
Automatica 117 (2020) 108948

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Robust learning-basedMPC for nonlinear constrained systems✩

José María Manzano a,∗, Daniel Limon a, David Muñoz de la Peña a, Jan-Peter Calliess b

a Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Camino de los Descubrimientos s/n 41092 Sevilla, Spain
b Oxford-Man Institute of Quantitative Finance, University of Oxford, Eagle House, Walton Well Road, Oxford, OX2 6ED, UK

a r t i c l e i n f o

Article history:
Received 3 May 2019
Received in revised form 21 February 2020
Accepted 4 March 2020
Available online 30 March 2020

Keywords:
Predictive control
Learning control
Robust stability
Nonlinear systems
Lyapunov stability

a b s t r a c t

This paper presents a robust learning-based predictive control strategy for nonlinear systems subject to
both input and output constraints, under the assumption that the model function is not known a priori
and only input–output data are available. The proposed controller is obtained using a nonparametric
machine learning technique to estimate a prediction model. Based on this prediction model, a novel
stabilizing robust predictive controller without terminal constraint is proposed. The design procedure
is purely based on data and avoids the estimation of any robust invariant set, which is in general a
hard task. The resulting controller has been validated in a simulated case study.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Model-based control design, and particularly model predictive
control (MPC), relies on the availability of an accurate description
of the plant. When a model of the plant dynamics is unavailable a
priori, system identification methods can be employed to devise
such models automatically from observational data. The objective
of this paper is to design a predictive controller based on such a
learning method. In this setting, the learning method should be
flexible enough to learn rich classes of dynamical systems, while
at the same time, it should offer bounds on its predictive perfor-
mance. The latter is important in the predictive control setting if
one wishes to give guarantees on the performance and feasibility
of the data-based controller, e.g. for nonlinear (Allgöwer & Zheng,
2012) or cyber–physical systems (Behl, Jain, & Mangharam, 2016).

Learning and data-driven predictive controllers have recently
gained the attention of the control community (Hewing, Waber-
sich, Menner, & Zeilinger, 2019). An approach to learning-based
MPC that is independent of the concrete learning paradigm was
proposed in Aswani, Gonzalez, Sastry, and Tomlin (2013). A broad
scope opens up when considering the learning methodology:
some research consider direct weight optimization methods
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(Piga, Formentin, & Bemporad, 2017; Salvador, Ramirez, Alamo,
& Muñoz de la Peña, 2019), others Gaussian processes (Fisac
et al., 2018; Maiworm, Limon, Manzano, & Findeisen, 2018), or
random forests (Smarra et al., 2018), among many others. Several
previous works on this topic have used nonlinear set membership
(NSM) methods (Canale, Fagiano, & Signorile, 2014) for learn-
ing, like (Milanese & Novara, 2004; Sukharev, 1978). In previous
works, the authors proposed to use kinky inference methods (Cal-
liess, 2014) in a model predictive control setting. Kinky infer-
ence (KI) methods encompass Lipschitz interpolation (Beliakov,
2006; Sukharev, 1978) and NSM methods (Milanese & Novara,
2004), and they have several properties that are interesting for
MPC. A modified version of this method, tailored to model pre-
dictive control, was proposed and used to design a MPC with
guaranteed closed-loop properties for systems subject to input
constraints (Manzano, Limon, Muñoz de la Peña, & Calliess, 2019).
The main limitation of this controller is that it cannot guarantee
robust satisfaction of output constraints.

In this paper, the main contribution is a new robust predictive
controller for systems that also have output constraints. A de-
sign method that takes into account the prediction error bounds
in an explicit way to tighten the problem constraints and that
guarantees closed-loop constraint satisfaction and input-to-state
stability (ISS) (Limon et al., 2008) is provided. One of the main
characteristics of this design is that it is not based on a terminal
region constraint. In general, this terminal constraint is based on
robust invariant sets which, for the class of systems considered
(that is, unknown systems, possibly nonlinear, for which a priori
only input/output data is available), are difficult to obtain.

Another contribution of this work is the procedure to define
the tightened constraints of the MPC optimization problem. They
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are specifically tailored to the inference model used, in order to
obtain the least conservative possible bounds. In contrast to the
preliminary version of this controller, presented in Manzano et al.
(2018), an output-feedback formulation is considered, and the
stability analysis is addressed.

Notation: For two column vectors v, w, (v, w) implies [vT , wT
]
T .

