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Output feedback control of nonlinear systems subject to sensor data losses
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Abstract

In this work, we focus on output feedback control of nonlinear systems subject to sensor data losses. We initially construct an output feedback
controller based on a combination of a Lyapunov-based controller with a high-gain observer. We then study the stability and robustness properties
of the closed-loop system in the presence of sensor data losses for both the continuous and sampled-data systems. We state a set of sufficient
conditions under which the closed-loop system is guaranteed to be practically stable. The theoretical results are demonstrated using a chemical
process example.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, an increasing number of control applications
which have the control loops closed via a shared communica-
tion network have been discussed, see for example [44,41,31]
and the references therein. These control systems are known as
networked control systems (NCS) and differ from standard con-
trol systems (in which direct point-to-point links are used), in
that the network introduces additional dynamics in the closed-
loop system. There are different ways of modeling the dynamics
introduced in the closed-loop system by the network, like time-
varying delays, data losses or data quantization. In the present
work, we focus on output feedback control of nonlinear systems
subject to sensor data losses. This class of systems are of par-
ticular interest for wireless NCS [33], which play a prominent
role in several areas of interest like sensor networks [1,5], multi-
agent systems [4,40] and chemical processes [25,27]. New
wireless, relatively low cost, sensors are available from vendors.
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These sensors can be used to implement new control loops, or
to add redundancy in already working plants. These sensors are
implemented in a wireless setting and are susceptible to com-
munication network interference which would result in time in-
tervals in which readings may not be provided to the control
system; this set-up leads to the control problem formulation that
is considered in this work. Several applications of networked
control systems based on wireless communication links have
been presented in the literature, see for example [32,43,42,15].

There are some recent works in the literature focusing on the
analysis of the stability and robustness properties of nonlinear
systems under state feedback control in the presence of data
losses [38,39,30,29,25,35,10]. In these works it is proved that,
if the maximum time in which the system operates in open-loop
(i.e., without feedback) is small enough, practical stability is
guaranteed. However, these results are based on the assumption
that full-state measurements are available. In many systems,
this assumption does not hold and an output feedback control
scheme such as high-gain observers [20,17,37,24,6,11–13] or
robust finite-time convergence observers [14,22] has to be used.
However, output feedback control of nonlinear systems subject
to sensor data losses has not been studied.

Motivated by the above considerations, we consider the
problem of output feedback control of nonlinear systems
subject to sensor data losses. Fig. 1 shows a schematic of the
class of closed-loop systems under consideration. The process
output is fed to the observer, which provides an estimate of
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Fig. 1. Closed-loop system with sensor data losses.

the state to the controller. When sensor data losses occur,
the observer does not receive new measurements to update
the estimated state. In this paper, we study the stability and
robustness properties of a combination of a Lyapunov-based
controller with a high-gain observer in the presence of sensor
data losses. Due to the nature of the fast dynamics of the
observer, to obtain results that differ from output feedback
control of nonlinear sampled-data systems [9,19] (which are
a degenerate case of nonlinear systems subject to sensor data
losses), it is necessary to approximately decouple the dynamics
of the observer from the sensor data losses. To this end, the
minimum time that the control system operates in closed-
loop between consecutive periods without measurements, must
be bounded from below. The main idea is that the estimated
state must converge to the actual state before new sensor data
losses occur. Once the dynamics of the high-gain observer
are approximately decoupled from the sensor data losses,
practical stability is guaranteed if the maximum time without
measurements is smaller than an upper bound that practically
depends on the properties of the closed-loop system under state
feedback control.

The paper is organized as follows: In Section 2, preliminary
notation and results on Lyapunov-based control and high-gain
observers are introduced. In Section 3, the main contribution
of the paper is presented. In Section 4 we explicitly consider
the issue of measurement-sampling in the output feedback
controller. In Section 5, the results are demonstrated using
a chemical process example. In Section 6, we present some
concluding remarks.

2. Preliminaries

The main objective of this paper is to study the stability and
robustness properties of an output feedback controller based on
a combination of a Lyapunov-based controller with a high-gain
observer with respect to sensor data losses. We assume that
this controller has been designed a priori under the assumption
of flawless communication. This approach has been followed
in previous works to study state feedback control of nonlinear
systems subject to sensor data losses, see for example [38,39,
30,29,25]. In this section, we present the class of nonlinear
systems and output feedback controllers under consideration,
along with some properties. We will use these properties in the
analysis of the closed-loop system subject to sensor data losses.

Specifically, in this work we assume that the process in Fig. 1
is modeled by a single-input single-output (SISO) nonlinear
system with the following state-space description:

ẋ = f (x) + g(x)u

y = h(x)
(1)
where x ∈ Rn is the state, u ∈ R is the input and y ∈ R is the
measured output. To simplify our notation, we focus on SISO
systems but extensions of these results to multi-input multi-
output systems are conceptually straightforward.

Throughout the paper, the notation | · | will be used to
denote the standard Euclidean norm of a vector. The notation
Lk

f h(·) denotes the standard kth-order Lie derivative of a scalar
function h(·) with respect to the vector function f (·). The
notation Lg L f h(·) denotes the mixed Lie derivative of a scalar
function h(·), with respect to vector functions f (·) and g(·).
The notation Ωr denotes the set Ωr := {x ∈ Rn

|V (x) ≤ r}

for a given positive definite scalar function V (·). A continuous
function α : [0, a) → [0, ∞) is said to belong to class K if
it is strictly increasing and α(0) = 0. A continuous function
β : [0, a) × [0, ∞) → [0, ∞) is said to belong to class KL if,
for each fixed s, the mapping β(r, s) belongs to classK, and for
each fixed r , the mapping β(r, s) is decreasing with respect to
s and β(r, s) → 0 as s → ∞.

In order to proceed with the design of the output feedback
controller, we need to impose the following assumptions on
system (1):

Assumption 1. Functions f (·), g(·) and h(·) are sufficiently
smooth in x , f (0) = 0 and h(0) = 0.

This means that the origin is an equilibrium point for
system (1) with u = 0. We also assume that there exists a
state feedback controller that renders this equilibrium point
globally asymptotically (and locally exponentially) stable. This
assumption is stated below.

Assumption 2. System (1) has a globally asymptotically (and
locally exponentially) stable equilibrium at the origin x = 0 for
a given feedback control k : Rn

→ R which satisfies k(0) = 0.

