
Systems & Control Letters 61 (2012) 819–826
Contents lists available at SciVerse ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Invariant sets computation for convex difference inclusions systems
M. Fiacchini a,∗, T. Alamo b, E.F. Camacho b

a CRAN-ENSEM, 2 avenue de la foret de Haye, F-54516 Vandoeuvre Cedex, France
b Departamento de Ingeniería de Sistemas y Automática. Universidad de Sevilla. Camino de los Descubrimientos s/n. E-41092 Sevilla. Spain

a r t i c l e i n f o

Article history:
Received 14 June 2011
Received in revised form
2 April 2012
Accepted 27 April 2012
Available online 29 June 2012

Keywords:
Invariance
Difference inclusions
Convex analysis
Nonlinear systems

a b s t r a c t

In this paper we introduce the Convex Difference Inclusion (CDI) systems as amodeling framework useful
to analyze set-theory and invariance-related issues for nonlinear and uncertain systems. The dynamics
of a CDI system is given by a set-valued map whose values are convex, compact subsets of the space
and are determined by convex bounding functions. Necessary and sufficient boundary-type conditions
for invariance and contractiveness, characteristic of the linear systems, are given for the CDI systems.
Lyapunov functions are proved to be induced by contractive sets for CDI systems, as in the linear context.
A computational procedure for obtaining polytopic invariant and contractive sets for nonlinear systems,
based on the properties of the CDI systems, is presented.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Invariance and contractiveness are fundamental in systems
analysis and control, mainly due to the stability and robustness
properties of these regions of the state space. A notable pioneering
contribution on invariance is [1]. Invariance and related topics,
mainly for linear systems, are treated in [2–5], on the maximal
invariant set, and in [6], on theminimal invariant set. Amonograph
on the topic is [7]. Invariance is also employed to ensure
convergence of model predictive control, see [8,9]. Few general
results are available for nonlinear systems. The problems of
obtaining invariant ellipsoids, [10], and parallelotopes, [11], for
nonlinear systems, are addressed using linear difference inclusions
(LDI). The computation of invariant ellipsoids for linear systems
with static nonlinear functions in the feedback, as piecewise affine
functions and saturation, are addressed in [12,13]. Methods to
obtain invariant polytopes are proposed for saturated systems, [14]
and for Lur’e systems, [15]. The computation of invariant polytopes
for general nonlinear systems is discussed in [16], using interval
arithmetic, and in [17,18], employing properties of DC functions.
The work [19] proposes approximations of the minimal invariant
set for quantized systems.

In this paper we present and use CDI systems for representing
and approximating nonlinear anduncertain discrete-time systems.
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The CDI systems are tightly related to differential and difference
inclusions. See [20–22] for a deep and exhaustive analysis of
such models and of their properties. Nevertheless, and despite
their generality and mathematical rigor, the impression is that the
results of the cited works have still not found the central role they
deserve, mainly in the more practical and computation-oriented
fields of control.

Our aim is to particularize the analysis posing convexity-related
assumptions on the set-valued maps and on the considered sets.
This implies less generality but it also permits us to exploit
the properties of difference inclusions and convex analysis (see
[23–25]), for computing invariant and contractive sets for non-
linear and uncertain systems. From another point of view, CDI
systems are the result of an abstraction process to generalize pre-
vious results for particular nonlinear systems, see [18] for instance.
Necessary and sufficient boundary-type conditions for invariance
and contractiveness of convex sets for CDI systems are stated. Such
results are employed to design an algorithm to obtain invariant and
contractive polytopes for CDI systems. Since many nonlinear sys-
tems admit CDI representations or extensions, the results apply to
a wide class of systems.

The paper is organized as follows: Section 2 introduces the CDI
systems. Section 3 presents invariance and contractiveness for CDI
systems. In Section 4 the algorithm is illustrated and then applied
to a numerical example in Section 5. The paper ends with a section
of conclusions.
Notation: The set of positive integers smaller than or equal to n ∈ N
is Nn. Given A ∈ Rn×m, Ai with i ∈ Nn, is its i-th row. Given a set
D ⊆ Rn, co(D) is the convex hull of D, int(D) its interior, ∂D its
boundary, S(D) are the subsets ofD, K(D) are the convex compact
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subsets of D and K0(D) are the convex compact sets C ⊆ D with
0 ∈ int(C). Given D, E ⊆ Rn and α ≥ 0, define D ⊕ E = {z =

x + y ∈ Rn
: x ∈ D, y ∈ E} and αD = {αx ∈ Rn

: x ∈ D}. Given
a set-valued map F : Rn

→ S(Rm), define graph(F) = {(x, y) ∈

Rn
× Rm

: y ∈ F(x)}.

2. Convex difference inclusions: CDI systems

Consider the system given by the difference inclusions

x+
∈ F (x), (1)

where x ∈ Rn is the state, x+ is the successor and F : Rn
→ S(Rn)

is a set-valued map on Rn, that is a function which relates a set to
every point x ∈ Rn.

Assumption 1. The set-valued map F : Rn
→ K(Rn)

determining the system dynamics (1) is such that

F (αx1 + (1 − α)x2) ⊆ αF (x1) ⊕ (1 − α)F (x2), (2)

for every α ∈ [0, 1] and every x1, x2 ∈ Rn, and F (0) = {0}.

Notice that Assumption 1 implies also that F (x) is convex and
compact for every x ∈ Rn. The dynamical systems (1) for which
Assumption 1 holds are referred to as Convex Difference Inclusions
(CDI) systems. Consider the system

x+
∈ F (x) ⊕ W , (3)

where x ∈ Rn is the state, x+ is the successor, F (·) is a set-
valued map on Rn and W is the additive uncertainty bounding set
satisfying the following assumption:

Assumption 2. The setW ⊆ Rn is compact and 0 ∈ int (co (W )).

If Assumptions 1 and 2hold forF (·) in (3) the system is denoted
as an uncertain CDI system. We recall here the concept of support
function.

Definition 1. Given a set D ⊆ Rn, the support function of D
evaluated at η ∈ Rn is φD(η) = supx∈D ηT x.

Among the properties of the support functions, see [23,24], we
have that set inclusion conditions can be given in terms of support
functions.

Property 1. Given a closed, convex set D ⊆ Rn, then x ∈ D if and
only if ηT x ≤ φD(η), for all η ∈ Rn. Given also C ⊆ Rn, then C ⊆ D
if and only if φC (η) ≤ φD(η), for all η ∈ Rn.

Assumption 1 can be posed also in terms of support functions,
see below.

Proposition 1. The set-valued map F : Rn
→ K(Rn) determining

the system dynamics (1) satisfies Assumption 1 if and only if F̌ :

Rn
× Rn

→ R defined as

F̌(x, η) = sup
z∈F (x)

ηT z, (4)

is such that F̌(·, η) is convex on Rn and F̌(0, η) = 0, for all η ∈ Rn.

Proof. The proposition, suggested to us by a reviewer we would
like to acknowledge, stems from properties of support functions.
Notice that the value F̌(x, η) is the support function at η ∈ Rn of
the setF (x), for every x ∈ Rn. FromF (x) ∈ K(Rn) and properties
of the support function, see [23,24], the relation (2) holds for every
η ∈ Rn, every α ∈ [0, 1] and every x1, x2 ∈ Rn, if and only if
F̌(αx1 + (1 − α)x2, η)

= φF (αx1+(1−α)x2)(η) ≤ φαF (x1)⊕(1−α)F (x2)(η)

= αφF (x1)(η) + (1 − α)φF (x2)(η)

= αF̌(x1, η) + (1 − α)F̌(x2, η),

which means that F̌(x, η) is convex in x, for every η ∈ Rn. Finally,
F (0) = {0} if and only if F̌(0, η) = 0 for all η ∈ Rn. �

The function F̌(·, ·) is referred to as a convex bounding function.

Remark 1. The function F̌(·, η) is continuous on the relative inte-
rior of its effective domain, for every η ∈ Rn, from its convexity,
see Theorem 10.1 in [23]. This and the fact that F (x) is assumed
convex and compact for every x ∈ Rn imply that F is continuous
on Rn and is a particular case of Marchaud maps, often considered
inworks concerning viability theory and set-valued dynamical sys-
tems, [20–22].

By convexity and compactness of F (x) for every x ∈ Rn, we
have that

F (x) = {z ∈ Rn
: ηT z ≤ F̌(x, η), ∀η ∈ Rn

}. (5)
Given two set-valued maps G, F : Rn

→ S(Rn), we say that G
is an extension of F , and write F ⊆ G, if and only if graph(F) ⊆

graph(G). A system is an extension of another if the graph of the
former is an extension of the graph of the latter. The CDI systems
contain a large class of nonlinear and uncertain systems and can
be used to approximate many others, see Proposition 2 below
and [26].

Proposition 2. Consider the system x+
= f (x) with f : Rn

→ Rn

twice differentiable in D = {x ∈ Rn
: ∥x − x0∥2 < r}, with r > 0,

and ρ ∈ Rn such that12 (x − x0)TH j(x̃)(x − x0)
 ≤ ρj(x − x0)T (x − x0), (6)

for all x, x̃ ∈ D, with j ∈ Nn, where H(fj)(·) = H j(·), is the Hessian
of fj(·). Then the CDI system defined by (5)with the convex bounding
functions

F̌(x − x0, η) =

n
j=1


ηj(fj(x0) + (x − x0)T∇fj(x0))

+ ρj|ηj|(x − x0)T (x − x0)

, (7)

for every η ∈ Rn, is an extension of the nonlinear one, on D.
Proof. By hypothesis, the gradient ∇fj(·) and the Hessian of fj(·)
exist at every x ∈ D, for all j ∈ Nn. Exploiting the Lagrange form of
the remainders of the Taylor series expansion, we have that given
x0 ∈ D, for every x ∈ D there exists x̃(x) = x̃ ∈ D such that the
following equality holds

fj(x) = fj(x0) + (x − x0)T∇fj(x0) +
1
2
(x − x0)TH j(x̃)(x − x0),

for every j ∈ Nn. From (6), for all x ∈ D and every η ∈ Rn, we have
that

ηT f (x) =

n
j=1

ηj(fj(x0) + (x − x0)T∇fj(x0)

+
1
2
(x − x0)TH j(x̃j)(x − x0))

≤

n
j=1

ηj(fj(x0) + (x − x0)T∇fj(x0))

+ |ηj|

12 (x − x0)TH j(x̃j)(x − x0)
 ≤ F̌(x − x0, η)

whichmeans that f ⊆ F , whereF (·) is defined by (5) and (7). �
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Fig. 1. Examples: saturation plus dead-zone (left) and hysteresis (right).
Apossible choice ofρj is themaximumonD of the spectral norm
of 0.5H j(x̃).

Remark 2. For a nonlinear system x+
= f (x), a finite number of

convex bounding functions can be sufficient to determine a CDI
extension. For instance, if for every i ∈ Nn there exist two functions
f̌i, f̂i : Rn

→ R, convex and concave, respectively, such that
f̂i(x) ≤ fi(x) ≤ f̌i(x), for all x ∈ Rn, and f̌i(0) = f̂i(0) = 0, then
a CDI system extension of the nonlinear one can be determined.

The convexity of the bounding functions, implied by Assump-
tion 1 (see Proposition 1), permits us to characterize invariant sets
in terms of convex constraints and then to pose efficiently solvable
problems for their computation, see [25].

2.1. LDI systems

A popular way of approximating nonlinear and uncertain
systems is given by Linear Difference Inclusion (LDI) systems,
see [27,28]. It will be shown that the LDI systems form a subclass
of the CDI ones, in particular of those whose convex bounding
functions are piecewise linear. Hence, using an LDI system to
approximate a nonlinear one is a way of generating a CDI
extension.

An LDI system in terms of difference inclusions is given by (1)
with

F (x) = A(x) = {Ax ∈ Rn
: A ∈ A},

where, with a slight abuse of notation, we use A for denoting both
the set-valued map and the set A ⊆ Rn×n. If A is a polytope in
Rn×n, the LDI is said to be polytopic.

Remark 3. Notice that the set-valued map A(·) satisfies the
Assumption 1 if A(x) ∈ K(Rn) for all x ∈ Rn (then also polytopic
LDIs do). In fact, the function

F̌(x, η) = sup
z∈A(x)

ηT z = max
A∈A

ηTAx

with η ∈ Rn, is convex in x, being the pointwise maximum of a
family of convex functions, see [25]. Moreover, F̌(0, η) = {0} for
all η ∈ Rn. Then the LDI systems are a particular subclass of the
CDI systems and hence every result valid for the latter applies also
to the former. Nonetheless CDI provides a more general modeling
framework, as not every CDI system admits an LDI representation.

Remark 4. Important results, valid for linear systems, are valid
also for LDI systems (more generally, for positively homogeneous
ones). An example is the boundary-type condition for invariance
and contractiveness, see Section 4.2.4 in [7]. The underlying
idea is that, if the extremal realizations of the LDI, which are
linear systems, satisfy a condition (invariance for instance), then
the whole LDI system fulfills it, see [27–29]. Such results are
substantially based on linearity. The key idea of the CDI approach is
that the fundamental ingredient for the desired invariance-related
properties to hold is convexity rather than linearity. Thus the
results for the CDI systems improve and contain those for the LDI
ones.

2.2. Generalized saturated systems

Generalized saturated systems, introduced in [30], are a
family of systems including many common static nonlinearities
(saturation, dead-zone, hysteresis, etc.) and are easily extendible
by CDI systems. We introduce the definition of a generalized
saturated function in its scalar version (see [30] for the vectorial
one).

Definition 2. The function ϕ : R × N → R is said to be a
generalized saturated function with saturation level y0 ∈ R, y0 >
0, dead-zone σ ∈ Rn, σ ≥ 0, and linear slope µ ∈ R, µ > 0, if

− Γ (−y) ≤ ϕ(y, k) ≤ Γ (y), ∀y ∈ R, ∀k ∈ N, (8)

where Γ (y) = max{µ(y+σ), −y0} and k ∈ N is the discrete-time
instant.

The generalized saturated functions can represent common
static nonlinear functions as saturation plus dead-zone, hysteresis
(see Fig. 1) and saturation.

Given the generalized saturated function ϕ(·, ·), the dynamical
system

xk+1 = Axk + Bϕ(Fxk, k), (9)

where F ∈ R1×n, is called a generalized saturated system. A
CDI extension of the generalized saturated system can be directly
determined by the following convex bounding functions

F̌(x, η) =


ηTAx + ηTBΓ 0(Fx), if ηTB ≥ 0,
ηTAx − ηTBΓ 0(−Fx), if ηTB < 0,

(10)

for all η ∈ Rn and all x ∈ Rn with Γ 0(y) = max{µy, −y0 −

µσ }. The system (3) with F (·) determined by convex bounding
functions (10) and W = {w = Bv : −µσ ≤ v ≤ µσ }, is an
uncertain CDI extension of the generalized saturated one.

Remark 5. Notice that the generalized saturated systems do not
admit LDI extensions. Even for simple saturated systems, the LDI
extension is more conservative than the CDI one. In fact, given
σ = 0, the graph of the LDI approximation of the saturated system
is obtained by replacing Γ 0(y) with max{µy, 0} in (10). Thus the
graph of the CDI extension is strictly contained in the graph of the
LDI one.
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3. Invariance for CDI systems

Invariance and contractiveness of convex sets for CDI systems
are characterized in this section. First, the standard definitions are
recalled.

Definition 3. A set Ω ⊆ Rn is a robust invariant set for the system
x+

= f (x, w) and constraints x ∈ X if Ω ⊆ X and f (x, w) ∈ Ω , for
all x ∈ Ω and all w ∈ W .

In the absence of the uncertainty the related set is called an
invariant set.

Definition 4. A setΩ ∈ K0(Rn) is a contractive set for the system
x+

= f (x, w) and constraints x ∈ X , with contracting factor
λ ∈ [0, 1], if Ω ⊆ X and f (x, w) ∈ λΩ , for all x ∈ Ω and all
w ∈ W .

Notice that contractiveness induces invariance; thus when in
the following we will guarantee contractiveness of a set, we will
implicitly ensure also invariance. Inwhat followsweprove that im-
portant results valid for linear systems, concerning boundary-type
conditions for invariance and set-induced Lyapunov functions, are
valid also for CDI systems.

3.1. Necessary and sufficient condition for invariance for CDI systems

As invariance and set-theory are important to deal with control
in the presence of constraints, consider the state constraints x ∈

X ⊆ Rn. The unconstrained case is enclosed, given by X = Rn.

Assumption 3. The state constraint set X ⊆ Rn is closed, convex
and 0 ∈ int(X).

A necessary and sufficient condition for contractiveness for CDI
systems is provided, see [5] for the linear case. Given the set-valued
map F (·), define the map MF : S(Rn) → S(Rn) as

MF (Ω) =


x∈Ω

F (x), (11)

for allΩ ∈ S(Rn), which is monotone, i.e.MF (C) ⊆ MF (D) for all
C,D ⊆ Rn such that C ⊆ D. Given a set X0 ∈ S(Rn), the sequence
of sets Xk, for k ∈ N, generated by iterating

Xk+1 = MF (Xk), (12)

with initial condition X0 are the sets reachable from x ∈ X0.

Property 2. The condition for contractiveness of a set Ω ∈ K0(X)
for CDI systems is F (x) ⊆ λΩ for every x ∈ Ω or, equivalently,
MF (Ω) ⊆ λΩ , where MF (·) is defined in (11).

The contractiveness of Ω ∈ K0(X) for a CDI system in terms of
support functions follows.

Proposition 3. Let Assumptions 1 and 3 hold for the set-valued map
F (·) determining the system dynamics (1) and the state constraint
set X. Given λ ∈ [0, 1], a set Ω ∈ K0(X) is a contractive set for
system (1) if and only if

ηT z ≤ λφΩ(η), ∀z ∈ F (x), ∀x ∈ Ω, ∀η ∈ Rn. (13)

Proof. The condition for contractiveness can be expressed in terms
of support functions as φF (x)(η) ≤ λφΩ(η), for all x ∈ Ω and
η ∈ Rn, see Property 1, then also as in (13). �

Condition (13) involves every x ∈ Ω . A boundary-type neces-
sary and sufficient condition for contractiveness for CDI systems
and convex sets can be posed. Given Ω ∈ K0(Rn), the Minkowski
function of Ω at x ∈ Rn is defined as

ΨΩ(x) = min
α≥0

{α ∈ R : x ∈ αΩ}.
Theorem 1. Let Assumptions 1 and 3 hold for the set-valued map
F (·) determining the system dynamics (1) and the state constraint
set X. Given λ ∈ [0, 1], a set Ω ∈ K0(X) is a contractive set for
system (1) if and only if

F̌(x, η) ≤ λφΩ(η), ∀x ∈ ∂Ω, ∀η ∈ Rn. (14)

Proof. Condition (14) is equivalent to F (x) ⊆ λΩ for x on the
boundary of Ω . We prove that F (x) ⊆ λΩ is satisfied for every
x ∈ ∂Ω if and only if it is satisfied for every x ∈ Ω . Necessity is due
to ∂Ω ⊆ Ω , since Ω is compact. To prove sufficiency, consider
x ∈ Ω . Then x̄ = α−1x, with α = ΨΩ(x) ∈ [0, 1], is such that
x̄ ∈ ∂Ω and x is the convex combination of the origin and x̄, that
is x = αx̄ + (1 − α)0. Assume that F (x̄) ⊆ λΩ for all x̄ ∈ ∂Ω ,
as implied by (14) and notice that, from Assumption 1, we have
F (0) = {0} ⊆ λΩ . From this and Assumption 1 we have that
F (x) = F (αx̄ + (1 − α)0) ⊆ αF (x̄) ⊆ αλΩ ⊆ λΩ , and then
F (x) ⊆ λΩ for all α ∈ Ω . �

Theorem 1 provides a necessary and sufficient condition for
contractiveness of Ω ∈ K0(X) for CDI systems, based on convex
constraints concerning only the boundary of set Ω . In general, the
conditions for contractiveness for nonlinear systems involve every
x in Ω , see [7]. The following propositions present the relation
between contractive sets and Lyapunov stability theory for CDI
systems.

Proposition 4. Let Assumptions 1 and 3 hold for the set-valued map
F (·) determining the system dynamics (1) and the state constraint
set X. For every contractive set Ω ∈ K0(X) for system (1) with
contracting factor λ ∈ [0, 1], also the set αΩ ⊆ X, with α ∈ [0, 1],
is a convex, compact, contractive set for system (1) with contracting
factor λ.

Proof. Compactness and convexity of αΩ for all α ∈ [0, 1] follow
by definition. Suppose thatMF (Ω) ⊆ λΩ and considerα ∈ [0, 1].
By definition, x ∈ αΩ is equivalent to the existence of y ∈ Ω such
that x = αy. Then, from Assumption 1, we have

MF (αΩ) =


x∈αΩ

F (x)

=


y∈Ω

F (αy) ⊆


y∈Ω

αF (y) ⊆


y∈Ω

αλΩ = αλΩ,

which means that αΩ is a contractive set with contracting
factor λ. �

Proposition 4 implies that every contractive set for a CDI system
induces a local Lyapunov function, as shown below. Analogous
results are valid for linear and particular nonlinear systems, see [7].

Definition 5. Given Ω ∈ K0(X), the function VΩ : S(X) → R
defined as

VΩ(D) = sup
x∈D

ΨΩ(x) = min
α≥0

{α ∈ R : D ⊆ αΩ}, (15)

is a local Lyapunov function in S(X) for the CDI system (1), if
VΩ(MF (D)) < VΩ(D) for every D ∈ S(X) \ {0}.

Notice in fact that a function VΩ(·) as in Definition 5 is positive
definite in S(X), VΩ(D) = 0 if and only if D = {0} and it
decreases along the set-valued trajectory generated by (12) with
X0 ∈ S(X) \ {0}.

Proposition 5. Let Assumptions 1 and 3 hold for the set-valued map
F (·) determining the system (1). The function VΩ(·) defined as
in (15) is a local Lyapunov function in S(Ω) for the system (1), for
every contractive set Ω ∈ K0(X) with contracting factor λ ∈ [0, 1).
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Proof. Consider D ∈ S(Ω) such that VΩ(D) = α with α ∈

(0, 1], then D ⊆ αΩ ⊆ Ω . From monotonicity of MF (·) and
Proposition 4, it follows that MF (D) ⊆ MF (αΩ) ⊆ λαΩ , with
α ∈ (0, 1], which implies

VΩ(MF (D)) ≤ VΩ(MF (αΩ)) ≤ VΩ(λαΩ)

= λα < α = VΩ(D), (16)

since VΩ(βΩ) = β , for all β ≥ 0, and VΩ(C) ≤ VΩ(E) for all
C, E ∈ S(Rn) such that C ⊆ E. If α = 0, then D = {0} and
the inequalities in (16) become equalities. Hence, VΩ(MF (D)) <
VΩ(D), for all D ∈ S(Ω) \ {0}. �

Proposition 5 implies that λ ∈ [0, 1) is a bound on the
decreasing rate of the Lyapunov function along the trajectories.
That is, given X0 ∈ S(Ω) (with X0 ≠ {0}), we have that
VΩ(Xk+1) ≤ λVΩ(Xk) < VΩ(Xk), and then VΩ(Xk) ≤ λk, for all
k ∈ N. Geometrically, it means that X0 ⊆ Ω implies Xk ⊆ λkΩ

for all k ∈ N. Hence given X0 ∈ S(Ω) as the initial condition, the
set-valued trajectory converges to the set composed by the origin
and the system is exponentially stable.

Proposition 6. Let Assumptions 1 and 3 hold for the set-valued map
F (·) determining the system (1). Given two contractive sets Λ ∈

K0(X) and Γ ∈ K0(X) for the system (1) with contracting factors
λ ∈ [0, 1] and γ ∈ [0, 1], respectively, the set Ω = co(Λ, Γ ) ∈

K0(X) is a contractive set with contracting factor ω = max{λ, γ }.

Proof. Compactness and convexity of Ω and 0 ∈ int(Ω) follow by
the definition of convex hull. Moreover Ω ⊆ X since X is convex,
Λ ⊆ X and Γ ⊆ X , which implies that any convex combination of
elements of Λ and Γ belongs to X . Suppose that F (x) ⊆ λΛ for all
x ∈ Λ and F (x) ⊆ γΓ for all x ∈ Γ . For every x ∈ co(Λ, Γ ) = Ω ,
there exist y ∈ Λ, z ∈ Γ andα ∈ [0, 1] such that x = αy+(1−α)z.
Then, fromAssumption 1 and convexity ofΓ andΛ, and properties
of convex sets, see [23,24], we have

F (x) = F (αy + (1 − α)z) ⊆ αF (y) ⊕ (1 − α)F (z)
⊆ αλΛ ⊕ (1 − α)γΓ

⊆ αλΩ ⊕ (1 − α)γΩ = (αλ + (1 − α)γ )Ω

⊆ (αω + (1 − α)ω)Ω = ωΩ,

for every x ∈ Ω . Then Ω is contractive with contracting factor
ω. �

The following corollary shows that no loss of generality is
induced by assuming convexity of the invariant sets for CDI
systems.

Corollary 1. Let Assumptions 1 and 3 hold for the set-valued map
F (·) determining the system (1). Given a compact invariant set Ω ⊆

X with 0 ∈ int (co(Ω)), for the system (1), the set Ω̄ = co(Ω) is a
convex, compact invariant set.

Proof. The proof is analogous to that one of Proposition 6. �

Corollary 1 implies that the maximal invariant set in X ⊆ Rn is
convex.

Corollary 2. Let Assumptions 1 and 3 hold for the set-valued map
F (·) determining the system (1) and the state constraint set X ⊆ Rn.
The maximal invariant set ΩM ⊆ X is convex.

3.2. Robust invariance for uncertain CDI systems

The results presented in the previous section can be extended
to the CDI systems of the form (3). Given F (·) in (3), define the
set-valued function

FW (x) = {z ∈ Rn
: z ∈ F (x) ⊕ W }. (17)
A characterization of contractiveness for the uncertain CDI systems
is provided.

Proposition 7. Let Assumptions 1–3 hold for the set-valued map
F (·) and the set W determining the uncertain CDI system (3) and
the state constraint set X. Given λ ∈ [0, 1], a set Ω ∈ K0(X) is a
robust contractive set for system (3) if and only if

ηT z ≤ λφΩ(η) − φW (η), ∀z ∈ F (x), ∀x ∈ Ω, ∀η ∈ Rn. (18)

Proof. From properties of support functions we have that F (x) ⊕

W ⊆ λΩ , for all x ∈ Ω , which is the condition for robust
contractiveness of Ω , is equivalent to (18). �

A boundary-type necessary and sufficient condition for robust
contractiveness follows. The proof is avoided since it is analogous
to that one of Theorem 1.

Corollary 3. Let Assumptions 1–3 hold for the set-valued map F (·)
and the set W determining the uncertain CDI system (3) and the state
constraint set X. Given λ ∈ [0, 1], a set Ω ∈ K0(X) is a robust
contractive set for system (3) if and only if

F̌(x, η) ≤ λφΩ(η) − φW (η), ∀x ∈ ∂Ω, ∀η ∈ Rn. (19)

4. Computation of a contractive polytope for CDI systems

Necessary and sufficient conditions stated in Theorem 1 and
Corollary 3 are boundary-type ones. However, checking such
conditions is not computationally affordable for generic Ω ∈

K0(Rn), as they involve an infinite number of constraints, one for
every x ∈ ∂Ω and for every η ∈ Rn. On the contrary, for polytopic
Ω ∈ K0(Rn), defined as Ω = {x ∈ Rn

: Hx ≤ 1}, with H ∈ Rnh×n,
the number of constraints is equal to nv nh, where nv is the number
of vertices of Ω .

Proposition 8. Let Assumptions 1 and 3 hold for the set-valued map
F (·) determining the system dynamics (1) and the state constraint set
X. A polytope Ω = {x ∈ Rn

: Hx ≤ 1}, with H ∈ Rnh×n and whose
vertices are vj

∈ Rn for j ∈ Nnv , is a contractive set with λ ∈ [0, 1] if
and only if Ω ⊆ X and

F̌(vj,HT
i ) ≤ λ, ∀j ∈ Nnv , ∀i ∈ Nnh . (20)

Proof. Since (14) is a necessary and sufficient condition for a
generic Ω ∈ K0(X) to be a contractive set for a CDI system, then
the equivalence between (14) and (20) proves the proposition.
From properties of support functions, condition (14) for polytopic
Ω is given by

F̌(x,HT
i ) ≤ λ, ∀x ∈ ∂Ω, ∀i ∈ Nnh . (21)

Moreover, from convexity of F̌(·, η), for all η ∈ Rn, condition (21),
involving x ∈ ∂Ω , holds if and only if (20), concerning the vertices
of Ω , is satisfied. �

Proposition 8 provides a necessary and sufficient condition for
a polytope to be a contractive set for CDI systems, consisting of
nv nh convex constraints. The following result is useful to obtain a
contractive set Ω̂ = co(Ω∪{x̂}) by computing x̂ ∈ X , provided that
Ω is a contractive polytope. Then Ω ⊆ Ω̂ and the result permits
us to design an enlarging method for a contractive polytope.

Proposition 9. Let Assumptions 1 and 3 hold. Consider a polytope
Ω = {x ∈ Rn

: Hx ≤ 1} ⊆ X, with H ∈ Rnh×n, and λ ∈ [0, 1], such
that the hypothesis of Proposition 8 holds for Ω , and, given x̂ ∈ X,
define the set Ω̂ = co(Ω ∪ {x̂}). If x̂ ∈ X is such that F̌(x̂,HT

i ) ≤ λ,
for every i ∈ Nnh , then Ω̂ is a contractive set for system (1) and the
constraints x ∈ X.
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Proof. From Proposition 8 we have that F̌(x,HT
i ) ≤ λ for all

i ∈ Nnh , either if x = x̂ or if x is a vertex of Ω . This implies, from
convexity of F̌(·, η) for every η ∈ Rn, that

F̌(x,HT
i ) ≤ λ, ∀i ∈ Nnh , (22)

for all x ∈ co(Ω∪{x̂}) = Ω̂ . Condition (22) is equivalent toF (x) ⊆

λΩ , then, for every x ∈ Ω̂ we have that F (x) ⊆ λΩ ⊆ λΩ̂ which
means that Ω̂ is a contractive polytope for the system (1). �

The results stated in Propositions 8 and 9 are extended to the
case of uncertain CDI systems.

Corollary 4. Let Assumptions 1–3 hold for the set-valued map F (·)
and the set W determining the uncertain CDI system (3) and the state
constraint set X. A polytopeΩ = {x ∈ Rn

: Hx ≤ 1}, with H ∈ Rnh×n

and whose vertices are vj
∈ Rn for j ∈ Nnv , is a robust contractive set

with λ ∈ [0, 1] if and only if Ω ⊆ X and

F̌(vj,HT
i ) ≤ λ − φW (HT

i ), ∀j ∈ Nnv , ∀i ∈ Nnh . (23)

Moreover, if x̂ ∈ X is such that F̌(x̂,HT
i ) ≤ λ − φW (HT

i ), for every
i ∈ Nnh , then Ω̂ = co(Ω ∪ {x̂}) is a robust contractive set for
system (3).

4.1. Algorithm

The proposed algorithm provides a sequence of polytopic ro-
bust contractive sets for an uncertain CDI system with contracting
factor λ. Assume that ΩL = {x ∈ Rn

: Hx ≤ 1}, with H ∈ Rnh×n, is
an initial guess and vj are its nv vertices. A possibility to obtain the
initial guess is to compute a contractive set for a system which is
a local approximation, possibly linear, of the CDI one. Given a con-
tractive set Ω for a linear approximation of the CDI (or nonlinear)
system, there exists β > 0 such that ΩL = βΩ is contractive for
the CDI one, under certain differentiability assumptions (see [17]
for an analogous result). Standard algorithms can be employed, see
for instance [3,5,7], to obtain Ω . Alternatively, an LDI system, a lo-
cal extension of the CDI one, can be computed. Every contractive
set for the LDI system is contractive also for the CDI one.

Algorithm 1. Computing a robust contractive set for a CDI
system (3).

Given the CDI system (3) under Assumptions 1, 2 and 3 and the
polytope ΩL:
Solve: α = max

γ>0
γ ,

s.t. F̌(γ vj,HT
i ) ≤ λγ − φW (HT

i ), ∀j ∈ Nnv , ∀i ∈ Nnh . (24)

Pose Ω0 = αΩL = {x ∈ Rn
: H0x ≤ 1} and k = 0.

for k = 0, · · · , kmax, randomly generate ηk
∈ Rn and solve:

xk = argmax
x̂∈X

(ηk)T x̂,

s.t. F̌(x̂, (Hk
i )

T ) ≤ λ − φW ((Hk
i )

T ), ∀i ∈ Nnkh
, (25)

and pose Ωk+1 = co(Ωk ∪ {xk}) = {x ∈ Rn
: Hk+1x ≤ 1}.

end

The algorithm is based on Corollary 4. Given ΩL, the first step
consists of computing the maximal α > 0 such that αΩL is
contractive for the CDI system. In fact γ vj, with j ∈ Nnv , are
the vertices of γΩL and then condition (24) implies that γΩL is
contractive. The following iteration generates a sequence of nested
contractive sets, i.e. Ωk ⊆ Ωk+1, for every selection criterion
of ηk

∈ Rn. In fact xk is such that either xk ∈ ∂Ωk or xk ∉

Ωk and satisfies the conditions of Corollary 4. Nevertheless it
is desirable, in practice, to have a sequence converging to the
maximal contractive set. Consider, with no loss of generality, the
directions generated on the surface of the unitary ball in Rn,
denoted Bn, and define

N(η̄, r) = {η ∈ ∂Bn
: ∥η̄ − η∥2 < r},

for every η̄ ∈ ∂Bn and r > 0. That is, N(η̄, r) are the non-empty
intersections of ∂Bn and open balls in Rn.

Proposition 10. If the randomly generated directions ηk
∈ ∂Bn in

Algorithm 1 are such that the probability of ηk
∈ N(η̄, r) is positive

for every η̄ ∈ ∂Bn and r > 0, then the sequence Ωk, with k ∈ N,
converges to the maximal convex contractive set in X for the CDI
system (3).

Proof. Suppose that for ηk
∈ ∂Bn we have xk ∉ Ω . This implies

the existence of η̄ ∈ ∂Bn such that η̄T xk > Φη̄(Ω), because of
the separation theorem. From continuity of the support function
with respect to η, for every bounded Ω , we have that f (η) =

ηT xk − Φη(Ω) is continuous and positive in η̄ ∈ ∂Bn. Then, there
exists a neighborhood of η̄ such that f (η) is positive for every η in
such a neighborhood. Thus, if there is xk ∉ Ω satisfying (25), which
implies F (xk) ⊕ W ⊆ Ω , then there is η̄ ∈ ∂Bn and r > 0 such
that

max
x̂∈X

{ηT x̂ : s.t. (25)} ≥ ηT xk > Φη(Ω),

for all η ∈ N(η̄, r). Thus if Ωk can be enlarged, an enlarging
directionwill be foundwith non-zero probability. This implies that
the sequence of nested contractive sets converges to the maximal
one. �

From Proposition 10, every criterion which selects a direction
in any non-empty set N(η̄, r) with non-zero probability satisfies
the requirements for convergence of Ωk to the maximal convex
contractive set. A possible choice is the uniform distribution.

