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Abstract

Min–max model predictive control (MMMPC) is one of the strategies proposed to control plants subject to bounded uncertainties. This
technique is very difficult to implement in real time because of the computation time required. Recently, the piecewise affine nature of this
control law has been proved for unconstrained linear systems with quadratic performance criterion. However, no algorithm to compute
the explicit form of the control law was given. This paper shows how to obtain this explicit form by means of a constructive algorithm.
An approximation to MMMPC in the presence of constraints is presented based on this algorithm.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Model predictive control (MPC) is one of the few con-
trol techniques able to cope with model uncertainties in an
explicit way [7]. One approach used in MPC when uncer-
tainties are present, is to minimize the objective function for
the worst possible case. This strategy is known as min–max
model predictive control (MMMPC) and was originally pro-
posed in [27] in the context of robust receding horizon con-
trol and in [8] in the context of robust MPC. All MMMPC
techniques for constrained and unconstrained linear uncer-
tain systems have a great computational burden in com-
mon (see [14,21,25]) which limits the range of processes to
which they can be applied. Few applications can be found in
literature even for slow dynamics or complex simulated
models (see [11,18]). In order to overcome the computa-
tional burden, several works have been proposed in the liter-
ature (see for example [12,13,23]). Even though, the imple-
mentation of robust MPC on real systems remain an open
question.
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It was shown in [5] that constrained MPC could be solved
using multiparametric linear or quadratic programming (de-
pending on the objective function). In this way an easily
implemented explicit solution can be obtained. These types
of results were extended to min–max controllers for linear
uncertain systems with l1 or l∞ norms in [4,10]. The piece-
wise affine nature for quadratic cost functions has also been
proved by other means in [19,20]. However, these works do
not include an algorithm to obtain the explicit form of the
control law.

This paper presents an algorithm that computes the ex-
plicit form of an unconstrained MMMPC controller with a
quadratic cost function. The range of processes to which,
in practice, these controllers can be applied is thus consid-
erably broadened. Moreover, the constrained formulation is
taken into account in the paper. An approximated min–max
controller based on the explicit solution of the unconstrained
formulation is presented. This controller minimizes an up-
per bound of the cost function and the optimization problem
to solve is a quadratic programming problem.

The paper is organized as follows: Section 2 introduces
the controller and its related optimization problem. Some
properties of the min–max problem are shown in Section 3.
The characterization of the regions in which the state space
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can be partitioned is presented in Section 4. In Section 5
the algorithm for exploring the state space and computing
the explicit controller is presented. In Section 6 constraint
handling is addressed. Section 7 illustrates the results pre-
sented in the paper by means of some simulated examples.
Finally, we present concluding remarks in Section 8.

2. Min–max MPC with additive bounded uncertainties

Consider the discrete invariant time linear system with
bounded uncertainties

xk+1 = Axk + Buk + Dwk , (1)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control input,
and wk ∈ Rnw is the uncertainty. The uncertainty is supposed
to be bounded; i.e. ‖wk‖∞ ��.

Open loop min–max MPC obtains a single control input
sequence that minimizes the worst case cost (see [8,17,26])
in which the predictions are computed in an open-loop man-
ner (although the resulting controller is a feedback con-
troller). These controllers are based on the solution of a sin-
gle min–max problem optimizing a single control sequence
for all possible values of the uncertainty. This formulation
is known to be conservative because it underestimates the
set of feasible input trajectories [21]. One solution proposed
in the literature is to minimize a sequence of control cor-
rections efforts to a given linear feedback stabilizing con-
trol law for the nominal plant. In this way, some kind of
feedback is introduced in the prediction without increas-
ing the computational effort (see [3,15]). The control input
is given by uk = Kxk + vk , where K is chosen in order
to achieve some desired property for the non-constrained
problem such as stability or LQR optimality. The MPC
controller will compute the optimal sequence of correc-
tion control inputs vk . The dynamics of the system can be
rewritten as

xk+1 = AKxk + Bvk + Dwk ,

where AK = (A + BK).
Consider a sequence v ={v0, v1, . . . , vN−1} of correction

control inputs and w = {w0, w1, . . . , wN−1} a possible se-
quence of input disturbances to the system over a prediction
horizon N. The objective function is defined as a quadratic
performance index of the form

J (v, w, x) =
N−1∑
j=0

[xT
j Qxj + uT

j Ruj ] + xT
NPxN ,

where xj and uj are the predicted state and input of time
j taking into account the uncertainty w. The initial state is
x0 = x. Weighting matrices Q = QT �0 and P = P T �0
are positive semi-definite, and R = RT > 0 is positive
definite.