Given two sets A, B, A⊕B is the Minkowski sum and A⊖B the Pon-
tryagin difference. The set of the integers in the interval [a, b] is
denoted Iba. A function α : R≥0 → R≥0 is a K-function if it is con-
tinuous, strictly increasing and α(0) = 0. Given a vector v ∈ Rny ,
the ball B(v) ⊂ Rny is defined as B(v) = {y : |ys| ≤ vs, s ∈ Iny1 };
and |v| denotes the vector whose components are the absolute
value of the components of v. In is an identity matrix of size n.
Given a compact set Ω , ∥Ω∥q = maxx∈Ω ∥x∥q, for some norm
∥ · ∥q.

2. Problem setting

In this paper it is assumed that the system to be controlled
is a sampled continuous-time system described by an a priori
unknown discrete-time model, where y(k) ∈ Rny is its measured
output and u(k) ∈ Rnu is the control input. Both inputs and
outputs are subject to hard constraints

u(k) ∈ U, y(k) ∈ Y, (1)

where both U and Y are compact sets. It is assumed, without loss
of generality, that the origin is the equilibrium point of the system
where the plant must be stabilized.

It is assumed that the only information available from the
plant is historical data, containing a certain set of measured
inputs and outputs trajectories, D. The objective of the paper is
to design an output-feedback control law

u(k) = κ(y(k);D), (2)

such that from the data set D and the current output measure-
ment y(k), the control action is computed. It is desired to devise
the control law such that the closed-loop system is asymptotically
stable and that the constraints are satisfied for all time steps
k ∈ N.

Since a model of the dynamics is not available a priori, it is
assumed that the measured output can be used to describe the
model of the system with the following nonlinear autoregressive
exogenous (NARX) model of the plant (Leontaritis & Billings,
1985; Levin & Narendra, 1997):

y(k + 1) = f (x(k), u(k)) + e(k), (3)

where x(k) = (y(k), . . . , y(k− na), u(k− 1), . . . , u(k− nb)) ∈ X :=

Y (na+1)
×Unb ⊆ Rnx with nx = (na+1)ny+nbnu, for some memory

horizon lengths na, nb ∈ N. The residual e(k) models process noise
and it is assumed to be confined to a compact set E ⊂ Rny . For
notational convenience, the inputs of f are aggregated into a joint
vector w := (x, u) ∈ W , which is referred to as regressor.

Remark 1. The horizons na and nb represent the model order.
In Levin and Narendra (1997), the conditions under which they
could be taken as na = nb = 2n were given, where n is the order
of the system. If n is unknown, one would have to use the best
guess, or cross-validation methods to estimate na and nb.

Assumption 1 (Hölder Continuity). Each output component of
the function f (·), referred to as ground truth function, is Hölder
continuous. That is, there exist some constants Lf ,i > 0 and
pf ,i ∈ (0, 1] (i ∈ Iny1 ) such that ∀w1, w2 ∈ W

|fi(w1) − fi(w2)| ≤ Lf ,i∥w1 − w2∥
pf ,i
W , i ∈ Iny1 , (4)

where ∥·∥W stands for a specific norm defined for the regressors,
and the sub-index i denotes the ith component of the vector. For
each i ∈ Iny1 , any constant Lf ,i that satisfies this condition is called
a Hölder constant, while the lowest of them is called the best
Hölder constant, L∗

f ,i.

Remark 2. Assumption 1 can be relaxed to general continuity,
provided that both Y and U are compact sets.

2.1. The learning method

In this section the machine learning method used to esti-
mate f is presented, sometimes called kinky inference (Calliess,
2014). Using the available experimental data, a data set D of ND
regressor/outputs is collected; that is

D := {(y(j), w(j)) | j = 1, . . . ,ND}. (5)

The structure of D depends on the value of na and nb. To predict
an unseen query point w, KI makes use of the data base D, and
provides an estimation of the Hölder parameters, denoted L and
p, which are vectors of dimension ny.1

Definition 1 (Kinky Inference Rule). The ith output component
function of the KI predictor, for i = 1, . . . , ny, shall be defined by

f̂i
(
w; Li, pi,D

)
:=

1
2

min
j=1,...,ND

yj,i + Li∥w − wj∥
pi
W

+
1
2

max
j=1,...,ND

yj,i − Li∥w − wj∥
pi
W . (6)

Given the hyperparameters L and p and the data set D, the
predictor f̂ of the ground-truth f is constructed, yielding the
output prediction2:

ŷ(k + 1) = f̂(x(k), u(k)). (7)

This predictor f̂ is Hölder continuous, and as proven in Calliess
(2016, Lemma 5), the Hölder parameters of f are also Hölder
parameters of f̂. That is, for a given exponent p, the Lipschitz con-
stant L∗ is also a Lipschitz constant of f̂. However, the estimated L
and pwill suffice to derive the stability properties of the proposed
controller, as it will be explained later.