Using converse Lyapunov theorems (see [18]), Assumption 2
implies that there exist a class K function ρ(·) and a Lyapunov
function V for the closed-loop system (system (1) with u =

k(x)), which is continuous and bounded in Rn that satisfies
V (x) > 0, V (0) = 0 and

V̇ (x) ≤ −ρ(V (x)). (2)

Note that stabilizing state feedback control laws for nonlinear
systems have been developed using Lyapunov techniques; the
reader may refer to [21,7] for results on this area. These
techniques can be used to obtain k(x). In Section 4, a method
such as the one presented in [34] is used.

Remark 1. The assumption of global asymptotic stability of
the origin can be relaxed to asymptotic stability of the origin. In
this case, functions L f V and LgV must be sufficiently smooth
in the region of attraction of the stable equilibrium point of the
closed-loop system. The size of this region depends on the class
of nonlinear systems considered.

We assume next that the system (1) is fully input–output
linearizable (i.e., the relative degree of the output with respect
to the input is n [18]). This is not necessary but simplifies the
notation of the paper. The results can be extended to a more
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general class of systems (for example systems with ISS inverse
dynamics [6,11,13,12]). Assumption 3 states this requirement.

Assumption 3. There exists a set of coordinates

z =


z1
z2
...

zn

 = T (x) =


h(x)

L f h(x)
...

Ln−1
f h(x)

 (3)

such that system (1) takes the form:

ż1 = z2
...

żn−1 = zn

żn = Ln
f h(T −1(z)) + Lg Ln−1

f h(T −1(z))u
y = z1

where Lg Ln−1
f h(x) 6= 0 for all x ∈ Rn .

Using Assumption 3, the system of Eq. (1) can be rewritten
in the form

ż = Az + B[Ln
f h(T −1(z)) + Lg Ln−1

f h(T −1(z))u]

y = Cz

with

A =

[
0n−1 In−1

0 0T
n−1

]
, B =

[
0n−1

1

]
, C =

[
1

0n−1

]T

where In−1 and 0n−1 are the identity matrix and a vector of
zeros of dimension n − 1 respectively.

We note that the change of variables is invertible, since
for every x , the variable z is uniquely determined by the
transformation z = T (x). The output feedback controller
proposed is based on a linear high-gain observer (see for
example [20,17,37,24,6,11–13]) which provides estimates of
the derivatives of the output up to order n − 1, and thus
estimates of the variable z. Using these estimates, the estimated
state of the system x̂ is obtained using T −1(·). Proposition 1
presents the output feedback controller used and characterizes
its stability properties. The proof of the proposition, which
invokes singular perturbation arguments, is a special case of
Theorem 2 in [12], and is omitted for brevity.

Proposition 1. Consider the nonlinear system (1) for which
Assumptions 1–3 hold, under the output feedback controller

ż = Az + L(y − Cz), u = k(x̂) (4)

with

L =

[a1

ε

a2

ε2 · · ·
an

εn

]T
, x̂ = T −1(sat(z))

where the parameters ai are chosen such that the roots of

sn
+ a1sn−1

+ · · · + an−1s + an = 0

are in the open left-half of the complex plane.
Then given δ, there exists ε∗ such that if ε ∈ (0, ε∗

],
|z(t0)| ≤ zm , x(t0) ∈ Ωδ and sat (·) = min{1, zm/|(·)|}(·) with
zm being the maximum of the vector z for |z| ≤ βz(δz, 0) where
βz is a class KL function and δz = max{|T (x)|, x ∈ Ωδ};
the origin of the closed-loop system is asymptotically (and
locally exponentially) stable. This stability property implies that
given ε ∈ (0, ε∗

] and some positive constant em > 0 there
exists positive real constant tb such that if x(t0) ∈ Ωδ and
|z(t0)| ≤ zm , then |x(t) − x̂(t)| ≤ em for all t > t0 + tb.

Remark 2. To eliminate the peaking phenomenon associated
with the high-gain observer, we use the saturation function,
sat (·), to eliminate wrong estimates of the output derivatives
for short times, see for example [20].

Remark 3. We consider that the estimated state x̂ has
converged to the actual state x , when the estimation error
|x − x̂ | is less than or equal to a given bound em . The time
needed to converge, is given by tb which is proportional to the
observer gain 1/ε (recall that we have eliminated the peaking
phenomenon). During this transient, the value of the Lyapunov
function V (x) may increase.

Remark 4. We consider high-gain observers because they can
be designed to provide guaranteed stability of the closed-loop
system. In the results presented in this paper these stability
properties are used to study the robustness of the closed-loop
system with respect to data losses. Other observer schemes such
as robust finite-time convergence observers [14,22] (see also [3,
2] for other results on finite-time stability and control) can
provide different closed-loop properties and can be the subject
of further research.

3. Stabilization subject to sensor losses

In this section, we consider system (1) subject to sensor data
losses in closed-loop with the output feedback controller (4)
introduced in the previous section. When sensor data is lost in
the sensor link, the observer no longer has access to the output
to update the estimated state. There are different potential
actions that the controller can take when sensor data is lost.
One strategy is to set the input to zero (or any fixed value) [33].
Other approaches [26,27] use the model of the system to
estimate in open-loop the actual state and update accordingly
the input (note that in this case uncertainty has to be taken
into account in an explicit way). In this paper, we consider
that the estimated state is held at the value computed using the
last available measurement as done in [38,39,30,29,25]. This
means that the input is kept constant at the last value computed
using measurements from the system, however, our results can
be extended to other strategies as discussed in Remark 10
below. The closed-loop system subject to sensor data losses is
described by:

ẋ = f (x) + g(x)k(x̂)

x̂ = T −1(sat(z))

ż =

{
Az + L(y − Cz) t ∈ [t2i , t2i+1)

0 t ∈ [t2i+1, t2i+2)

y = h(x)

(5)
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2 zm was defined in Proposition 1.
where the partition {ti≥0} is an increasing sequence of times
that determine when the output is available (t ∈ [t2i , t2i+1)) or
the sensor data is lost (t ∈ [t2i+1, t2i+2)).

The objective of this paper, is to establish a set of sufficient
conditions on the partition {ti≥0}, that guarantee convergence of
the state of the closed-loop system to a desired neighborhood of
the origin. These conditions are given in the form of constraints
on the following properties of the partition {ti≥0}

δo = max
i

t2i+2 − t2i+1 (6)

δc = min
i

t2i+1 − t2i . (7)

Constant δo is the maximum time that the controller operates
in open-loop in a consecutive manner, while δc is the minimum
time that the controller operates in closed-loop in a consecutive
manner, that is, the minimum time between two consecutive
open-loop periods. These constants are used in the following
theorem:

Theorem 1. Consider system (5) for which Assumptions 1–3
hold. Then, given positive real numbers d and δ that satisfy
γ < d < δ with

γ = max V (x(ti + tb)) − V (x(ti ))

s.t. x(ti ) ∈ Ωδ, u(t) ∈ k(Ωδ)
(8)

where k(Ωδ) is the set of all possible inputs k(x) for any
x ∈ Ωδ; there exists a positive constant ε∗(δ) = ε∗ such that
if ε ∈ (0, ε∗

], there exist positive constants δ∗
o(ε) = δ∗

o and
δ∗

c (ε) = δ∗
c such that if δo ≤ δ∗

o , δc ≥ δ∗
c , |z(t0)| ≤ zm and

x(t0) ∈ Ωδ , then lim supt→∞ V (x(t)) ≤ d.

Proof. The proof consists of three parts. In the first part,
we study the trajectories of system (5) when the output
measurements are available (that is, t ∈ [t2i , t2i+1) for all i).
In this part we provide a sufficient condition for approximately
decoupling the observer dynamics from the sensor data losses.
In the second part, we characterize the trajectories when sensor
data is lost (that is, t ∈ [t2i+1, t2i+2) for all i) assuming that at
time t2i+1 the estimated state is close to the actual state. If at
time t2i the conditions of Part 1 hold, then it is guaranteed that
the conditions of Part 2 hold at time t2i+1, and moreover, if at
time t2i+1 the conditions of Part 2 hold, then it is guaranteed that
the conditions of Part 1 hold at time t2i+2. This allows us to use
the results of Parts 1 and 2 recursively from t0 to characterize
the evolution of the closed-loop system for all times. This is
done in Part 3 of the proof, where convergence of the state
of the closed-loop system to a neighborhood of the origin is
proved. The main idea is to prove that between two consecutive
times in which the loop is closed or open (from t j to t j+1),
it is guaranteed that the value of the Lyapunov function has
decreased.

Part 1: In this part, we study the trajectories of the state of
system (5) in t ∈ [t2i , t2i+1). At time t2i , the loop is closed
and measurements are available so the results of Proposition 1
can be applied. Proposition 1 fixes ε∗ such that given δ, if
ε ∈ (0, ε∗
], |z(t2i )| ≤ zm

2 and x(t2i ) ∈ Ωδ , then the
origin of the closed-loop system is asymptotically (and locally
exponentially) stable. These conditions hold for i = 0. In part 2
of this proof a sufficient condition is given such that it can be
proved recursively that the conditions hold for all i . The proof
is presented in Part 3.

We are going to define δ∗
c , in a way such that if δc ≥ δ∗

c ,
|z(t2i )| ≤ zm and x(t2i ) ∈ Ωδ then

V (x(t)) ≤ V (x(t2i )) + γ, t ∈ [t2i , t2i+1) (9)

V (x(t2i+1)) < V (x(t2i )) < δ (10)

|x(t2i+1) − x̂(t2i+1)| ≤ em (11)

|z(t2i+1)| ≤ zm . (12)

The above inequalities imply that at time t2i+1, when sensor
data is lost and the controller starts operating in open-loop,
the estimated state is close to the real state, i.e., the observer
dynamics are approximately decoupled from the data losses.

We distinguish two time periods in t ∈ [t2i , t2i+1), before
and after the estimated state value, x̂ , has converged close to the
actual state, x . The stability property implies that given some
positive constant em > 0 there exists positive real constant tb
such that |x(t) − x̂(t)| ≤ em for all t > t0 + tb. Taking into
account (8), we conclude that

V (x(t)) ≤ V (x(t2i )) + γ, t ∈ [t2i , t2i + tb).

This means that the Lyapunov function remains bounded
although it may achieve a value greater than δ. After the
estimation error has decreased below em , because the origin
is asymptotically stable under the state feedback controller,
the state of the closed-loop system converges towards the
equilibrium point, so by continuity of V (x(t)), there exists
tc > 0 such that

V (x(t)) ≤ V (x(t2i )), ∀t > t2i + tb + tc.

For a choice of δ∗
= tb + tc, inequalities (9)–(12) hold.

Part 2: In this part of the proof, we study the evolution of
system (5) in t ∈ [t2i+1, t2i+2). We assume that |x(t2i+1) −

x̂(t2i+1)| ≤ em , that is, when the sensor data is lost (t = t2i+1),
the estimated state has converged close to the actual state.
This implies that the observer dynamics have been practically
decoupled from the sensor data losses. In Part 1 of this proof
a sufficient condition is given such that it can be proved
recursively that the conditions hold for all i . The proof is
presented in Part 3.

We are going to define δ∗
o , in a way such that if δo ≤

δ∗
o , x(t2i+1) ∈ Ωδ and |z(t2i+1)| ≤ zm then the following

inequalities hold

V (x(t2i+2)) ≤ s ≤ δ, ∀x(t2i+1) ∈ Ω s
2

(13)

V (x(t2i+2)) ≤ V (x(t2i+1)) ≤ δ, ∀x(t2i+1) 6∈ Ω s
2

(14)

|z(t2i+2)| ≤ zm (15)

with s = d−γ . Note that in order to guarantee that the system is
ultimately bounded in Ωd , we must take into account (following
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inequality (13) of Part 1) that during the time period in which
the observer state converges to the actual state, the Lyapunov
function can grow at most γ before starting to converge towards
the equilibrium point.

To guarantee (13), δ∗
o must satisfy the following constraint

s ≤ max V (x(t0 + δ∗
o))

s.t. x(t2i+1) ∈ Ω s
2
, u(t) = k(x̂(t2i+1))

|x(t2i+1) − x̂(t2i+1)| ≤ em .

(16)

This inequality can be always satisfied because of the continuity
of the trajectories x(t) of the closed-loop system.

We now derive a constraint on δ∗
c that assures that (14) holds.

The input is kept constant for the time period in which the
controller is operating in open-loop, that is u(t) = k(x̂(t2i+1))

for t ∈ [t2i+1, t2i+2) (recall that x̂(t2i+1) is the last estimated
state). It follows that

ẋ = f (x) + g(x)k(x̂(t2i+1)), t ∈ [t2i+1, t2i+2).

In this time period, the time derivative of the Lyapunov function
V (x) is given by

V̇ (x) = L f V (x) + LgV (x)k(x̂(t2i+1))

= L f V (x̂(t2i+1)) + LgV (x̂(t2i+1))k(x̂(t2i+1))

+ L f V (x) − L f V (x̂(t2i+1))

+ (LgV (x) − LgV (x̂(t2i+1)))k(x̂(t2i+1)).

Since L f V and LgV are continuous, there exist positive
constants K f , Kg such that

|L f V (x) − L f V (x ′)| ≤ K f |x − x ′
|

|(LgV (x) − LgV (x ′))k(x ′)| ≤ Kg|x − x ′
|

for all x, x ′
∈ Ωδ . Using these bounds and taking into

account (2), we obtain the following bound on the time
derivative of the Lyapunov function V (x):

V̇ (x) ≤ −ρ(V (x̂(t2i+1))) + (K f + Kg)|x − x̂(t2i+1)|

for all x, x(t2i+1) ∈ Ωδ . Define the error vector as e = x − x̂ .
Taking into account that ˙̂z = 0, the error has the following
dynamics

ė = f (x) + g(x)k(x̂(t2i+1)), t ∈ [t2i+1, t2i+2).

By Assumption 1, we know that there exists constant M such
that

| f (x) + g(x)k(x ′)| ≤ M, ∀x, x ′
∈ Ωδ.

As shown in Part 1, δ∗
c > tb, so |e(t2i+1)| ≤ em . It follows that

the norm of the error is upper bounded by

|e(t)| ≤ em + M(t − t2i+1).

Using this bound we obtain the following inequality for all
x(t2i+1) 6∈ Ω s

2

V̇ (x) ≤ −ρ
( s

2

)
+ (K f + Kg)(em + M(t − t2i+1)).

To guarantee (14), a sufficient condition is that the Lyapunov
function has a negative time derivative for all t ∈ [t2i+1, t2i+2).
Fig. 2. Trajectories in the state space of the closed-loop system.

For a choice of δ∗
o such that

δ∗
o <

ρ( s
2 ) − (K f + Kg)em

(K f + Kg)M
, (17)

if x(t2i+1) 6∈ Ω s
2
, then V̇ ≤ 0 for all t ∈ [t2i+1, t2i+2). Note

that em can be made arbitrarily small by decreasing tb.
Because ż(t) = 0 for t ∈ [t2i+1, t2i+2), when sensor data

losses occur, the observer does not modify the estimated state.
This means that if |z(t2i+1)| ≤ zm then (15) is guaranteed.

Part 3: In this part, we prove that if ε < ε∗, δ∗
c = tb + tc and

δ∗
o satisfies (16) and (17), then the trajectories of the closed-

loop system (5) are ultimately bounded in a neighborhood of
the origin if δc > δ∗

c , δo < δ∗
o , x(t0) ∈ Ωδ and |z(t0)| ≤ zm .

At time t0, x(t0) ∈ Ωδ and |z(t0)| ≤ zm so inequalities (9)–
(12) hold. Applying recursively (9)–(12) and (13)–(15), it
follows that (9)–(12) and (13)–(15) hold for all i . This means
that the conditions (and the results) of Parts 1 and 2 hold for
all i . We will now prove that the state of the system reaches
Ωs in finite time. Using (10) and (14), we obtain that for all j ,
if x(t j ) 6∈ Ωs , then V (x(t j )) < V (x(t j+1)). This means that
there exists j∗ such that x(t j∗) ∈ Ωs . Once the state reaches
Ωs , the trajectories remain bounded in Ωd for all future times.
Following (9) and (10), if x(t2i ) ∈ Ωs , then V (x(t)) ≤ d for
all t ∈ [t2i , t2i+1) and x(t2i+1) ∈ Ωs . Following (13) and (14),
if x(t2i+1) ∈ Ωs , then V (x(t)) ≤ d for all t ∈ [t2i+1, t2i ) and
x(t2i+2) ∈ Ωs . Repeating this argument recursively, it holds
that

lim sup
i→∞

V (x(ti )) ≤ d

so the state x of the closed-loop system is ultimately bounded
in Ωd . �

Remark 5. The state x of the closed-loop system might leave
the set Ωδ while the estimated state x̂ converges to x . In Fig. 2,
the actual state starts from point 1, while the estimated state
starts from point 0. Both points are inside δ but the initial
estimation error is very high. As the estimated state converges,
the actual state moves to point 2 leaving Ωδ . Note that although
it may leave Ωδ , it is still bounded is some set (recall (9) and
the definition of γ ). The estimated state might peak before
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converging to point 2, but because the saturation function is
used, it also remains bounded. Once it has converged, both
the actual state and the estimated state move toward the origin
because the origin is asymptotically stable. Because δ∗

c =

tb + tc, it is assured that before sensor data is lost, the actual
state returns to Ωδ (from point 2 to point 3). When feedback is
lost at point 3, the estimated state remains fixed, while the actual
state is assured to keep approaching the equilibrium point (from
point 3 to point 4) because δo ≤ δ∗

o .

Remark 6. If the actual and the estimated states, x and x̂
respectively, are close and lie inside Ω s

2
when sensor data losses

occur, then because of (13), the Lyapunov function can increase
at most to s. In Fig. 2, this trajectory is represented from point 5
to point 6. In the meantime, the estimated state remains in
point 5. When feedback is recovered, the state does not start
immediately to move towards the origin, as it would do in the
case of state feedback. While the estimated state converges
(from point 5 to point 7), the actual state keeps moving away
(from point 6 to point 7) leaving Ωs , but it remains inside Ωd .
Once the estimated state has converged, the actual system state
moves again inside Ωs (from point 7 to point 8).

Remark 7. Constants δ∗
c and δ∗

o depend on ε which is upper
bounded by Proposition 1. The observer gain 1

ε
can be increased

to obtain smaller tb and γ , improving this way the robustness
of the output feedback controller with regard to sensor data
losses. It should be noted, however, that it is well known
that increasing the observer gain, can amplify measurement
noise and induce poor closed-loop performance. This points
to a fundamental trade-off that cannot be resolved by simply
changing the estimation scheme, owing to the lack of separation
principle in nonlinear systems.

Remark 8. The technique employed in Part 2 of the proof,
that is, providing an upper bound on the maximum time that
the system can operate in open-loop while assuring a negative
time derivative of the Lyapunov function, is shared by the
works on state feedback control of nonlinear systems subject
to data losses [38,39,30,29,25] and sampled-data systems [8,
28]. In Part 1, sensor data losses are approximately decoupled
from the observer dynamics providing the lower bound on δc.
This sufficient condition is particular of output feedback control
systems based on high-gain observers and is part of the main
contribution of this work.

Remark 9. In this work we require that the controller sets
ż = 0 when operating in open-loop. It is also possible to rely
on open-loop predictions based on the model by setting

ż = Az + B[Ln
f h(T −1(z)) + Lg Ln−1

f h(T −1(z))u]

for t ∈ [t2i+1, t2i+2) as done for example in model-based
networked control [26]. In this case, the same stability and
robustness result is obtained, although the estimated values
of δ∗

o would have a different expression (possibly tighter).
This change would not affect Part 1 of the proof, that is, the
approximate decoupling of the observer dynamics from the
sensor data losses. The actual performance of both strategies
would be different (it is reasonable to expect that the model-
based approach would perform better in most cases). Note that
in this case, uncertainties would have to be introduced in the
model to take into account that the predicted state would be
different from the actual state. The predictions would be made
with the nominal model.

Remark 10. The proposed implementation of the output
feedback controller subject to sensor data losses of Eq. (5)
always computes the input using the estimated state of the
observer. For this reason, it is expected that the input trajectory
exhibits abrupt changes each time the estimated state deviates
from the actual state when the loop is open, and converges to the
actual state again once the loop is closed. The abrupt changes
on the estimated state cannot be avoided because they are due
to the fast dynamics of the high-gain observer, however, the
abrupt changes of the input can be avoided if the controller
only uses the estimated state once convergence of the estimation
error has been achieved, that is, after tb time has passed from
the moment the loop closed. This strategy is defined by the
following changes in Eq. (5):

ẋ = f (x) + g(x)u

u(t) =

{
k(x̂(t)) t ∈ [t2i + tb, t2i+1)

u(t2i+1) t ∈ [t2i+1, t2i+2 + tb).
(18)

This implementation strategy avoids an abrupt change in the
input, because in t ∈ [t2i , t2i + tb), the controller does not
modify the input. Within the time period of length tb, the
estimation error is converging close to zero, but x̂ can take any
value inside Ωδ (recall that the saturation function is used). If
u = k(x̂) is implemented, the input can take any value inside
k(Ωδ). The input jumps after tb seconds, but it is reasonable to
expect this jump to be smaller than the jumps that occur in the
implementation of Eq. (5). Also note that if t2i+1 − t2i < tb then
the controller never uses the estimated state x̂ in t ∈ [t2i , t2i+1).
From a practical point of view, the loop remained open in this
period of time (the input does not change). Following this idea
and using the same techniques used in the proof of Theorem 1,
this implementation technique guarantees practical stability of
the closed-loop system if δ̂o ≤ δ∗

c − tb, where

δ̂o = max
i

min
j>i

t2 j − t2i+1

s.t. t2 j+1 − t2 j > tb.

This is a sufficient condition that takes into account that if in
a given period of time we have measurements but the observer
is not able to converge to the actual state, then the controller
should operate in open-loop for the whole period of time. Note
that this implementation technique is just a modification of
the proposed output feedback scheme, and that it builds on
the results presented in Theorem 1. See the example for an
application of this controller implementation scheme.

Remark 11. Assumption 2 states that the origin must be an
asymptotically and locally exponentially stable equilibrium
point for the closed-loop system under the state feedback
controller. This assumption can be relaxed to only asymptotic
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stability without the local exponential stability property. In
this case, the origin of the closed-loop system under the
output feedback controller without data losses can be shown
to be semi-globally practically stable under the assumptions
of Proposition 1. This modification does not alter the result
obtained in Theorem 1 that indicates that the closed-loop
system with data losses is practically stable if certain conditions
on δc and δo are satisfied. In this case, the proof and the
expressions have to be modified to take into account the
changes in the stability properties of the system without data
losses.

Remark 12. The robustness of the closed-loop system with
respect to data losses depends on the nonlinear process model
structure and the output feedback controller used in the
implementation. This is an important question and no general
statement can be made. It should be addressed on a case-by-
case basis. In the chemical reactor example, we demonstrate
that Lyapunov-based control can be used to obtain a reasonable
robustness with respect to sensor data losses.

Remark 13. Although the proof of Theorem 1 is constructive,
the constants obtained are conservative. This is the case with
most of the results of the type presented in this paper, see
for example [28,36] for further discussion on this issue. The
inequalities are more useful as guidelines on the interaction
between the different parameters that define the system and the
controllers. The main point is that output feedback controllers
are less robust to sensor data losses than the corresponding
state feedback controller, because if sensor data losses are
short, but frequent, and the observer is not able to converge
to the actual state, stability might be lost. In practice, an
estimate of the robustness properties of an output feedback
controller would be better obtained off-line using extensive
simulations.

4. Sampled-data output feedback controller

It is important to put into perspective the result of Theorem 1
with respect to the existing results of sampled-data high-
gain observer-based output feedback control of nonlinear
systems [9,19]. In this subsection we explicitly consider
the issue of measurement-sampling in the output feedback
controller and study the robustness to data losses of a sampled-
data output feedback controller. We start by scaling the observer
variables to avoid inherent ill-conditioning of the partial
differential equation for small ε. Let

q = Dz

with D = diag(1, ε, . . . , εn−1). The discrete version of the
output feedback controller (4) takes the form

u = k(x̂k), t ∈ [tk, tk+1]

x̂k = T −1(sat(zk))

zk = Cqqk + Dq yk

qk+1 = Aqqk + Bq yk

(19)

where tk = t0 + k∆, ∆ is the sampling time and matrices
Aq , Bq , Cq and Dq depend on the system parameters and the
discretization method used. The subindex k denotes the value
of a given variable at sampling time tk ; that is, yk = y(tk). For
a forward difference discretization method, the matrices take
the following form [9]:

Aq = I + ∆D(A − LC)D−1

Bq = ∆DL

Cq = D−1

Dq = 0.

In [9,19], it is proved that a high-gain observer-based output
feedback controller that enforces global (asymptotic) stability
in the closed-loop system under continuous implementation
also enforces closed-loop semi-global practical stability under
sample-and-hold implementation (with zero-order hold) if the
hold time is of the order of ε. This result is formalized in the
following proposition.

Proposition 2. Consider the nonlinear system (1) for which
Assumptions 1–3 hold, under the sampled-data output feedback
controller (19) based on the output feedback controller (4).
Then given constants δ > χ > 0 there exist ε∗(δ) and ∆(ε)

such that if ε ∈ (0, ε∗
], ∆ ∈ (0,∆∗

], |ẑ(t0)| ≤ zm and
x(t0) ∈ Ωδ; the closed-loop system is stable and ultimately
bounded in Ωχ . This stability property implies that given ε ∈

(0, ε∗
], ∆ ∈ (0,∆∗

] and some positive constant em > 0 there
exists positive real constant tb such that if x(t0) ∈ Ωδ and
|z(t0)| ≤ zm , then |x(t) − x̂(t)| ≤ em for all t > t0 + tb.

This proposition stems from the results presented in [9,19] and
can be proved following the same line of thought. The main
idea, is that in order to guarantee performance recovery; that
is, that the trajectories of the sampled-data system are close
enough to the trajectories of the continuous time system, a
sufficiently small sampling time of the order of ε has to be
used. In [9] the sampling time ∆ = αε, where α is a bounded,
number that depends on the parameters of the system but is
independent of ε. This expression implies that if ε tends to zero,
the sampling time also tends to zero approaching a continuous
time implementation; thus, a fast enough sampling is needed
to maintain closed-loop stability in the case of sampled-data
high-gain output feedback control. While from a sampled-data
system point of view, this result is reasonable, from a networked
control point of view constraining the maximum time that the
loop can be open to be bounded by kε is very conservative. To
this end, in the present work we follow a different approach
to prove closed-loop stability under high-gain output feedback
control in the presence of sensor data losses by approximately
decoupling the tasks of state estimation and feedback control.
The sampled-data output feedback controller (19) subject to
data losses takes the following form

u = k(x̂k), t ∈ [tk, tk+1]

x̂k = T −1(sat(zk))

zk =

{
Cqqk + Dq yk tk ∈ [t2i , t2i+1)

zk−1 tk ∈ [t2i+1, t2i+2)

qk+1 =

{
Cqqk + Dq yk tk ∈ [t2i , t2i+1)

qk tk ∈ [t2i+1, t2i+2)

(20)



638 D. Muñoz de la Peña, P.D. Christofides / Systems & Control Letters 57 (2008) 631–642
where it has been taken into account that when data losses
occur, the estimation is not updated so the controller keeps
implementing the same manipulated input. The following
theorem presents the stability properties of the closed-loop
system under the sampled-data output feedback controller
subject to data losses. As in the continuous case, the result is
given in the form of bound on δc and δo.

Theorem 2. Consider system (1) for which Assumptions 1–3
hold under the sampled-data output feedback controller (19).
Then, given positive real numbers d and δ that satisfy γ < d <

δ; there exist positive constants ε∗(δ) = ε∗, ∆∗(ε∗) such that
if ε ∈ (0, ε∗

] and ∆ ∈ (0,∆∗
], there exist positive constants

δ∗
o(ε) = δ∗

o and δ∗
c (ε) = δ∗

c such that if δo ≤ δ∗
o , δc ≥ δ∗

c ,
|z(t0)| ≤ zm and x(t0) ∈ Ωδ , then lim supt→∞ V (x(t)) ≤ d.

Proof. The proof of the theorem follows the same lines of the
proof of Theorem 1. In what follows we provide a sketch of the
proof. First, an upper bound ∆∗ on the sampling time is fixed
following Proposition 2 in order to recover the performance of
the continuous implementation. For ∆ ∈ (0,∆∗

], the stability
properties of Proposition 2 states that the closed-loop sampled-
data system satisfies the following property after the observer
has converged close to the real state:

V̇ (x) ≤ −ρ̂(V (x)), ∀V (x) ≥ c (21)

where ρ̂(·) is a positive definite function and c is a positive
number that depend on the parameters of the system and on
the sampling time ∆.

Next the tasks of state estimation and feedback control
are approximately decoupled fixing a lower bound δ∗

c on the
minimum time on which the system operated in close-loop
after a period of time in which data has been lost. This bound
guarantees that the value of the Lyapunov function is lower than
or equal to the value of the Lyapunov function at the beginning
of the time period, and that the estimation of the state is close
enough.

At last, using (21) an upper bound δ∗
o on the maximum time

in which the system operated in open-loop is provided. This
bound is obtained to guarantee that the system has a negative
definite derivative of the Lyapunov function along the whole
period of time if the system is outside a region that contains the
origin, and that if the system is close enough to the origin, it
does not leave a given region. Note that in this case, the upper
bound δ∗

o is given on behalf of ρ̂(·) and the region must contain
Ωc. �

Note that the expressions obtained for the bounds on δc and
δo are different from the continuous time case.

Remark 14. As in the continuous time case, the approximate
decoupling is done by computing a lower bound on the time
the loop shall remain closed to guarantee convergence of the
state estimates to the true states and an upper bound on the
time that the loop afterwards can remain open to guarantee that
the time derivative of the Lyapunov function remains negative
outside a neighborhood of the origin. The upper bound on the
time interval in which the loop must stay closed depends on
the observer properties and is of O(ε). The upper bound on the
time interval in which the loop can stay open is independent
of ε and depends on the closed-loop system properties under
state feedback control. Therefore, the loop can remain open for
a time interval whose size is larger than O(ε) if this is allowable
by the closed-loop system under the state feedback controller.

Remark 15. Note that when a high-gain observer-based output
feedback controller is considered in the closed-loop system, as
it is done in our work, the packet loss sequence is very different
(from the sampling rate-based type of sequence obtained
when the sampled-data implementation of a generic dynamic
controller is studied) since in this case the lower bound is a
function of the rate of convergence of the estimation error only
and the upper bound is a function of the state feedback control
problem only. This separation is obscured when a generic
output feedback control system is considered and its sampled-
data implementation is studied and closed-loop stability is
proved provided that the sampling rate is sufficiently small, as
it is done in [23].

5. Application to a chemical reactor

Consider a well mixed, nonisothermal continuous stirred
tank reactor where three parallel irreversible elementary
exothermic reactions take place of the form A → B, A → C
and A → D. B is the desired product and C and D are
byproducts. The feed to the reactor consists of pure A at flow
rate F , temperature TA0 and molar concentration CA0. Due
to the nonisothermal nature of the reactor, a jacket is used to
remove/provide heat to the reactor. Using first principles and
standard modeling assumptions, the following mathematical
model of the process is obtained:

dT

dt
=

F

Vr
(TA0 − T ) −

3∑
i=1

∆Hi

ρ f cp
ki0e

−Ei
RT CA +

Q

ρ f cpVr

dCA

dt
=

F

Vr
(CA0 − CA) +

3∑
i=1

ki0e
−Ei
RT CA

(22)

where CA denotes the concentration of the reactant A, T
denotes the temperature of the reactor, Q denotes the rate
of heat input/removal, Vr denotes the volume of the reactor,
∆Hi , ki0, Ei , i = 1, 2, 3 denote the enthalpies, pre-exponential
constants and activation energies of the three reactions,
respectively, and cp and ρ f denote the heat capacity and
the density of the fluid in the reactor. The values of the
process parameters are shown in Table 1. This model satisfies
Assumption 1 when the rate of heat input/removal is Q, the
input and the concentration of the reactant A, CA, is the output.

The system of equation (22) has three steady states (two
locally asymptotically stable and one unstable). The control
objective is to stabilize the system at the open-loop unstable
steady state at Ts = 388 K, CAs = 3.59 mol/l assuming that
only measurements of the concentration of A are available. Data
can be lost in the sensor-controller communication link.

We first design a Lyapunov-based state feedback law using
the results presented in [34]. We will use this feedback in
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Table 1
Process parameters

F 4.998 (m3/h) k10 3 ∗ 106 (h−1)

Vr 1 (m3) k20 3 ∗ 105 (h−1)
R 8.314 (kJ/kmol K) k30 3 ∗ 105 (h−1)

TA0 300 (K) E1 5 ∗ 104 (kJ/kmol)
CA0 4 (kmol/m3) E2 7.53 ∗ 104 (kJ/kmol)
∆H1 −5.0 ∗ 104 (kJ/kmol) E3 7.53 ∗ 104 (kJ/kmol)
∆H2 −5.2 ∗ 104 (kJ/kmol) ρ f 1000 (kg/m3)
∆H3 −5.4 ∗ 104 (kJ/kmol) cp 0.231 (kJ/kg K)

combination with a high-gain observer. We identify xT
=

[T CA] as the state and u = Q as the input. Consider the control
Lyapunov function V (x) = xT Px with

P =

[
1 0
0 104

]
.

The values of the weights have been chosen to compensate
for the different range of numerical values for each process
state. The following feedback law satisfies (2) and globally
asymptotically stabilizes system (22) in the case of full-state
measurements and no sensor data losses:

k(x) =

−

L f V +

√
L f V 2 + LgV 4

LgV
if LgV 6= 0

0 if LgV = 0.

(23)

Functions L f V and LgV corresponding to the closed-loop
system are sufficiently smooth in the region of interest of this
simulation. This has been tested through simulation. Note that
this controller does not guarantee local exponential stability
of the origin for the closed-loop system under state feedback
control, however, the results provided by Theorem 1 still hold,
see Remark 11.

The relative degree of the output CA with respect to the input
Q is 2. So system (22) satisfies Assumption 3. We will use the
output feedback controller of Proposition 1 with k(x) from (23).
The observer parameters are given by ε = 0.0005, a1 = 2, a2 =

1, δ = 1000 and zm = 7.07. With these parameters, the closed-
loop system is semi-globally asymptotically stable under output
feedback control and the error goes below em = 0.001 in less
than tb = 0.0025 h. Fig. 3 shows a simulation of system (22) in
closed-loop with the proposed output feedback controller with
k(x) from (23) without sensor data losses. The initial state is
Ts = 330 K, CAs = 3.2 mol/l.

When sensor data losses occur, if the minimum time that
the system remains in closed-loop after losing sensor data, δc,
is too small, practical stability of the closed-loop system is
not guaranteed. To demonstrate this point, we next show two
different simulations with different sensor data losses starting
from the same initial condition of the simulation of Fig. 3. To
generate the increasing sequence of times that determine when
the output is available {ti≥0}, we first use a random Poisson
process as in [25] to obtain an auxiliary random sequence
{t̂i≥0}. The Poisson process is defined by the number of events
per unit time W , and a probability p of losing sensor data. At a
given time t , an event takes place that determines whether the
Fig. 3. Trajectories of system (22) in closed-loop with the proposed output
feedback controller based on (23) without sensor data losses.

system is in the unstable or in the stable mode for the following
period of time. This event is generated using a random variable
µ ∈ [0, 1] chosen from a uniform probability distribution. For
a given probability p, if µ ≤ p, then the controller is operating
in open-loop, while if µ > p the controller is operating in
closed-loop. The length of the period of time, is generated
randomly based on W , the number of events per unit time of
the Poisson process. The time for which the system will remain
in the chosen mode is given by ∆ =

− ln ξ
W , where ξ ∈ [0, 1]

is another random variable chosen from a uniform probability
distribution. At t +∆, another event takes place. This sequence
is random and δc and δo can take any value. In order to impose
limits on δc and δo (recall that the main result is stated in terms
of these values), we generate the sequence that is used in the
simulations {ti≥0} as follows:

(1) t0 = t̂0
(2) for each i ≥ 0

• if i is odd then ti+1 = ti + max{t̂i+1 − t̂i , δc}

• if i is even then ti+1 = ti + min{t̂i+1 − t̂i , δo}.

Note that 0 is considered an odd number, and that the system
begins in closed-loop. This recursion only modifies those
intervals that do not satisfy the constraints on δc and δo. In
the following simulations, the values of the parameters used to
generate the time sequence, that is, the number of events per
unit time W and probability p of the Poisson process, and the
values of δc and δo, are reported. Also, the rate of sensor data
losses is provided, that is the fraction of time of the duration of
the simulation in which the controller is operating in open-loop.
This parameter is often used to characterize the quality of the
communication link, see for example [16,25].

Note that in order to evaluate δ∗
c and δ∗

o the expressions
of Theorem 1 are conservative. In practice these constants
are better determined by extensive off-line simulations. For
the example presented in this section, we have estimated the
following values: δ∗

c ' 0.001 and δ∗
o ' 0.05. We next

present two different simulations, one that does not satisfy
the constraints on δc, and a second one that does satisfy the
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Fig. 4. Trajectories of system (1) in closed-loop with output feedback controller (4) with two different δc: (a) δc = 0.0001 h and (b) δc = 0.005 h.
3 Note that the sequence is not random.
constraint. Fig. 4(a) shows the trajectories of system (22) in
closed-loop with the output feedback controller based on (23)
subject to sensor data losses obtained with W = 500 events/h,
p = 0.75, δo = 0.03 h and δc = 0.0001 h. The resulting
time sequence has a sensor data loss rate equal to 74.19%. It
can be seen that the state does not converge to the equilibrium.
Moreover, it drifts towards one of the other steady states of
system (22), namely, Ts = 400 K, CAs = 3 mol/l.

On the other hand, in Fig. 4(b), sensor losses have been
obtained with W = 500 events/h, p = 0.9, δo = 0.03 h and
δc = 0.005 h. The resulting time sequence has a sensor data
loss rate equal to 75.16% (although the probability of a sensor
data loss event used in the Poisson process was p = 0.9) which
is similar to the sensor data loss rate of the simulation shown
in Fig. 4(a). In this case, the closed-loop trajectory, is stable.
This is due to the fact, that in the simulation shown in Fig. 4(a),
δc = 0.0001 was higher than δ∗

c = 0.001, while in the second
simulation δc satisfied the lower bound. It follows that, if δc is
not large enough, the closed-loop system might not be stable.

In both simulations, the input profiles of the output feedback
controller show high frequency changes. These abrupt changes
take place in the period of time in which the estimated state
is converging to the actual state after sensor data losses have
occurred (this means that there is an initial estimation error).
Because the transient of the estimation error scales with the
observer gain, the transient can be very abrupt and the input
can take any value in k(Ωδ). One solution to avoid these
abrupt changes, is to maintain the input fixed at the last value,
until the estimated state has converged to the real state, that
is, when measurements are regained at time t2i , the input is
not updated as u = k(x̂) until time t2i + tb. In this way,
when the controller switches to the input computed by using
the estimated state of the observer x̂ , the estimation error is
already small. Roughly speaking, we assume that the system
is in open-loop also during the time in which the observer is
converging. This modification was discussed in Remark 10. In
Fig. 5 a simulation with the same parameters as the one in
Fig. 4(b) (that is, W = 500 events/h, p = 0.9, δo = 0.03 h
and δc = 0.005 h) using the modified implementation with
Fig. 5. Trajectories of system (1) in closed-loop with output feedback
controller (4) with the modified implementation introduced in Remark 10 and
δc = 0.005 h.

tb = 0.005 h is shown. It can be seen that the input trajectory
is smoother in comparison to the one in Fig. 4(b) while still
preserving closed-loop stability.

In Fig. 6, the trajectories of the norm of the estimation error
|e(t)| are shown for different simulations. These simulations
demonstrate the necessity of a lower bound on the minimum
time that the loop should remain closed to achieve approximate
decoupling between the estimation of the state, and the
stabilization of the closed-loop system. The approximate
decoupling is obtained, if when the controller starts operating
in open-loop, the estimated state is close to the actual state. In
this case the input which will be applied for the whole duration
of the open-loop period has been computed on behalf of an
estimate with a sufficiently small error. Trajectory |e1(t)| shows
a simulation done with t2i+1 − t2i = 0.01 h and t2i+2 − t2i+1 =

0.03 h for all i .3 When sensor data losses occur and feedback is
lost in t ∈ [0.01, 0.04], the error grows slowly with time. In this
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Fig. 6. Estimation errors for different values of δ∗
c , δ∗

o and ε.

eriod of time the estimated state and the input are fixed at the
ast computed value. When feedback is regained in interval t ∈

0.04, 0.05], the estimated state peaks because of the dynamics
f the high-gain observer. In this simulation, the system remains
n closed-loop long enough for the error to converge to zero, so
hen feedback is lost again, the estimation error is small. In

he second simulation, |e2(t)| is obtained with a time sequence
efined by t2i+1 − t2i = 0.002 h and t2i+2 − t2i+1 = 0.03 h
or all i . In this case, the estimation error does not converge
o zero before new sensor data losses occur. In this case, when
he controller fixes the input to the last evaluated value, this
alue has been computed by using an estimate with a very high
rror. This input does not guarantee that the derivative of the
yapunov function is negative, furthermore, it may drive the
ystem further away from the equilibrium point (recall that it
ay take any value in k(Ωδ)). In the third simulation, ε is set

o 0.0001 while the same sensor data losses trajectory as in
he second simulation is used, i.e., t2i+1 − t2i = 0.002 h and
2i+2 − t2i+1 = 0.03 h. In this case, as the observer gain is
ig. 7. Trajectories of system (1) in closed-loop with the sampled-data output feedback controller (20): (a) State and input trajectories and (b) observer discrete
tate and data loss trajectories.
higher, it is large enough for the estimation error to converge
in 0.002 h so that the error is small enough when sensor data
losses occur and the loop is open.

Finally, in Fig. 7 the trajectories of the state, the input and the
discrete state of the high-gain observer of system (1) in closed-
loop with the sampled-data output feedback controller (20) are
shown. For this simulation the data losses have been obtained
with W = 100 events/h, p = 0.5, δo = 0.03 h and δc =

0.0001 h. The sampling time is ∆ = 0.0005 = ε. For a
higher sampling time, the closed-loop system is not stable. It
can be seen, that the closed-loop system can tolerate losses for
periods of time greater than ε, however, the sampling time of the
sampled-data implementation is of the same order of magnitude
of ε. Fig. 7(b) shows the discrete state of the observer, and
it can be seen how the state peaks after feedback is regained.
Recall, that the effect of this peaking in the closed-loop system
is reduced by the use of a saturation function on the observer
estimates (20). For bigger sampling times, or data losses, the
observer is not able to converge fast enough to the actual state
and the closed-loop system becomes unstable.

6. Conclusions

In this work, we considered the problem of output feedback
control of nonlinear systems subject to sensor data losses.
We have studied the stability and robustness properties of an
output feedback controller resulting from a combination of a
Lyapunov-based controller with a high-gain observer for both
the continuous and the sampled-data cases. We have proved
that in order to approximately decouple the estimation of
the actual state from the feedback stabilization the minimum
time between two consecutive open-loop periods should be
bounded from below, so the estimated state is guaranteed to
converge to the actual state value when the loop is closed. Once
the approximate decoupling is achieved, practical stability
is guaranteed if the maximum time between consecutive
measurements is bounded as in state feedback control of
nonlinear systems subject to sensor data losses. This result
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states that in general, output feedback controllers are less
robust to sensor data losses than state feedback controllers, and
suggests that sensor data losses should be taken into account in
the design of the controller and of the observer. Also, alternative
output feedback controller implementations in the presence of
sensor data losses have been suggested, in particular, using the
model to update the input when the loop is open, and switching
to the output feedback controller only when the estimation error
is sufficiently small.
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