Taking into account (1), variables xj and uj are given by
linear functions of x, v and w, namely

xj = A
j
Kx +

j∑
i=1

Ai−1
K Bvj−i +

j∑
i=1

Ai−1
K Dwj−i ,

uj = Kxj + vj . (2)

Min–max MPC [8] is based on finding the control sequence
v that minimizes J (v, w, x) for the worst possible case of
the predicted future evolution of the process state or output
signal. This is accomplished by the solution of a min–max
problem denoted P(x)

J ∗(x) = min
v

max
w∈WN

J (v, w, x), (3)

where WN denotes the set of possible disturbance sequences
of length N:

WN = {w| ‖wi‖∞ ��, i = 0, . . . , N − 1}.
This optimization problem is solved at each sampling time
and the solution v∗(x) is applied using the well known re-
ceding horizon approach [7]; i.e., only the first component
of v∗(x) is used and the control input applied to the system
is given by u0 = Kx + v∗

0 = KMPC(x).
Taking into account (2), matrices Hx , Hu and Hw can be

found (see [5,7]) in such a way that

J (v, w, x) = ‖Hxx + Huv + Hww‖2
2. (4)

The cost function is a convex quadratic function on v, x and
w because it is the square of the Euclidean norm of a vector
which depends linearly on these parameters (see [2]).

Function J (v, w, x) is convex in w, thus the maximum
will be attained at least at one of the vertices wi of the poly-
hedron WN (see [2, Theorem 3.4.6]). The maximizer is not
unique and the maximum can also be attained at another
vector w /∈ ver(WN), where ver(WN) is the set of vertices
of WN . However, the maximum is unique and that is what is
needed to solve the inner maximization problem (the maxi-
mizer is indeed irrelevant). The maximum of J (v, w, x) can
therefore be obtained evaluating the cost function at the set
of vertices of the hypercube WN . The min–max problem can
be rewritten as

J ∗(x) = min
v

max
w∈WN

J (v, w, x) = min
v

Jmax(v, x),

with

Jmax(v, x) = max
w∈WN

J (v, w, x) = max
wi∈ver(WN)

J (v, wi , x).

(5)

Function J (v, w, x) is convex on v, and as R > 0, it
holds that HT

u Hu > 0. Thus J (v, w, x) is indeed strictly
convex on v. On the other hand, Jmax(v, x) is the point-
wise maximum of a set of strictly convex functions of v.
Therefore Jmax(v, x) is also strictly convex on v [6]. This



268 D. Muñoz de la Peña et al. / Systems & Control Letters 55 (2006) 266–274

implies that the solution to the min–max problem is unique
because strictly convex functions have an unique minimizer
(see [2, Theorem 3.4.2]).

3. Some properties of the min–max problem

In this section some properties and definitions are intro-
duced.

Definition 1. For a given state vector x, the set of ac-
tive vertices is the subset I = {wi} at which the maximum
is attained for the solution of the min–max problem, i.e.
J (v∗(x), wi , x) = J ∗(x).

The following definition introduces the concept of critical
region of a set of vertices.

Definition 2. The critical region CRI corresponding to the
set of vertices I ={wi} is the region of the state space where
this set is the set of active vertices.

The set of active vertices for a given x characterizes the
solution of (3). Its definition implies that

J (v∗(x), wi , x) > J (v∗(x), wj , x), wi ∈ I, wj /∈ I .

As illustrated in Fig. 1, the solution of (3) for x is the same
as that of

J ∗(x) = min
v

max
wi∈I

J (v, wi , x) ∀x ∈ CRI . (6)

Moreover, it can be associated to each vertices set a mini-
mization problem whose solution is an affine function of x
as it is shown in the following.
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Fig. 1. Two min–max problems with the same solution: (a) full min–max with all curves and (b) reduced min–max with only curves related to active
vertices.

Definition 3. Given a set of vertices I ={wi}, the candidate
solution vI (x) is the optimizer of

JI (x) = min
v

J (v, wi , x)

s.t. J (v, wi , x)=J (v, wj , x), wi∈I ∀wj∈I . (7)

Proposition 1. The optimizer vI (x) of (7) is an affine func-
tion of x.

vI (x) = KIx + qI . (8)

Proof. From (4) it is inferred that (7) is equivalent to a
quadratic program with linear equality constraints, namely

vI (x) = arg min
v

‖Hxx + Huv + Hwwi‖2
2

s.t. (wT
i − wT

j )HT
w(Hxx + Huv)

= wT
j HT

wHwwj − wT
i HT

wHwwi ,

wi ∈ I ∀wj ∈ I .

It is well known that the solution to this problem is an affine
function of x. �

In the following, based on the results presented in [19,20],
it will be shown that the solution of the min–max problem
is an affine function of x.

Proposition 2. For all x ∈ CRI , the solution to the min–max
problem v∗(x) is an affine expression of x equal to vI (x).

∀x ∈ CRI , v∗(x) = vI (x) = KIx + qI .

Proof. Let x ∈ CRI , v∗(x) be the solution of (3) and vI (x)

computed as in (7). As v∗(x) is the solution of (3) and the
set of active vertices is I it holds that

J (v∗(x), wi , x) = J (v∗(x), wj , x)

for all wi , wj ∈ I , so v∗(x) is feasible for (7).
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Now consider the reduced min–max problem in which
only the active vertices at x are considered. Taking into ac-
count (6) it is straightforward to show that

min
v

max
wi∈I

J (v, wi , x)

� min
v

max
wi∈I

J (v, wi , x)

s.t. J (v, wi , x) = J (v, wj , x)

∀wi , wj ∈ I . (9)

Note that in the min–max problem at the right side of (9) all
the quadratic functions J (v, wi , x) considered have always
the same value thus it can be replaced by

J ∗(x)�J ∗
I (x) = min

v
J (v, wi , x)

s.t. J (v, wi , x) = J (v, wj , x),

wi ∈ I ∀wj ∈ I . (10)

This implies that J ∗(x)�J ∗
I (x). As v∗(x) is feasible

for (7) it can be concluded that v∗(x) is a minimizer of (7)
and because of strictly convexity of J on v the minimizer
is unique, thus v∗(x) = vI (x) = KIx + qI , ∀x ∈ CRI , i.e.
v∗(x) is an affine function of x. �

To characterize the explicit solution to the min–max prob-
lem, it is necessary to characterize the critical regions CRI .

The following proposition can be stated from the results
presented in [19,20] and determines which conditions must
be fulfilled by a vertices set in order to be active in a given
state.

Proposition 3. If the set of vertices I = {wi} satisfies both
the following conditions:

• C1: J (vI (x), wi , x) > J (vI (x), wj , x) ∀wi ∈ I, ∀wj /∈ I ,
• C2: vI (x) is a local minimizer of maxwi∈I J (v, wi , x),

then I is the active set of vertices of x.

Proof. Note that if C1 holds then

J (vI (x), wi , x) > J (vI (x), wj , x) ∀wi ∈ I, ∀wj /∈ I ,

J (vI (x), wi , x) = J (vI (x), wj , x) ∀wi , wj ∈ I ,

also holds. Thus, if C1 is satisfied JI (vI (x), x) =
Jmax(vI (x), x).

From the definition of local minima (see [2]), vI (x) is a
local minima of

Jmax(v, x) if ∀du ∈ S, ∇J (vI (x), wi , x) du�0

for some wi ∈ ver(WN), (11)

where S is a sufficiently small ball. In the same way, if C2
is satisfied then

∀du ∈ S, ∇J (vI (x), wi , x) du�0

for some wi ∈ I . (12)

As I ⊆ ver(WN), and (12) holds for vI (x), (11) also holds
for vI (x) as it is less restrictive than (12). Thus vI (x) is a

local minima of Jmax(v, x). As Jmax(v, x) is strictly convex
on v, vI (x) is also the global minimizer of Jmax(v, x) and
thus equal to the solution of (3) v∗(x). Moreover, this implies
that J (vI (x), wi , x) = J ∗(x) for all wi ∈ I and therefore I
is the set of active vertices for x. �

4. Region characterization

In this section, a constructive algorithm to obtain the crit-
ical region of a set of vertices I is presented. Each region
is a polyhedron that will be characterized not only by its
active vertices but also by the shared boundaries with their
neighboring critical regions. Moreover, these boundaries are
characterized by the set of active vertices of the neighboring
regions. To compute these boundaries it is useful to intro-
duce the definition of neighboring polyhedra.

Definition 4. Let a polyhedron X ⊂ Rn be represented
by the linear inequalities Ax�b. Let the ith hyperplane,
aT
i x = bi be denoted by H. If X ∩ H is (n − 1)-dimensional

then F = X ∩ H is called a facet of the polyhedron.

Definition 5. Two polyhedra are neighboring polyhedra if
they have a common facet.

Definition 6. Two vertices sets are neighboring sets if they
have neighbor critical regions.

The boundary between neighboring regions (i.e. a facet)
satisfies the following properties that will be used to deter-
mine the inequalities of each critical region.

Proposition 4. Consider two neighboring regions CR1,
CR2 with corresponding active sets I1, I2. Let F be their
common facet and H the separating hyperplane, then all
the following statements hold:

(a) H is defined by the equality vI1(x) = vI2(x).
(b) If wi ∈ I1, wj ∈ I2 and wj /∈ I1, then H is defined as the

hyperplane corresponding to the inequality defined as

J (vI1(x), wi , x)�J (vI1(x), wj , x).

(c) If wi ∈ I1, wj ∈ I2 and wi /∈ I2, then H is defined as the
hyperplane corresponding to the inequality defined as

J (vI2(x), wj , x)�J (vI2(x), wi , x).

Proof. (a) Because of the uniqueness of the solution of prob-
lem (3) along the facet shared by CR1 and CR2 the solution
of each active set I1, I2 (computed as in (7)) must be the
same thus:

∀x ∈ F, vI1(x) = vI2(x) = v∗(x).
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(b) and (c) due to Proposition 3,

∀x ∈ CRI1 , J (vI1(x), wi , x)

�J (vI1(x), wj , x) wi ∈ I1, wj /∈ I1,

∀x ∈ CRI2 , J (vI2(x), wj , x)

�J (vI2(x), wi , x) wj ∈ I2, wi /∈ I2

thus taking into account that ∀x ∈ F , vI1(x) = vI2(x) then,

J (vI1(x), wi , x)�J (vI1(x), wj , x)

= J (vI2(x), wj , x)

�J (vI2(x), wi , x),

so both hyperplanes are coincident. �

Taking (4) into account, it can be seen that the inequalities
on the previous proposition, are linear inequalities. In the
following, a normalized definition of these inequalities is
presented.

Proposition 5. Given I, wi ∈ I and wj /∈ I , the in-
equality J (vI (x), wi , x)�J (vI (x), wj , x) is equivalent to
aT
j (I )x�bj (I ), where aj (I ) and bj (I ) can be obtained as

follows

[aj (I ) bj (I )]

=
⎧⎨
⎩

[
âj (I )

‖âj (I )‖2

b̂j (I )

‖âj (I )‖2

]
if ‖âj (I )‖2 
= 0,

[âj (I ) b̂j (I )] otherwise,

where

âj (I ) = −2(wi − wj )
T(HT

wHuKI + HT
wHx),

b̂j (I ) = 2(wi − wj )
THT

wHuqI + wT
i HT

wHwwi

− wT
j HT

wHwwj .

This proposition follows directly from the definition of
J (v, wi , x) and vI (x) (Proposition 3).

Propositions 4 and 5 characterize the boundaries of a crit-
ical region if the sets of the neighboring critical regions are
known. Each facet between each neighbor contributes with
a linear inequality to the description of the critical region.
Note that if aTx = b defines the boundary hyperplane be-
tween two regions, ax�b characterizes one of them and
ax�b characterizes the other.

The next proposition gives a necessary condition that two
sets of active vertices must satisfy in order to be neighbors.

Proposition 6. Consider two neighboring regions CRI1 ,
CRI2 , then it holds

rank (M) = 1, (13)

with M =[(KI1 −KI2)(qI2 − qI1)], where KI1 , KI2 , qI2 and
qI1 are the matrices and vectors which define the optimal
solution on CRI1 and CRI2 .

Proof. By Proposition 4, in the boundary between two crit-
ical regions it holds vI1(x) = vI2(x). This equality results
in a system of Nu linear equations, namely (KI1 − KI2)x =
qI2 − qI1 . These equalities define a region in the state
space. Note that the boundary is an hyperplane (i.e., a facet)
thus (13) has to be fulfilled by the candidate boundary to
be a facet. �

Therefore, the possible neighbors of a set I can be defined
using Proposition 6. Then, using Proposition 4, the facet
between two critical neighboring regions can be obtained.
With these results it is possible to build an algorithm that
obtains the critical region corresponding to a given set and
a list of its neighboring sets.

Algorithm 1. Algorithm to define the critical region CRI

of a set I

• Build all possible vertex sets Ii

• For each Ii if (13) is satisfied, characterize the boundary
by Proposition 4

• Eliminate redundant inequalities.

Algorithm 1 makes an exhaustive search of all the pos-
sible sets so it is assured that the real neighboring sets are
explored, thus the critical region is computed correctly. Note
that the neighboring sets are those for which (13) holds and
contribute with non-redundant inequalities to the descrip-
tion of CRI . This exploration is not efficient as the num-
ber of active sets that can be obtained with 2N ·nw vertices
is very large. In the following, an alternative algorithm that
can be implemented in an efficient manner is presented in
Section 4.1.

4.1. Efficient algorithm

In this section, an efficient algorithm that computes the
critical region for a given set of vertices I is presented. This
algorithm is based on building a set of possible neighbor-
ing vertices sets �(I ), and then explore each of them as in
Algorithm 1.

Proposition 7. Let I and In be sets of vertices and CRI ,
CRIn their related critical regions. Let Ir be a non-empty
set of vertices such that Ir ∩ I =∅. If regions CRI and CRIn

are neighbors and satisfy that In ⊆ I ∪ Ir then[
aj (I )

bj (I )

]
=

[
ai(I )

bi(I )

]
∀wi , wj ∈ Ir . (14)

Proof. Proposition 5 states that the separating hyperplanes
between CRI and CRIn are given by

aj (I )Tx = bj (I ) ∀wj ∈ Ir .

As a facet must be nx − 1 dimensional, these separating
hyperplanes must be the same. �
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Definition 7. Let I = {wi} be a set of vertices then �(I )

is defined as the collection of all the possible non-empty
subsets that can be built with all the vertices wi of I.

Definition 8. Let � and � be collections of sets of vertices
such that � = {⋃i∈A Ii} ∪ ∅ and � = {⋃j∈B Ij } ∪ ∅, where
A and B are the sets of indices of the sets of each collection.
Then the collection � ⊗ � is defined as

� ⊗ � = {I 
= ∅|I = I1 ∪ I2, I1 ∈ �, I2 ∈ �},
where ∅ denotes the empty set.

Definition 9. Let I = {wi} be a set of vertices. The max
region CRmax

I is defined as the region of the state space
where C1 (Proposition 3) is satisfied, i.e.,

CRmax
I = {x|J (vI (x), wi , x)

�J (vI (x), wj , x), wi ∈ I ∀wj /∈ I }.

By definition CRI ⊆ CRmax
I .

Algorithm 2. Algorithm to compute the collection of pos-
sible neighboring sets �(I ) of the set of vertices I. Let A(I)

be an auxiliary collection of candidate neighboring sets.

• A(I) = ∅
• Build CRmax

I .
• For each vertex wj /∈ I :

◦ If aT
j (I )x�bj (I ) is not redundant in CRmax

I then
A(I) = A(I) ∪ wj .

• �(I ) = {Ir |Ir ⊆ A(I) and satisfies Eq. (14)}
• �(I ) = �(I ) ⊗ �(I ).

Theorem 1. All the neighbors of a given set I are included
in the collection of sets �(I ) built with Algorithm 2.

Proof. All possible vertices rejected due to a redundant in-
equality with the max region CRmax

I cannot be neighbors to
the critical region CRI because CRI ⊆ CRmax

I .
All subsets of I are taken into account in �(I ), therefore

the only possible sets In that could have been rejected are
those that satisfy that In ⊆ I∪Ir , where Ir 
= ∅ and Ir∩I=∅.

Suppose that Ir /∈ �(I ) and that In is neighbor of I. Then
Ir satisfies Proposition 7 and by construction Ir ∈ �(I ).
Therefore In ∈ �(I ). �

The following efficient algorithm uses Algorithm 2.

Algorithm 3. Algorithm to define the critical region CRI

of a set I

• Build �(I ) as in Algorithm 2
• For each Ii ∈ �(I ) if (13) is satisfied, characterize the

boundary by Proposition 4
• Eliminate redundant inequalities.

5. Characterization of the partition

The explicit solution of the min–max problem could be
obtained exploring all the possible active sets. This is the
strategy followed by the reverse transformation method
(see [16,22]). However, there is a combinatorial explosion
of the amount of possible sets. Using the previous results,
the explicit piecewise affine solution of a min–max prob-
lem can be obtained using the following algorithm which
does not explore all the possible sets, but only those which
are solution to the problem in a region of the state space.
Exploring all these sets assures that the whole state space
partition is obtained.

Algorithm 4. Algorithm to compute the explicit solution
of the min–max problem (3). Let Sc be the collection of
candidate active sets, Se the collection of explored sets and
x0 an initial state.

• Find a valid active vertices set I0 solving problem (3) for
x0 using numerical methods.

• Sc = I0
• Se = ∅
• (a): Extract a set of vertices I from Sc

• Se = Se ∪ I

• Build vI as in Proposition 3
• Build CRI as in Algorithm 3
• For each facet of CRI

◦ Calculate neighboring set Ia

◦ If Ia is not in Sc ∪ Se then Sc = Sc ∪ Ia

• If Sc is not empty go to step (a) else stop.

This algorithm is based on the ideas for partitioning the
state space presented in [24] used for exploring the state
space of a mpQP problem. Any full dimensional region
must have at least a neighboring region. The algorithm
explores a given set from a list of candidate sets of active
vertices. For that given set, its critical region is computed
and all of its neighboring sets determined. Then, the al-
gorithm adds to the list of candidates those neighboring
sets that have not been previously explored or are already
in the collection of candidates. This ensures that each
set is only explored once and that all possible sets are ex-
plored. The algorithm finishes when the list of candidates
is empty.

5.1. Complexity

The complexity of the state partition depends on the par-
ticular system. The number of vertices grows exponentially
with the prediction horizon. This fact makes finding the ex-
plicit solution a demanding problem. However, as pointed
out in [1], not all possible vertices are implied in the solu-
tion. In that work, a vertex rejection algorithm is presented.
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It defines a set of vertices red(WN) ⊆ ver(WN) which
satisfies

max
wi∈ver(WN)

J (v, wi , x) = max
wi∈red(WN)

J (v, wi , x).

Although vertex rejection efficiency depends greatly on the
problem parameters, from the simulation results observed,
the number of vertices can be manageable for a wide family
of problems [1].

Finally, although the memory storage requirements are
high, the online computational burden of explicit controllers
is low because efficient search methods can be used to find
the critical region for each x (see [9]).

6. Constraint handling

This paper deals with the explicit solution of an uncon-
strained min–max problem. The optimization problem struc-
ture is different for the constrained formulation and the con-
cepts used for defining the explicit solution cannot be ap-
plied. However, both problems are strongly related.

Consider system (1) subject to state and input constraints
xk ∈ X and uk ∈ U where X and U are polyhedral sets. The
optimization problem for constrained MMMPC is posed as

J ∗
c (x) = min

v
max

w∈WN

J (v, w, x),

s.t.

xj ∈ X ∀w ∈ WN, j = 0 . . . N ,

uj ∈ U ∀w ∈ WN, j = 0 . . . N − 1.

Note that in this formulation is also used the linear feedback
law uj = Kxj + vj to introduce some kind of feedback in
the predictions.

Taking into account (2), when X and U are polyhedral
regions, matrices F, G, m and M can be found such that the
feasible set SF can be expressed as

SF = {(x, v)|Fx + Gv�m + Mw, ∀w ∈ WN }. (15)

For linear systems with additive uncertainties it is possible
to reduce the number of constraints that define the feasible
set SF . It can be seen that (15) is equivalent to

SF = {(x, v)| Fx + Gv�d},
where d is a vector such that its ith entry satisfies

di = mi + min
w∈WN

Miw,

and mi and Mi are the ith element and row of vector m and
matrix M, respectively.

The optimum solution for the unconstrained problem can
be used to propose a modified constrained problem with
guaranteed performance. This controller is based on eval-
uating the control correction effort that makes the optimal

solution for the unconstrained problem feasible and mini-
mizes an upper bound of the min–max cost function. The
future control inputs are defined as

uk = Kxk + v∗
k (x) + zk ,

where v∗
k (x) is the optimum control effort at time step k of

the unconstrained problem and zk is the correction term to
assure constraint satisfaction.

Taking into account (4) it is possible to find matrices Hzz,
Fx , Fu and Fw such that

J (v∗(x) + z, w, x)

= J (v∗(x), w, x) + zTHzzz

+ 2zT(Fxx + Fuv∗(x) + Fww),

where v∗(x) is the solution of the unconstrained problem
and z = [zk · · · zk+N−1]T are the future correction terms.

An upper bound for the max function can then be found as

max
w∈WN

J (v∗(x) + z, w, x)

� max
w∈WN

J (v∗(x), w, x) + max
w∈WN

zTHzzz

+ 2zT(Fxx + Fuv∗(x) + Fww).

Using the explicit solution of the unconstrained problem and
taking into account that ‖w‖∞ ��,

max
w∈WN

J (v∗(x) + z, w, x)

�J ∗(x) + zTHzzz + 2zT(Fxx + Fuv∗(x))

+ 2�‖F T
wz‖1.

Therefore, the proposed optimization problem is easily con-
verted into a QP problem which can be solved efficiently,
namely

J̃ ∗(x) = min
z

J ∗(x) + zTHzzz + 2zTFxx

+ 2zTFuv∗(x) + 2�‖F T
wz‖1

s.t. Fx + G(v∗(x) + z)�d. (16)

In this way, the control input of the proposed implementation
is defined as

u0 = Kx + v∗
0 + z∗

0 = KMPC(x),

where v∗
0 is the solution of the unconstrained MMMPC and

z∗
0 is the first correction term of the proposed implementa-

tion.
In this formulation, an upper bound of the optimum value

of the cost function is minimized, that is J ∗
c (x)� J̃ ∗(x).

It is important to note that the controller gives the opti-
mum solution when no constraints are active at the solution
of (16).

The main benefit is that the computational burden of this
implementation is much lower than solving the constrained
min–max problem. In this case, first the explicit form of
the unconstrained MMMPC is evaluated, and the a QP is
solved. The constrained MMMPC is a NP-Hard problem
that in general has a much higher computational burden.
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Fig. 2. Partition of the state space for the example with N = 3 (a) and N = 5 (b).
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Fig. 3. Closed loop simulation for an MMMPC with N = 3 and an LQR controller (a) for an uncertainty realization (b).

7. Simulation example

Consider the problem of robustly steering to the origin
the system

xk+1 =
[

0 1
−0.9 1.9

]
xk +

[
0

0.5

]
uk +

[
0
1

]
wk .

This model represents a first order SISO system with
an integrator. The uncertainty is restricted to the set
W = {w : ‖w‖∞ �0.1}. The weighting matrices are
Q = P = [ 0 0

0 1 ], R = 1. The control input is computed as
uk = Kxk + vk where K = [1.1021 − 1.7248] is the LQR
feedback gain. Note that because of the uncertainty, the
system cannot be regulated to the origin, but to a bounded
set that contains the origin [15].

For a prediction horizon N =3 the algorithm presented in
Section 5 has been applied to this system. The explicit form
of the controller is defined by 27 regions. For a prediction

horizon N = 5 the explicit form of the controller is defined
by 55 regions. Fig. 2 shows both state partitions.

We compare MMMPC with the LQR control law. The
closed-loop system is simulated from the initial state
x0 = [ 2

2 ] with the disturbance profile of Fig. 3(b). Fig. 3(a)
shows the output trajectories (x2) of the SISO system. It
can be seen how the MMMPC shows a better disturbance
rejection behavior.

8. Conclusions

An algorithm to obtain the explicit form of the MMMPC
control law for linear unconstrained systems has been pre-
sented. The algorithm does not require an exhaustive search
of all possible active sets, so, although there is an expo-
nential growth of the complexity of the algorithm with the
prediction horizon, in many applications it is manageable
because all the computation needed to determine the explicit
form of the controller are done off-line.
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For nominal MPC controllers the multi-parametric ap-
proach has been applied with success in a broad set
of systems even though the number of regions of the
explicit solution grow in an exponential manner with the
dimension of the state and the prediction horizon. The re-
sults presented in this paper allows one to apply the same
ideas to robust MPC and broaden the range of processes to
which the MMMPC controller can be applied in practice.

A controller for constrained systems, has also been pre-
sented. This controller uses the explicit solution of the
unconstrained problem to evaluate, in an efficient way, an
upper bound of the inner maximization problem. Minimiz-
ing this upper bound in a constrained optimization problem
guarantees constraint satisfaction and performance.
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