Remark 3. While in several works a priori knowledge of the cor-
rect parameters Lf and pf is assumed (Canale et al., 2014; Zabin-
sky, Smith, & Kristinsdottir, 2003), other works provide methods
of calculating these parameters from the available data (Calliess,
2016; Milanese & Novara, 2004). In this paper, the so-called LACKI
method (Calliess, 2016) is applied. It obtains the Lipschitz con-
stant L as the minimum one that is consistent with the data. The
learning feature of the proposed predictor is also demonstrated
in Calliess (2016). Note that, w.l.o.g., this paper extends the LACKI
method to each output component function in isolation.

In this paper, the paradigm of predictive control will be em-
ployed to derive the data-based control law (2). MPC requires
repeated optimization of the predicted control inputs subject to
constraints. Therefore, in order to give guarantees on the con-
troller’s closed-loop performance, recursive feasibility and con-
straint satisfaction must be ensured. That is, it is necessary to
ensure that all constraints remain satisfiable during runtime, or
equivalently, to guarantee that the controlled system will not

1 In order to reduce the estimation error, different Hölder constants Li are
used to estimate the ith entry of the output vector. With a slight abuse of
notation L and p will denote a vector in Rny .
2 For the sake of conciseness, the dependence of f̂ with L, p and D may be

omitted in the rest of the paper.
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leave the feasibility region. However, since the controller will not
be based on the ground-truth dynamics f , but on the learned
model f̂ inferred from a sample of the ground-truth, recursive
feasibility can only be guaranteed if a bound on the discrepancy
between f and f̂ is known a priori and taken into account by the
controller.

The estimation method ensures that if the model function is
Hölder and the noise is bounded, then the estimation error is
bounded (Calliess, 2016), which is required to design a deter-
ministic robust controller to regulate the plant. Any worst-case
guarantee inevitably requires a priori knowledge. Hence, in the
following hypothesis, it is assumed that this bound is available
for the design of the controller.

Assumption 2. It is assumed that for L, p, and D, a bound on the
error between the estimated output and the real output is known,
denoted µ ∈ Rny , such that

|f̂i(x, u) − fi(x, u) − ei| ≤ µi, (8)

for all i ∈ Iny1 , e ∈ E , x ∈ Yna+1
× Unb , and u ∈ U .

Remark 4. From a practical point of view the problem of how
to calculate the error bound must be addressed. Kinky inference
methods enjoy the property of providing a deterministic error
bound if the Lipschitz constant and an upper bound of the noise
are known (Calliess, 2014). Moreover, if a bound on the second
derivative is known, it is also possible to derive an estimation
error bound. If these parameters are not known a priori, which
is usual in practice, then they must be estimated from experi-
mental data. Consequently, the validity of the results presented
in this paper is conditioned to the validity of the estimated error
bound. This is the reason why this is considered as a standing
assumption.

Remark 5. The KI prediction method has recently been improved
in Manzano et al. (2019) decreasing the computational cost and
smoothing the prediction, in order to enhance the optimization
that will be carried out by the controller.

3. Stabilizing data-based NMPC

In this section, a model predictive controller is derived based
on a prediction model learned from data of the plant. Since the
prediction model is not accurate, the effect of the estimation error
on the predictions must be analysed to be taken into account
in the design of the controller. For this analysis, it is convenient
to define the NARX model of the plant in a state–space form as
follows:

x(k + 1) = F (x(k), u(k)) + ξ (k) (9a)
y(k) = Mx(k), (9b)

where

F (x(k), u(k)) =

(
f (x(k), u(k)), y(k), . . . , y(k − na + 1),

u(k), . . . , u(k − nb + 1)
)
, (10)

M = [Iny , 0, . . . , 0], and ξ (k) = (e(k), 0, . . . , 0).
Let ŷ(j|k) denote the output that, at time k, is predicted to be

observed at time k + j, for a given candidate control sequence
u(k + j), j ∈ IN−1

0 . Then the predicted state is given by

x̂(j|k) = (ŷ(j|k), . . . , ŷ(1|k), y(k), . . . , y(k + j − na),
u(k + j − 1), . . . , u(k + j − nb)),

where

x̂(j + 1|k) = F̂ (x̂(j|k), u(k + j)) (11)

Fig. 1. Propagation of the prediction error.

and

F̂ (x̂(j|k), u(k + j)) = (f̂(x̂(j|k), u(k + j)),
ŷ(j|k), . . . , y(k), . . . ,
y(k + j − na + 1), . . . ,
u(k + j), . . . , u(k + j − nb + 1)).

The proposed robust MPC is based on nominal predictions and
tightened constraints. To guarantee robustness, a bound on the
propagation of the prediction error (see Fig. 1) is calculated from
the following lemma:

Lemma 1. Assume that at sampling time k, the state of the plant
is x(k) and a sequence of future control inputs u(k + j) for j ∈ IN−1

0
is given. Let x̂(j|k) and ŷ(j|k) be the predicted states and outputs,
respectively, derived from (11) for the given sequence of future
control inputs and the current state x(k), i.e. x̂(0|k) = x(k).

Assume that at sampling time k + 1, the current output y(k + 1)
is measured, and hence the current state x(k + 1) is known. Based
on these new measurements, an updated sequence of states and
outputs x̂(j|k + 1) and ŷ(j|k + 1) is predicted based on (11) with
x̂(0|k + 1) = x(k + 1) and the remaining sequence of the given
future control inputs.

Let c1 ∈ Rny be a vector such that

|y(k + 1) − ŷ(1|k)| ≤ c1. (12)

Then, the mismatch between the predictions satisfies3

|ŷ(j − 1|k + 1) − ŷ(j|k)| ≤ cj, j ∈ IN1 , (13a)

∥x̂(j − 1|k + 1) − x̂(j|k)∥X ≤ rj, j ∈ IN1 , (13b)

where cj ∈ Rny and rj ∈ R are obtained from the recursion

cj+1,i = Lir
pi
j , (14)

and rj = ∥Ξj∥X , j ∈ IN−1
1 , i ∈ Iny1 , where

Ξj = B(cj) × · · · × B(cσ (j)) × {0} × · · · × {0}  
nb+1−σ (j−1) times

⊆ Rnx ,

with σ (j) = max(1, j − na).

Proof. Provided that ŷ(j−1|k+1) = f̂(x(j−2|k+1), u(k+ j−1))
and ŷ(j|k) = f̂(x̂(j−1|k), u(k+j−1)), it can be derived that ∀i ∈ Iny1
|ŷi(j − 1|k + 1) − ŷi(j|k)| ≤

Li∥x̂(j − 2|k + 1) − x̂(j − 1|k)∥pi
X .

Given that

x̂(j − 2|k + 1) − x̂(j − 1|k) =[
ŷ(j − 2|k + 1) − ŷ(j − 1|k), ŷ(j − 3|k + 1) − ŷ(j − 2|k),

. . . , ŷ(σ (j − 1) − 1|k + 1) − ŷ(σ (j − 1)|k), 0, . . . , 0
]
.

3
∥ · ∥X is a norm for the state–space such that ∥x∥X = ∥(x, 0)∥W .



4 J.M. Manzano, D. Limon, D. Muñoz de la Peña et al. / Automatica 117 (2020) 108948

then x̂(j−2|k+1)− x̂(j−1|k) ∈ Ξj−1. Assuming that cj−1 is known,

∥x̂(j − 2|k + 1) − x̂(j − 1|k)∥X ≤ ∥Ξj−1∥X = rj−1,

which implies the stated result. ■

Remark 6. If the infinity norm is chosen as the norm of the input
space then

rj = max
s∈Ij

σ (j)

∥cs∥∞.

Based on the derived bounds on the prediction error, the
problem of robust constraint satisfaction is addressed by means of
a set of tightened constraints on the outputs (Rawlings & Mayne,
2009), computed offline for the maximum possible prediction
error, i.e. taking c1 = µ. These sets are defined as follows:

Yj = Y ⊖ B(dj), (15)

where

dj =

j∑
s=1

cs. (16)

These constraints sets will be used to prove recursive feasibility
of the controller, following standard procedures.

Lemma 2. The sets Yj are such that for all y ∈ Yj and for all
∆y ∈ B(cj), y + ∆y ∈ Yj−1.

Proof. Since for j ≥ 1, dj = dj−1 + cj, it follows that

B(dj) = B(dj−1) ⊕ B(cj).

By definition,

y + ∆y ∈ Yj ⊕ B(cj) = Y ⊖ B(dj) ⊕ B(cj),

and hence Yj = Y ⊖ B(dj) = Y ⊖ B(dj−1) ⊖ B(cj), so

y + ∆y ∈ Yj ⊕ B(cj)
= Y ⊖ B(dj−1) ⊖ B(cj) ⊕ B(cj)
⊆ Y ⊖ B(dj−1) = Yj−1. ■

In order to ensure that the proposed controller is feasible,
the tightened set of constraints must be non-empty along the
prediction horizon, as stated in the following assumption:

Assumption 3. The prediction horizon N and the estimation
error bound µ are such that the set YN is non-empty.

Based on the previous definitions, the optimization problem
PN (x(k);D) of the proposed predictive controller is:

min
u

VN (x(k),u)

=

N−1∑
i=0

ℓ(x̂(i|k), u(i)) + λVf (x̂(N|k)) (17a)

s.t. x̂(0|k) = x(k) (17b)
x̂(j + 1|k) = F̂ (x̂(j|k), u(j)), j ∈ IN−1

0 (17c)

ŷ(j|k) = Mx̂(j|k), j ∈ IN−1
0 (17d)

u(j) ∈ U, j ∈ IN−1
0 (17e)

ŷ(j|k) ∈ Yj, j ∈ IN−1
0 , (17f)

where λ ≥ 1 is a weighting parameter. Note that this problem
is non-linear, non-convex and non-differentiable. Its ingredients
are required to meet the following assumption, which is similar
to the standard MPC ones (Rawlings & Mayne, 2009):

Assumption 4.

(1) The stage cost function ℓ(·, ·) is a Hölder continuous pos-
itive definite function such that ℓ(·, ·) ≥ αy(∥x∥X ) for a
certain K-function αy, and its Hölder parameters are Lx and
px.

(2) There exists a control law u = κf (x), a function Vf and a
level set Ωγ = {x : Vf (x) ≤ γ } ⊆ Rnx for some γ > 0 such
that for all x ∈ Ωγ the following conditions hold:

(a) Vf is a Hölder continuous positive definite function,
with Hölder constants LVf , pVf , such that

αf (∥x∥X ) ≤ Vf (x) ≤ βf (∥x∥X ),

Vf (F̂ (x, κf (x))) − Vf (x) ≤ −ℓ(x, κf (x)).

(b) κf (x) ∈ U , Mx ∈ YN .

The controller is derived from the receding horizon solution
of (17). It follows a standard robust approach in which the cost of
the nominal predictions is minimized, while taking into account
a tightened set of constraints to guarantee recursive feasibility.
The main difference with off-the-shelf robust ISS formulations for
nonlinear systems (Limon et al., 2008) is that in these, either there
are no constraints on the states in the optimization problem, or a
terminal constraint, based on a certain robust positive invariant
set, is added. In this controller, although a terminal cost (based
on a local controller for the nominal model) is taken into account
in the cost function, no terminal constraint is included. Thus,
its design is notably simplified since the calculation of a robust
invariant set is avoided, which was a hard task, as shown in Fiac-
chini, Alamo, and Camacho (2010). In this case, the calculation
could have been even more difficult provided the lack of an
explicit expression of the model of the system.

Furthermore, an additional tuning parameter λ is added, mod-
ifying the weight of the terminal cost in the objective function.
It is proven that this controller guarantees that the closed-loop
system is ISS in an explicitly defined region of the state space,
which is enlarged by this weight.

Define the function

ν(c1) =

N∑
j=1

Lxr
px
j + λLVf r

pVf
N+1,

where rj is defined in Lemma 1 for c1, and Lx, LVf in Assumption 4.

Assumption 5. The bound µ is such that the set Υ = {x :

ℓ(x, 0) ≤ ν(µ)} is contained in Ωγ . The positive constants λ and
φ are such that λ ≥ 1 and ℓ(x, 0) > φ for all x ̸∈ Ωγ .

Remark 7. In a general setting, a condition to check if the level
set Υ is contained in Ωγ could be derived using the supply K∞-
functions that bound the cost functions given in Assumption 4. In
this case the condition would be:

ν(µ) ≤ αy(β−1
f (γ )). (18)

Another method could be using probabilistic validation by means
of randomized algorithms (Calafiore & Dabbene, 2006).

Lemma 3. Under Assumption 5, φ ≥ ν(µ).

Proof. Since Υ ⊆ Ωγ , the constant φ can be taken as φ ≥

minx∈X\Ωγ ℓ(x, 0) ≥ minx∈X\Υ ℓ(x, 0) ≥ ν(µ). ■

Let Γ define the following level set of the optimal cost func-
tion

Γ = {x : V ∗

N (x) ≤ Nφ + λγ }.
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It is next proven that this set defines the region in which ISS is
guaranteed. Notice that this set is compact and non-empty.

Theorem 1 (ISS Stability). Suppose that Assumptions 2–5 hold for
the optimization problem PN (·). Let κN (x) be the control law derived
from the solution of PN (x;D) applied using a receding horizon policy.
Then, for any x(0) ∈ Γ , the system controlled by the control law
u(k) = κN (x(k)) is input-to-state stable w.r.t. the estimation error;
and the constraints are always satisfied, i.e. u(k) ∈ U , y(k) ∈ Y and
x(k) ∈ Γ , ∀k.

Proof. Assume that x(k) ∈ Γ . Then, it can be shown that
x∗(N|k) ∈ Ωγ (Limon, Alamo, Salas, & Camacho, 2006). Define the
shifted sequence as ū(k+ 1) such that ū(j|k+ 1) = u∗(j+ 1|k) for
j ∈ IN−2

0 and ū(N − 1|k + 1) = κf (x∗(N|k)).
Recursive feasibility: Assuming that x(k) ∈ Γ , it will be proven

that x(k + 1) ∈ Γ . Since Γ is a subset of the feasibility region
of the optimization problem PN (x;D), the system is recursively
feasible.

Firstly, it will be shown that the solution ū(k+ 1) is a feasible
solution for x(k+1). Given that x∗(N|k) ∈ Ωγ , from the feasibility
of u∗(k) and Assumption 4, it is immediate to state that ū(j|k +

1) ∈ U for all j ∈ IN−1
0 .

From Lemma 1, ŷ(j|k+1)−y∗(j+1|k) ∈ B(cj+1), ∀j ∈ IN−1
0 and

from the feasibility of u∗(k). Thus, y∗(s|k) ∈ Ys for s ∈ IN−1
0 and

x∗(N|k) ∈ Ωλ, which implies that y∗(N|k) = Mx∗(N|k) ∈ YN in
virtue of Assumption 4.2b. Then, from Lemma 2, for all j ∈ IN−1

0 ,

ŷ(j|k + 1) ∈ Yj+1 ⊕ B(cj+1) ⊆ Yj.

Therefore the problem PN (x(k + 1);D) is feasible.
Next, it will be proven that x(k + 1) ∈ Γ . Since x(k) ∈ Γ ,

V ∗

N (x(k)) ≤ Nφ+λγ . Following standard arguments in MPC (Rawl-
ings & Mayne, 2009) it can be proven that

VN (x∗(1|k), ū(k + 1)) ≤ V ∗

N (x(k)) − ℓ(x(k), u(k))
≤ Nφ + λγ − ℓ(x(k), u(k)).

On the other hand, given x̃ = F̂ (x∗(N|k), κf (x∗(N|k))),

VN (x(k + 1), ū(k + 1)) − VN (x∗(1|k), ū(k + 1)) =

N−1∑
i=0

(
ℓ(x̂(i|k + 1), ū(i|k + 1))

− ℓ(x∗(i + 1|k), ū(i|k + 1))
)

+ λ

(
Vf (x̂(N|k + 1)) − Vf (x̃)

)
.

According to Lemma 1, it can be derived that for s ∈ IN1 , ∥x̂(s −

1|k+ 1)− x(s|k)∥X ≤ rs, with rs obtained for a given c1. Then, for
j ∈ IN1 and given c1 satisfying (12),

ℓ(x̂(j − 1|k + 1), ū(j − 1|k + 1))
− ℓ(x∗(j|k), ū(j − 1|k + 1)) ≤ Lxr

px
j

and Vf (x̂(N|k + 1)) − Vf (x̃) ≤ LVf r
pVf
N+1.

Therefore,

VN (x(k + 1), ū(k + 1)) − VN (x∗(1|k), ū(k + 1)) ≤ ν(c1). (19)

To prove robust invariance the worst possible case has to be
considered, for which c1 = µ is taken. Hence, it has been proven
that

VN (x(k + 1), ū(k + 1)) ≤ ν(µ) + Nφ + λγ − ℓ(x(k), u(k)).

Consider the case where x(k) ∈ Γ \ Υ . Then ℓ(x(k), u(k)) > ν(µ).
Hence, VN (x(k+ 1), ū(k+ 1)) ≤ ν(µ)+Nφ + λγ − ℓ(x(k), u(k)) ≤

Nφ + λγ .

Given that V ∗

N (x(k+1)) ≤ VN (x(k+1), ū(k+1)) then x(k+1) ∈

Γ .
Consider now the case that x(k) ∈ Υ . Since Υ ⊆ Ωγ , x(k) ∈

Ωγ . With standard arguments in MPC (Rawlings & Mayne, 2009),
it can be shown that V ∗

N (x(k)) ≤ λVf (x(k)) ≤ λγ . Hence,

VN (x(k + 1), ū(k + 1)) ≤ ν(µ) + V ∗

N (x(k))
− ℓ(x(k), u(k))

≤ ν(µ) + λγ − ℓ(x(k), u(k)),

since ν(µ) ≤ φ, VN (x(k + 1), ū(k + 1)) ≤ Nφ + λγ . Thus,
x(k + 1) ∈ Γ .

Input-to-state stability: Eq. (19) can be rewritten as follows,
taking c1 = ep(k + 1) := |y(k + 1) − ŷ(1|k)|:

VN (x(k + 1), ū(k + 1)) − VN (x∗(1|k), ū(k + 1))
≤ ν(ep(k + 1)). (20)

Then, following the previous steps, it can be derived that

V ∗

N (x + 1) ≤ VN (x(k + 1), ū(k + 1)) (21)
≤ ν(ep(k + 1)) + V ∗

N (x(k)) − ℓ(x(k), u(k)).

Thus, V ∗

N (x) is an ISS Lyapunov function (Limon et al., 2008). ■

Remark 8 (Suboptimal Case). The stability analysis can be ex-
tended to the case in which the optimal solution of the control
problem is not found. Given an initial feasible solution of the
control problem, if the optimizer is able to improve the cost
(even for a suboptimal solution of the problem), then the con-
troller is able to maintain robust stability while satisfying the
constraints (Rawlings & Mayne, 2009).

Remark 9 (Violation of Assumption 2). If the bound on the predic-
tion error is estimated from data (e.g. via cross-validation), then
the error could take a value larger than µ for a certain period
of time. In this case, the ISS property (21) still holds as long as
x(k) ∈ Γ for that period of time. Notice that the ISS condition is
derived from the smoothness of the optimal cost function, which
is an inherent property of the proposed optimal control problem.

Remark 10 (Stability Margin). Most of the robust controllers for
constrained systems exhibit an upper bound on the estimation
error to be solvable (Limon et al., 2008). This is the so-called
stability margin. One of the main drawbacks of robust predictive
controllers is that this margin is typically quite conservative, due
to the open-loop nature of the predictions. As a robust controller,
our approach inherits this drawback.

4. Case study

In this section, the proposed controller is applied to a
continuously-stirred tank reactor (Manzano et al., 2019), in which
a reaction A → B takes place. The system’s state is defined by the
concentration of the reactant, CA (mol/l), the temperature in the
tank, T (K), and the temperature of the coolant, Tc (K). The state
varies with respect to the control input, which is the reference
temperature of the coolant, Tr (K), according to the following set
of ordinary differential equations (ODEs), which will be used to
simulate the system but are assumed to be unknown:

dCA(t)
dt

=
q0
V

· (CAf − CA(t))

− k0 · e
(
−

E
R·T (t)

)
· CA(t), (22a)

dT (t)
dt

=
q0
V

· (Tf − T (t))
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Fig. 2. Simulation obtained applying a sequence of chirp signals.

+
(−∆Hr ) · k0

ρ · Cp
· e

(
−

E
R·T (t)

)
· CA(t)

+
U · A

V · ρ · Cp
· (Tc(t) − T (t)), (22b)

dTc(t)
dt

=
Tr (t) − