discrete-time system

e(k + 1) = Aγ (k)e(k) + Bdu(k) + w(k), (7)

where k ∈ Z+ is the discrete time, e = [ex ey eθ ]
T

∈ R3 is
the current state (error), u = [u1 u2]

T
∈ R2 is the current input

(see Remark 2), and w is a bounded additive uncertainty satisfying
w ∈ W , whereW is a polytope in the state spaceR3 (see Remark 3).
The matrices Aγ and Bd are defined as

Aγ (k) =

 1 ϵ(k) 0
−ϵ(k) 1 ρ(k)

0 0 1


, Bd =

Ts 0
0 0
0 Ts


, (8)

where ϵ = Ts


(1−īr )v

rf
r −(1−īl)v

rf
l

b


and ρ = Tsvrf , Ts ∈ R+ is the

sampling time, and īr ∈ R+ and īl ∈ R+ are the nominal slip of
each wheel (see Remark 4). For sake of notational simplicity, the
dependence of Aγ on k is omitted.

From Assumption 1, γ = [v
rf
r v

rf
l ]

T
∈ R2 is a time-varying

vector such that γ (k) ∈ Γ , ∀k ∈ Z+, where Γ ⊆ R2 is a polytope.
For any admissible realization of parameter γ ∈ Γ , a dynamic
matrix Aγ is determined. It follows that Aγ ∈ A , with A being
a polytope in R3×3 that represents the dynamic system matrix.

http://www.ual.es/personal/rgonzalez/videosMPC.htm


R. González et al. / Robotics and Autonomous Systems 59 (2011) 711–726 713
Remark 2. Note that according to (5)–(6), the linear velocities for
each wheel are obtained as

vr(t) =
v
rf
r (t) − u1(t) −

b
2u2(t)

1 − ir(t)
, (9)

vl(t) =
−v

rf
l (t) + u1(t) −

b
2u2(t)

−1 + il(t)
, (10)

where vr ∈ [vm
r , vM

r ] and vl ∈ [vm
l , vM

l ]. This leads to bounds
on the space of u, which are obtained from the constraints on
vr , vl, ir , il, v

rf
r , v

rf
l .

Remark 3. The set W ⊆ R3 represents the uncertainty affecting
the state at each sampling instant. This uncertainty bounds the
mismatch between the continuous-time non-linear trajectory
tracking error model and the discrete-time linear model, the
noise in the slip estimation, and the uncertainty in the robot
localization. In this case, such mismatch has been estimated
simulating random input values to both models. Furthermore, the
setW has been enlarged to take into account both the noise in the
slip estimation and the uncertainty in the robot localization based
on physical experiments (estimating the deviation between the
robot localization and the ground-truth through several physical
experiments).

Remark 4. Notice that the nominal slip in the model is used, since
the real values of ir and il are not known for the predictions.

Finally, the states and inputs are subject to the following
constraints

e(k) ∈ E, u(k) ∈ U, (11)

where E ⊆ R3 and U ⊆ R2 are polytopes that contain the origin.
Recall that state and input constraints represent the physical
limitations such as narrow spaces of operation and saturations on
the actuators of the problem.

2.1. Definitions

A polyhedron is the (convex) intersection of a finite number
of open and/or closed half-spaces and a polytope is a closed and
bounded polyhedron. The convex hull of a set of points is defined
as the smallest convex set containing the points, and it is denoted
as co. Given two sets X, Y ⊆ Rn, the Minkowski sum is defined by
X ⊕ Y , {x + y | x ∈ X, y ∈ Y } and the Pontryagin set difference
is X ⊖ Y , {x | x ⊕ Y ⊆ X}. For a given λ ≥ 0, λX = {λx : x ∈ X}.

3. Robust MPC strategy

In this section, the implementation of the robust tube-based
MPC is discussed, adapting the ideas of Chisci et al. [15], and
Langson et al. [16]. First, a local control law that compensates
the effect of uncertainty is calculated. This leads to reachable
sets containing the real state for every possible realization of the
uncertainty and every admissible parameter occurrence. Finally,
as explained in [15], online computation is only devoted to
the solution of a deterministic MPC for a nominal system with
restricted constraints (see Fig. 1).

The nominal system is defined as

ẽ(k + 1) = Aγ ẽ(k) + Bdg(k), (12)

where ẽ ∈ R3 is the nominal state, and g ∈ R2 is the control input
for the nominal system. Observe that this is equivalent to system
(7) withW = {0}.
Fig. 1. Robust tube-based MPC control strategy. Reachable sets are solved offline
compensating uncertainty, online computation is devoted to solve a nominal MPC.

The control objective is to design a state feedback control law
of the form [15]
u(k) = Kē(k) + g(k), (13)

ē(k) = e(k) − ẽ(k), (14)
where K ∈ R2×3 is a local controller whose goal is to compensate
the mismatch between the real (7) and the nominal (12) systems,
ē = [ēx ēy ēθ ]

T is themismatch state vector and g is the onlineMPC
control input.

Replacing (7) and (12) into (14), the local uncertain closed-loop
system follows as

ē(k + 1) = e(k + 1) − ẽ(k + 1) = (Aγ + BdK)ē(k) + w(k). (15)

3.1. Control objectives

In this paper, the major control objectives are:
• Robustness: Following the tube-based MPC policy, original

constraints (11) are replaced with more restricted ones, which
take into account additive uncertainties and time-varying
dynamics.

• Performance: An optimization problem (QP) is solved at each
sampling instant obtaining the proper control actions as a
compromise between small deviations from the reference
trajectory and suitable control actions.

• Input and state constraints fulfillment: This requirement is
guaranteed ensuring constraints satisfaction in the minimiza-
tion of the MPC control law.

• Asymptotic stability: It is assured through a quadratic Lyapunov
function determined using LMI and a robust positively invariant
set for the terminal region of the nominal MPC.

• Efficient real-time execution: A standard nominalMPC is solved
online to control the nominal system since the effect of the
uncertainties and system dynamics are already included in
the restricted constraints. This fact implies that the robust
tube-based MPC strategy fits properly to mobile robotics
applications, where high sampling frequencies are employed.

Fig. 1 summarizes the robust tube-based MPC strategy. First,
the reachable sets are calculated for the local uncertain closed-
loop system (15) (see Section 3.2), then the state and input
constraints are replaced using the previously calculated reachable
sets (Section 3.3). Finally, an MPC control law to the nominal
system is applied (detailed in Section 3.4). In order to ensure the
stability of the nominal MPC, a Lyapunov function and a terminal
robust positively invariant set are determined (Section 3.5). We
would like to point out that both reachable sets calculation and
the replacement of state and input constraints are carried out
offline, so they do not influence online computation burden. Online
computation is only devoted to solve the standard MPC controller
handling the nominal system for which tighter constraints are
considered.
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3.2. Local compensation of system dynamics

In this subsection, the control law that compensates the
mismatch between the real andnominal systems and the reachable
sets, that will be used in what follows, are calculated.

First, in order to implement the tube-based MPC, the system
matrix, Aγ , is decomposed into the time-invariant and time-
varying parts

Aγ = I3 + Arvrf
r + Alv

rf
l , (16)

where I3 ∈ R3×3 is the identity matrix, and

Ar
=

 0 ξ 0
−ξ 0 β
0 0 0


, Al

=

0 −ς 0
ς 0 β
0 0 0


, (17)

with ξ = Ts


1−īr
b


, β =

Ts
2 , ς = Ts


1−īl
b


.

From Assumption 1, it follows

vrf
r = v̄rf

r + 1vrf
r ⇒ 1vrf

r ∈ [δvrf ,m
r , δvrf ,M

r ], (18)

v
rf
l = v̄

rf
l + 1v

rf
l ⇒ 1v

rf
l ∈ [δv

rf ,m
l , δv

rf ,M
l ], (19)

where v̄
rf
r and v̄

rf
l are the reference nominal velocities of the right

and left wheels, respectively, and 1v
rf
r and 1v

rf
l can be seen as the

new ranges in the reference velocities. Hence, thematrix Aγ can be
expressed as

Aγ = An
+ Ar1vrf

r + Al1v
rf
l , (20)

where An
= I3 + Ar v̄

rf
r + Alv̄

rf
l represents the time-invariant part

of matrix Aγ and the rest of terms are time-varying, whichmust be
bounded. Replacing previous equation into (15), it is obtained

ē(k + 1) = [An
+ Ar1vrf

r + Al1v
rf
l + BdK ]ē(k) + w(k). (21)

In order to compensate the system dynamics, the local control
gain K is defined as (see Remark 5)

K = K n
+ K r1vrf

r + K l1v
rf
l , (22)

which implies that Eq. (21) becomes

ē(k + 1) = An
clē(k) + Ar

cl1vrf
r ē(k) + Al

cl1v
rf
l ē(k) + w(k), (23)

where An
cl = (An

+ BdK n), Ar
cl = (Ar

+ BdK r), and Al
cl = (Al

+ BdK l).
Local controller K n is straightforwardly obtained solving an LQR

problem [23]. Local controllers K r and K l can be chosen such that
the effect of the system dynamics in matrices Ar and Al is partially
compensated in closed-loop. Choosing

K r
=


0 −

ξ

Ts
0

0 0 0


, K l

=


0

ς

Ts
0

0 0 0


, (24)

it is obtained that

Ar
cl =

 0 0 0
−ξ 0 β
0 0 0


, Al

cl =

0 0 0
ς 0 β
0 0 0


. (25)

Remark 5. Notice that K = K n
+ K r1v

rf
r + K l1v

rf
l can be seen as

an adaptive local control law which tries to compensate the local
mismatch system (15). However, as can be checked from (25) it is
not possible to completely compensate the effects on ēy, but it can
be done for the components ēx and ēθ . Furthermore, K n is chosen
solving an LQR problem, then leading to stability of the nominal
closed-loop dynamics An

cl. On the other hand, we would like to
remark that K could be obtained solving online an optimization
problem in terms of LMI similarly to the approach detailed in [7].
However, this issue would lead to increase the online computation
burden at each step within the prediction horizon.
Wehave to compute the sequence of sets that can be reached by
the closed-loop local uncertain system (15) iteratively with R0 =

{0} and the following iteration

Rj+1 ,


Aγ ∈A

(Aγ + BdK)Rj ⊕ W , ∀j = 0, . . . ,N − 1, (26)

where Rj is the reachable set of the jth step in the prediction
horizon N . From Remark 5, the reachable sets obtained from (26)
can be computed as

Rj+1 = An
clRj ⊕ co{(Ar

clδv
rf ,m
r Rj) ∪ (Ar

clδv
rf ,M
r Rj)}

⊕ co{(Al
clδv

rf ,m
l Rj) ∪ (Al

clδv
rf ,M
l Rj)} ⊕ W ,

∀j = 0, . . . ,N − 1. (27)

Notice that this formulation is slightly different from that
exposed in [15], since now the parameter dependence of the
system dynamics is taken into account in the reachable sets
calculation.

3.3. Robust tube-based MPC

When dealing with uncertain systems, deterministic MPC is
limited – although some degree of robustness is achieved due
to feedback [24] – since the uncertainties are not explicitly
considered in the synthesis of the control law to guarantee robust
stability [4]. As explained above, the concept of tube-based MPC
implies the replacement of the original constraints (11) with more
restricted ones [15]. Following the ideas of Chisci et al., imposing
that ẽj ∈ Ẽj, ∀j = 0, . . . ,N , where Ẽj is defined as

Ẽj = E ⊖ Rj, ∀j = 0, . . . ,N − 1, (28)

then constraints satisfaction is ensured and feasibility is also
preserved in the presence of uncertainties in the system (7). In
addition, the input constraints are also replaced by

Ũj = U ⊖

K nRj ⊕ K r1vrf

r Rj ⊕ K l1v
rf
l Rj


,

∀j = 0, . . . ,N − 1. (29)

Remark 6. It is important to point out that reachable sets se-
quence carries all the information about every possible trajectory,
which is a function of the realization of the uncertainty. For that
reason, large system uncertainty could lead to empty or tiny re-
stricted state and input constraints (sets Ẽj and Ũj). However, it
is noticed that the problem of feasibility is hardly avoidable, and
this fact constitutes an important issue of tube-based MPC ap-
proaches [15,16,18]. For the case under consideration, a trade-off
has been realized, mainly varying the prediction horizon, in order
to achieve an acceptable size of the reachable sets.

3.4. MPC strategy

Assume that a measurement of the state ẽ is available at
the current time k. Then, the optimization problem is stated as
follows [15,16]

min
G(k),{gk,...,gk+N−1}

JN(G(k), ẽ(k)), (30)

subject to
ẽk+j|k ∈ Ẽj ∀j = 1, . . . ,N,

gk+j ∈ Ũj ∀j = 0, . . . ,N − 1,
ẽk+N|k ∈ Ω ⊖ RN ,

where ẽk+j|k denotes the predicted state vector at time k + j,
obtained by applying the input sequence G(k) , {gk, . . . , gk+N−1}

to model (12) starting from the state ẽ(k). Notice that the MPC
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includes the new state and input constraints (28)–(29). The
considered cost function is given by

JN(G(k), ẽ(k)) =

N−1−
j=0

ẽTk+j|kQ ẽk+j|k + gT
k+jRgk+j + Υ (ẽk+N|k), (31)

where Q = Q T
= [qx qy qθ ]I3 ≥ 0 and R = RT

= [rr rl]I2 > 0.
Notice that Q , R, constitute parameters to be tuned for the MPC
control law. Depending on their valuesmore attention can be given
to the states or to the control signals (see discussion in Section 4).
The terminal cost Υ (·), and the terminal constraint set given by
the region Ω in (30), are both calculated as illustrated in the
subsequent section.

To summarize, the MPC control law is based on the following
idea [25]: At time k, compute the optimal solution G∗(k) = {g∗

k ,
. . . , g∗

k+N−1} to problem (30) and apply

u(k) = Kē(k) + g∗

k (32)

as input to system (7); repeat the optimization (30) at time k + 1
based on the new state ẽ(k + 1), and continue iteratively.

3.5. Terminal constraints for nominal MPC

A common approach to ensure the stability of deterministic
MPC (30) consists in incorporating both a terminal cost, Υ , and
a terminal constraint set, Ω [1]. Notice that we are ensuring
asymptotic stability for nominal MPC. The stability for the overall
controlled system is not demonstrated since it is beyond the scope
of the paper. Stability for similar approaches is demonstrated
in [15,26].

The purpose of the terminal cost is to ensure closed-loop
stability. To this end, it requires the use of a Lyapunov functionwith
a stabilizing control law. In this case, given a quadratic function
Υ (ẽ) = ẽTPẽ, the stability of the system is guaranteed if there
exists a matrix P > 0 such that Υ (ẽ(k + 1)) − Υ (ẽ(k)) < 0, for all
ẽ(k) ≠ 0 (Lyapunov function) [27,28].

Using the LMI formulation [27,28] to obtain matrix P and
optimizing with respect to the LQR, the following inequality is
defined

ẽT ((Ai
cl)

TPAi
cl)ẽ − ẽTPẽ ≤ ẽT (−Q − (κ i)TRκ i)ẽ,

∀i = 1, . . . , nγ . (33)

Notice that the previous inequality is only imposed at the extremal
values of the polytopic set Γ , i.e. at the nγ = 22 vertices of Γ . It
can be proved that the fulfillment of such conditions at the vertices
yields the satisfaction at any point in Γ [7].

The closed-loop matrices Ai
cl are given by

Ai
cl = Ai

+ Bdκ
i, ∀i = 1, . . . , nγ , (34)

where κ i are the gains ensuring the stability of the closed-loop
system, and

A1
= (An

+ Arδvrf ,m
r + Alδv

rf ,M
l ), (35)

A2
= (An

+ Arδvrf ,m
r + Alδv

rf ,m
l ), (36)

A3
= (An

+ Arδvrf ,M
r + Alδv

rf ,m
l ), (37)

A4
= (An

+ Arδvrf ,M
r + Alδv

rf ,M
l ). (38)

Using (33) and applying the Schur complement [27], it becomes[
P − Q − (κ i)TRκ i (Ai

cl)
T

Ai
cl P−1

]
≥ 0, (39)
for the ith vertex. From previous inequality, it holds
P (Ai

cl)
T Q

1
2 (κ i)TR

1
2

Ai
cl P−1 0 0

Q
1
2 0 I 0

R
1
2 κ i 0 0 I

 ≥ 0, (40)

for the ith vertex, with I being the identity matrix. Now, pre- and
post-multiplying byP−1 0 0 0

0 I 0 0
0 0 I 0
0 0 0 I

 , (41)

and replacing S = P−1, Y i
= κ iP−1, and Ai

cl = Ai
+ Bdκ

i, it is
obtained

S S(Ai)T + (Y i)TBT
d SQ

1
2 (Y i)TR

1
2

AiS + BY i S 0 0
Q

1
2 S 0 I 0

R
1
2 Y i 0 0 I

 ≥ 0. (42)

Then, the optimization problem to be solved is given by

min
S>0, Y i∀i

Tr(P)

subject to (42) ∀i, i = 1, . . . , 4,
(43)

where Tr(·) denotes the trace of a matrix [27]. The solution of this
optimization problem produces four gains (κ1, κ2, κ3, κ4) and the
matrix P which defines the terminal cost.

Finally, in order to calculate the terminal region Ω as a robust
positively invariant set for the system, the ideas in [17,18] have
been adapted to this particular case. Details are presented in
Appendix.

4. Results and discussion

The aim of this section is to validate the performance of
the robust tube-based MPC control law and to compare it with
existing time-varying control techniques. In this case, the well-
known linear time-varying controller described in [19] has been
implemented (denoted in figures as ‘‘No slip comp.’’). Furthermore,
in order to compare the new proposed formulation with a
controller that compensates slip effects, the work presented
in [21] has also been considered (referred to as ‘‘Slip comp.’’ in
figures). This control strategy constitutes an easy extension of the
former feedback control law, but now slip explicitly appears as
a parameter in determination of the feedback gains. For details
about this strategy, see [21]. The reference trajectories have been
calculated based on unicycle kinematics.

Simulations have been carried out in Matlab r⃝ suite using the
LMI toolbox [29] andMPT toolbox [30]. Physical experiments were
programmed using LabVIEW r⃝ and Matlab r⃝.

Some tuned parameters used for simulation and physical
experiments are: b = 0.5 (m), Ts = 0.35 (s), and N = 5.
This prediction horizon has been selected as a trade-off between
satisfactory performance and an acceptable size of the reachable
sets (see Remark 6).

As commented in Section 3.4, the values of matrices Q and R
influence the performance of the MPC controller. For that reason,
an important trade-off has been carried out to obtain the proper
values. The most interesting conclusions are:

• For small values of qθ and rl (<1), the controller achieves
small deviations in longitudinal and lateral directions, but not
appropriate orientation error and oscillatory signals.
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• Large values of qθ and rl (>10) produce a large error in
the longitudinal direction and in the orientation, and a really
oscillatory behavior in the control signals.

• Values of qθ smaller than 1 and R = I2 yield a satisfactory error
in robot orientation and satisfactory control signals.

Therefore, Q = diag([1 1 0.0001]) and R = I2 have been chosen
in order to obtain an appropriate performance, small errors and
smooth control signals. The sampling period has been empirically
selected taking into account the desired closed-loop performance.
The parameters of the two selected controllers are βc = 1 and
δc = 0.6 to reach a soft overdamped closed-loop behavior. For
more details about these parameters see [19,21].

4.1. Experimental mobile robot

The vehicle under consideration is a TMR available at the
University of Almería (Spain) called Fitorobot, which has been
used as the testbed in this work (see Fig. 2). This TMR has been
designed to operate inside greenhouses for spraying purposes. As
presented in [31], greenhouse terrain is composed of loose sandy
soils, which can produce significant slip phenomena in vehicles.
Furthermore, greenhouses are characterized by narrow corridors
between plants, in which this robot has to operate. Hence, hard
constraints satisfaction becomes an essential factor of the robust
control problem, that means, small lateral error should be ensured
to avoid that the robot collides with the plants.

The mobile robot has a mass of 500 (Kg) and its dimensions
are 1.5 (m) long × 0.7 (m) wide. It is driven by a 20 (HP) gasoline
engine. More details about the TMR can be found in [31].

4.2. Simulations

In this subsection, some simulations carried out before the
physical experiments are detailed. Due to the complexity of the
physical system (track-soil interactions, resistance forces, inertia
forces, etc.), the kinematic models have been simulated. However,
tomakemore realistic simulations, a small randomnoise (Gaussian
distributed noise) was added to the states.

In order to check the robustness of the controllers, nominal slip
for each wheel is set to1 10 (%), and it is supposed that slips vary
within ±15 (%). The uncertainty set is given by2 W = {w1, w2 ∈

±0.0035 (m), w3 ∈ ±0.25 (deg)}. State constraints are E =

{ex, ey ∈ ±0.5 (m), eθ ∈ ±20 (deg)} and reference linear wheel
velocities are restricted to {v

rf
r , v

rf
l ∈ [0.1, 1.4] (m/s)}. Real linear

track velocities were also experimentally determined as {vr , vl ∈

[−2, 2] (m/s)}. In all cases, the initial location of the mobile robot
was the same that the reference.

Although many trajectories have been tested, a reference
trajectory that comprises the full reference velocity range has been
tested. In this case, the reference velocities are always changing
between the bounds and never become constant. The total traveled
distance is close to 70 (m). As depicted in Fig. 3(b), slips have been
simulated between 0–25(%), and reference velocities vary between
0.1–1.4 (m/s).

Fig. 3(a) shows the reference trajectory and the followed
trajectories using the three compared control strategies. In this
case, the predictive controller fixes properly the reference.

The errors between the reference trajectory and those steered
by the compared controllers are displayedwith respect to the trav-
eled distance in Fig. 4. Notice that, although a small random noise

1 Notice that, for notational convenience, slip is shown in percent.
2 Recall that W represents the uncertainty on the state for each time instant.

In particular, it bounds the mismatch between the continuous-time non-linear
trajectory tracking error model and the discrete-time linear model, the noise in
the slip estimation, and the uncertainty in the robot localization. These values
were obtained experimentally. Then, a value of w1 ∈ ±0.0035 (m) represents an
uncertainty in the ex state of ±1 (cm) each second.
Fig. 2. Tracked mobile robot Fitorobot in the experiment site.

was added to the states, the MPC controller achieves an almost
zero error in the longitudinal and lateral directions and a maxi-
mum orientation error of 0.80 (deg). The rest of controllers have a
maximum lateral error of−0.10 (m) for the slip compensation con-
troller, and −0.34 (m) for the no slip compensation controller; a
maximum longitudinal error of 0.07 (m) for the slip compensation
controller, and 0.27 (m) for the no slip compensation controller,
and finally, amaximumorientation error of−3.16 (deg) for the slip
compensation controller, and−13.78 (deg) for the no slip compen-
sation controller.

Fig. 5 displays the control inputs or linear velocities of the
wheels. Notice the non-static reference velocities comprising all
the range, that is, from 0.1 to 1.4 (m/s). In this figure, it can
be observed how controllers compensate the effect of slip, that
is, since slip decreases the velocity of the wheels, the motion
controllers increase the set-points in order to compensate such
negative effect. In this figure, it is possible to observe the oscillatory
control actions generated by the no slip compensation controller.
For instance, at sampling instant 45 (s) for the right track and at
sampling instant 27 (s) for the left track.

As commented in Remark 6, restricted state and input
constraints are not empty or tiny for the proposed control law.
In Fig. 6, the state constraints and the terminal robust positively
invariant set are shown.

4.3. Physical experiments

In this subsection, the results of the physical experiments
carried out using the real mobile robot are presented. Before
discussing these experiments, some considerations about practical
issues are pointed out:
• A typical four-layer navigation architecture [32] has been

designed and implemented in order to attempt physical
experiments (see Fig. 7). The first layer is devoted to path
planning. The second layer includes the motion controller
presented in this paper. In the third layer, two low-level
controllers have been implemented in order to ensure that
the set-points generated by the motion controllers are reached
by the robot tracks. For that purpose, two PI controllers with
an anti-windup scheme have been tuned. The fourth layer is
related to the robot localization.
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(a) Followed trajectories. (b) Simulated slip profiles.

Fig. 3. Tracked trajectories and slip profiles. Reference trajectory is generated supposing an unicycle model. Slip has been simulated similar to that found in real tests.
Fig. 4. Longitudinal, lateral, and orientation errors in the simulated experiment.
• For localization purposes, the extended kinematic model
(3), which was extended considering slip, was employed.
In this case, slip was estimated using a visual-odometry-
based approach [33,34]. Visual odometry is defined as the
incremental online estimation of robot motion from an image
sequence by an on-robot camera [34]. Notice that it means
that typical and undesirable effects of wheel-based odometry
are minimized, since visual information gives the actual robot
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Fig. 5. Control signals (right and left wheel velocities) in the simulated experiment.
Fig. 6. State constraints and robust invariant set used in the MPC controller for the
simulated experiment.

velocity. In particular, a camera pointing at the ground beneath
the robot was employed. Visual odometry was implemented
using a template matching approach. Furthermore, a threshold
filter was employed to attenuate outliers due to mainly false
matches [35].

• The tests were carried out on an off-road gravel terrain.
Although this is not an ideal site for the experiments, since
it is a partially bumpy terrain, the results presented here are
illustrative of the performance of the compared controllers.
Fig. 8 details the soil of the experiment site. Notice the sinkage
effect in both views. This sinkage leads to longitudinal slip.

• The experiments were carried out with sunlit conditions, and
thus some shadows that could lead to falsematches in the visual
odometry algorithm were observed. Nevertheless, these false
matches were minimized selecting a proper position for the
camera looking at the ground and an appropriate filter.

• In order to validate the followed trajectories and orientations,
a DGPS (R100, Hemisphere, Calgary, Canada) and a magnetic
compass (C100, KVH, Middletown, USA) have been employed
as ground-truth. The DGPS has an accuracy of 0.20 (m) and
the magnetic compass of 0.1 (deg). The rest of sensors were:
one consumer-grade camera (Quickcam Sphere AF, Logitech,
Apples, Switzerland) and two incremental encoders attached
to the track drive sprockets (DRS61, Sick AG, Waldkirch,
Germany).

• Although many experiments have been carried out, a circular
trajectory and anU-shaped trajectory have been selected in this
case. In the former, the robot moved at middle/high velocities
(≥ 0.5 (m/s)) and in the second one it moved at low velocities
Fig. 7. Control architecture of the testbed.
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(a) Robot on gravel terrain. (b) Soil detail.

Fig. 8. Experiment site (gravel soil).
(a) Followed trajectories. (b) MPC-trajectory vs. ground-truth.

Fig. 9. Experiment 1. Followed trajectories during the experiment.
(≤ 0.4 (m/s)). Notice that similar trajectories to these selected
here are usually employed in off-road mobile robotics, see for
instance [10,36].

The same parameters used for the simulation were employed
during the physical experiments.

4.3.1. Experiment 1. Circular trajectory
In this first experiment, a reference circular trajectory was

tested. The motivation for selecting this trajectory is because it
is a closed trajectory, what helps in a better comparison of the
controllers, since the robot has to come back to the starting point.
Furthermore, the reference track velocities were 0.6 (m/s) for the
right track and 0.5 (m/s) for the left track. For the testbed, these
can be considered as middle/high velocities. In this first selected
experiment, the total traveled distance was close to 18 (m).

Fig. 9(a) shows the reference trajectory and the followed
trajectories using the three control strategies. Fig. 9(b) shows
the reference trajectory, the trajectory followed using the MPC
controller, and the ground-truth (DGPS). In the former plot, it
is possible to observe that the MPC controller achieves the best
behavior. From Fig. 9(b), it is possible to notice that there is
a small mismatch between the trajectory obtained using the
MPC controller and the ground-truth. Nevertheless, the maximum
lateral deviation is 0.53 (m), and the mean lateral deviation is
0.18 (m), which means 1 (%) of the total traveled distance. It
must bear in mind that since a kinematic model is employed,
the error-growth effect of kinematic-model-based solutions is not
fully avoided, although it is minimized using the visual odometry
approach. This explainswhy there is a smallmismatch between the
trajectory followed using theMPC controller and the ground-truth.

Fig. 10(a) displays the orientations of the compared controllers.
It can be observed the proper behavior of the MPC controller
with few oscillations. Fig. 10(b) plots the reference orientation,
the orientation obtained using the MPC controller, and the
ground-truth (magnetic compass). As expected from the previous
discussion, the orientation obtained using the MPC controllers
follows the ground-truth with small deviation. Particularly, the
mean deviation is 7.62 (deg).

Fig. 11 shows the slip estimation for each track. Recall that the
slip is obtained as the relation between the actual robot velocity
(visual odometry) and the theoretical velocities of the tracks
(incremental encoders). In this particular experiment, the tracks
move at different velocities. For that reason, the obtained slip
estimations are different. Notice that this fact can lead to amistake
since the same actual velocity is being supposed for both tracks. In
order to minimize this mistake presented in circular trajectories,
the mean value of both slip estimations was considered. In further
works, two independent cameras will be employed to estimate the
actual track velocity. The mean slip is 4.41 (%) (gravel soil).
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(a) Orientations. (b) MPC-orientation vs. ground-truth.

Fig. 10. Experiment 1. Orientations.
Fig. 11. Experiment 1. Slip estimation for the case of the MPC controller.

The errors between the reference trajectory and those steered
by the compared controllers are displayed in Fig. 12. In these plots,
the proper behavior of the predictive controller is verified. The
slip compensation controller also achieves a satisfactory result
in comparison to the no slip compensation controller. As in
simulations, a positive longitudinal error is observed. This means
that the real robot is pursuing the reference robot. The mean
longitudinal errors are: 0.05 (m) with standard deviation 0.05 (m)
for the MPC controller, 0.09 (m) with standard deviation 0.10 (m)
for the slip compensation controller, and 0.13 (m) with standard
deviation 0.10 (m) for the no slip compensation controller. The
mean lateral errors are: −0.002 (m) with standard deviation
0.05 (m) for theMPC controller,−0.01 (m)with standard deviation
0.08 (m) for the slip compensation controller, and −0.02 (m)
with standard deviation 0.07 (m) for the no slip compensation
controller. The mean orientation errors are: 0.50 (deg) with
standard deviation 5.80 (deg) for the MPC controller, 1.80 (deg)
with standard deviation 4.84 (deg) for the slip compensation
controller, and 2.27 (deg) with standard deviation 4.73 (deg) for
the no slip compensation controller.

Fig. 13 shows the reference velocities (denoted as v
rf
r and v

rf
l ),

the control inputs (referred to as vr and vl), and the real track
velocities (labeled as ‘‘Right Enc.’’ and ‘‘Left Enc.’’) for the case of the
MPC controller. As in simulation, the motion controller increases
the control inputs to compensate the negative slip effect. It is
interesting to point out the proper behavior of the low-level PI
controllers, which are responsible to achieve the set-points given
by the motion controllers.

Finally, Fig. 14(a) displays the pixel displacement values
between consecutive images for the case of the MPC controller
(visual odometry), and the computation time employed (CPU time
employed at each sampling instant) by the MPC controller and
the slip compensation controller. It is important to remark that
since the robot is moving on a circular trajectory, different lighting
conditions occurred during the motion. This situation leads to
shadows in the images employed by the visual odometry approach,
which are used to estimate the actual robot velocity. However, as
shown in Fig. 14(a), an admissible number of outliers takes place,
due to the proper downward camera position and the threshold
filter. Fig. 14(b) shows the low computation time employed by
the slip compensation controllers. Furthermore, it is checked
that sampling period is always ensured. In this case, the mean
computation time for the MPC controller is 0.25 (s) and for the
slip compensation controller is 0.20 (s) (the no slip compensation
controller achieves a similar value). Notice that motion controllers
run on the computer on-board the mobile robot (Intel Pentium III
1 GHz, 512 MB RAM).

4.3.2. Experiment 2. U-shaped trajectory
In this second experiment, an U-shaped trajectory has been

selected. It constitutes an interesting trajectory which combines
straight-linemotions and two90° turns. The total traveled distance
was close to 30 (m). In order to check the navigation architecture
at low velocities, a maximum reference velocity of 0.3 (m/s) was
selected.

Fig. 15(a) shows the reference trajectory and the followed tra-
jectories using the three control strategies. Fig. 15(b) displays
the reference trajectory, the trajectory followed using the predic-
tive controller and the ground-truth (DGPS). In the former plot,
it is possible to observe that the trajectory obtained using the
predictive controller follows satisfactorily the reference. The tra-
jectories obtained using the linear feedback controllers have an
smooth oscillatory behavior, especially after the 90° turns. As in the
previous experiment, the trajectory followed using the predictive
controller slightly diverges from ground-truth. Particularly, the
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Fig. 12. Experiment 1. Longitudinal, lateral, and orientation errors in the physical experiment.
(a) Right track. (b) Left track.

Fig. 13. Experiment 1. Control signals (track velocities) in the physical experiment.
maximum lateral deviation is 0.72 (m), and the mean lateral de-
viation is −0.11 (m), what means 0.40 (%) of the total traveled
distance.
Fig. 16(a) shows the orientations. From this figure, it is clearly
observed the smooth oscillatory behavior of the linear feedback
controllers, especially at the end of the experiment. The orientation
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(a) Visual odometry data. (b) Computation time.

Fig. 14. Experiment 1. Pixel displacements (MPC controller) and computation time (MPC vs. Slip comp. controllers).
(a) Followed trajectories. (b) MPC-trajectory vs. ground-truth.

Fig. 15. Experiment 2. Followed trajectories during the experiment.
(a) Orientations. (b) MPC-orientation vs. ground-truth.

Fig. 16. Experiment 2. Orientations.
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Fig. 17. Experiment 2. Slip estimation for the case of the MPC controller.

obtained using the predictive controller follows the reference with
very small oscillations. Fig. 16(b) plots the reference orientation,
the orientation obtained using the predictive controller, and the
ground-truth (magnetic compass). As expected, the orientation
obtained using the predictive controller does not fix the ground-
truth. In this case, themean deviation is−0.11 (deg) with standard
deviation 6.47 (deg).

Fig. 17 displays the slip estimations. In this case, themedian slip
value for the right track was 6.32 (%), and for the left track was
2.17 (%). As in previous experiment, both slip values are different
and the reason is that the same actual velocity has been used for
both tracks.

The errors between the reference trajectory and those steered
by the compared controllers are plotted in Fig. 18. Especially
remarkable is the almost zero lateral error achieved by the
MPC controller. The mean longitudinal errors are: 0.02 (m) with
standard deviation 0.03 (m) for the MPC controller, 0.09 (m) with
standard deviation 0.05 (m) for the slip compensation controller,
and 0.13 (m) with standard deviation 0.06 (m) for the no slip
compensation controller. The mean lateral errors are: 0 (m) with
standard deviation 0.04 (m) for the predictive controller, 0.02 (m)
with standard deviation 0.17 (m) for the slip compensation
controller, and 0.01 (m) with standard deviation 0.18 (m) for
the no slip compensation controller. The mean orientation errors
are: 0.43 (deg) with standard deviation 4.74 (deg) for the MPC
controller, 0.66 (deg) with standard deviation 8.16 (deg) for
Fig. 18. Experiment 2. Longitudinal, lateral, and orientation errors in the physical experiment.
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(a) Right track. (b) Left track.

Fig. 19. Experiment 2. Control signals (track velocities) in the physical experiment.
(a) Visual odometry data. (b) Computation time.

Fig. 20. Experiment 2. Pixel displacements (MPC controller) and computation time (MPC vs. Slip comp. controllers).
the slip compensation controller, and 1.09 (deg) with standard
deviation 8.51 (deg) for the no slip compensation controller. As in
the previous experiment, the predictive control strategy obtains
the best results. Furthermore, note that the rest of compared
controllers oscillate between maximum values closer or greater
to 0.3 (m), which could be unacceptable for some kind of
applications.

Fig. 19 displays the reference velocities, the control inputs and
the real track velocities for the case of the predictive controller.
These plots notice the proper tuning of the PI controllers, since
the real velocities of the tracks follow satisfactorily the set-points.
It is important to clarify that the smooth oscillatory behavior of
the right track is stressed by that fact that the mobile robot was
moving on a partially bumpy gravel soil. In this scenario, little
stones produce vibrations to the vehicle, and hence to the tracks.
Notice that in the previous experiment, a similar behavior was
observed.
Finally, Fig. 20(a) displays the pixel displacement between
consecutive images for the MPC controller (visual odometry). As
in previous experiment, few outliers appear due to the proper
downward camera position and the threshold filter. Notice that in
this experiment themean value of the pixel displacement is around
−50 (pixel). This confirms that the mobile robot was moving at a
slower velocity than in previous experiment. Fig. 20(b) shows the
computation time employed by the predictive controller and the
slip compensation controller. The average computation time for
the predictive controller is 0.24 (s) and for the slip compensation
controller is 0.19 (s) (the no slip compensation controller achieves
a similar value).

5. Conclusions

This paper proposes a robust tube-based predictive control law
for constrained mobile robots in off-road conditions.
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From the theoretical point of view, an extension of tube-based
predictive control to time-varying systems is provided (via reach-
able sets). From a practical point of view, the designed control
strategy compensates slip and guarantee that state and input
constraints are fulfilled, since these constraints are taken into
account in the solution of the optimization problem. The time-
varying trajectory tracking errormodelwith additive uncertainties
has been addressed. Real-time execution has been ensured using
tube-based MPC formulation and it has been tested through simu-
lations and physical experiments. The comparative study (simula-
tions and physical experiments) with other control laws illustrates
the proper behavior of the robust tube-based MPC strategy.

Summing up, the main advantages of the proposed control
scheme are: robustness, efficient online computation, state and
input constraints fulfillment and compensation of longitudinal slip.
It is interesting to point out that the proposed approach can be
easily applied to other robot configurations. Themain limitation of
the current strategy is a certain degree of conservativeness, mainly
related to calculation of reachable sets. Then, future efforts will
be devoted to reduce such degree of conservatism. Furthermore, a
more precise estimation of the uncertainty setW and newphysical
experiments will be tested.
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Appendix. Robust positively terminal invariant set

In what follows, once a stabilizing control law is given, we
provide a procedure to obtain the maximal robust invariant set
for the uncertain system (trajectory tracking errormodelwith slip)
contained in the state constraint set. In addition, constraints on the
input are considered.

Let Aγ ∈ A , with A a polytope in R3×3 holds for the system (7),
and the input to be constrained, u(k) ∈ U . Given a control feedback
gain κ(Aγ ) = λ1κ

1(A1
γ )+· · ·+λ4κ

4(A4
γ ) (each gain is calculated in

(42)), and a convex set Ω ⊆ R3, the concept of one-step operator
is employed as
QA (Ω) = {e ∈ E : κ(Aγ )e ∈ U, (Aγ + Bdκ(Aγ ))e

+ w ∈ Ω, ∀w ∈ W , ∀Aγ ∈ A }.

Notice that the one-step operator is a standard tool for the
invariant sets calculation through iterative procedures [18].
Parametersλj with j = 1, . . . , 4, can be obtained by solving a linear
programming problem (LP).

Finally, taking into account the one-step operator previously
defined, the maximal robust invariant set for the uncertain system
(7) is obtained by means of the following iterative procedure:
1. Initialization: Ω0 = E ∩ {ω ∈ R3

: κ(Aγ )ω ∈ U, ∀Aγ ∈ A }.
2. Iteration: Ωk+1 = Ωk ∩ QA (Ωk).
3. Termination condition: stop when Ωk+1 = Ωk or Ωk+1 = ∅.

Set Ω = Ω∞ = Ωk+1.

An important issue when dealing with algorithmic procedure
for computing the robust invariant sets is its finite determinedness,
that is, the conditions under which the algorithm provides a
solution after a finite number of iterations. Results regarding the
problem of finite determination can be found in [18,17]. Finite
determinedness has not been proved for this work, since it goes
beyond the aim of the paper. Nevertheless, the application of the
algorithm to the case under analysis provides a result after a finite
number of iterations.
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