Remark 6. Concerning the computational complexity of the
algorithm, the first step is efficiently solvable, consisting of a
convex optimization problem in the variable γ ∈ R. This implies
that the computation of the contractive polytope Ω0 can be
performed for high dimensional problems, provided that ΩL and
its vertices are known. The iteration concerning the enlarging
procedure, on the other hand, requires a high computational
burden. In fact, although (25) is a convex optimization problem
in the variable x̂, the computation of Ωk+1 consists of a convex
hull operation and a simplification process to generate theminimal
H-representation of the polytope. Both these two sub-procedures
are computationally demanding. Then the enlarging procedure
should be performed only for relatively lowdimensional problems,
as illustrated in the following example.

Example 1. To give an idea of which is the largest dimension for
the problem to be solved in reasonable time, we applied Algorithm
1 to a generalized saturated system varying its dimension. For
n = 6, the Matlab procedure requires some minutes to compute
the sequence of Ωk for kmax = 9, with a non-optimized code
and using standard Matlab routines (for polytopes handling, for
instance). Table 1 shows the evolution of the number of vertices
and facets of Ωk for n = 6. The increase of the number of vertices
and facets yields the enlarging procedure to be more and more
time-consuming as the algorithm proceeds.

Then, for relatively low dimensional systems, the choice of
the particular geometry of the initial guess ΩL is not crucial, as
the enlarging process permits us to generate properly shaped
contractive sets. On the contrary, the selection of ΩL can strongly
influence the size of the contractive sets obtained for higher
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Table 1
Vertices and facets of Ωk ⊆ Rn , with n = 6.

Step 0 1 2 3 4 5 6 7 8 9

Vertices 65 66 67 68 69 70 71 72 73 74
Facets 28 44 59 75 105 128 164 191 246 300
Fig. 2. Sequence of sets Ωk for the CDI system, for k ∈ N[0,kmax] , generated by
Algorithm 1.

dimensional systems, as the enlarging iterations can result in
them being computationally unaffordable. On the other hand, the
problem of computing contractive sets for nonlinear systems is
rather complex by its nature. Hence, a trade-off between the size
of the obtained contractive sets and the required computational
complexity is unavoidable, in our opinion, for high dimensional
systems.

5. Numerical example

Consider a generalized saturated system (9), see Section 2.2,
with matrices

A =


1.1 1
0 1.1


, B =


0.5
1.1


,

F =

−0.5236 −1.1264


,

and Γ (y) = max{µ(y + σ), −y0} with µ = 1, σ = 0.2 and
y0 = 1.8, as in Definition 2. The CDI extension of the generalized
saturated system is determined by convex bounding functions
given by (10), with Γ 0(y) = max{µy, −y0 − µσ } = max{y, −2},
and by W = {w = Bv : −0.2 ≤ v ≤ 0.2}, see Section 2.2.
The state is assumed to be constrained in the region X = {x ∈

R2
: − 15 ≤ x1 ≤ 15, −6 ≤ x2 ≤ 6}. Notice that in the region

of the state space given by D = {x ∈ Rn
: |Fx| ≤

y0
µ

+ σ } = {x ∈

Rn
: |Fx| ≤ 2}, the CDI system is equal to the linear one given by

xk+1 = (A+ BF)xk + wk, whose eigenvalues are 0.3496± 0.1133i,
lying in the unitary circle. Such a linear system is used to determine
a local invariant set ΩL using standard iterative methods. Since we
are interested in a robust invariant set for the uncertain CDI system,
we choose λ = 1 and apply the algorithm.

In Fig. 2, the sequence of robust invariant sets generated by
the enlarging process are depicted. The inner set is Ω0 = αΩL
computed at the first step of the algorithm. The biggest robust
invariant set is Ωkmax , with kmax = 100. Notice that the state
constraints are satisfied, i.e. Ωk ∈ X .
6. Conclusions

In this paper the CDI modeling framework has been presented
and used to characterize invariance and contractiveness of convex
sets for nonlinear and uncertain systems. Conditions for invariance
and contractiveness are posed as a set of constraints involving
convex bounding functions. Thanks to the properties of convexity,
such constraints are boundary-type conditions, unlike the case of
generic nonlinear systems. This led to the definition of a procedure
for computing polytopic invariant sets based on convex constraints
satisfaction for CDI systems.

One future research direction concerns further developments of
the theoretical aspects of the CDI systems, considering for instance
the problems of design and estimation. On the other hand, the
particularization of the properties of the CDI systems to specific
subclasses of nonlinear ones, saturated and generalized saturated
for instance, could lead to extend and improve the results for
common and more practice-oriented models.
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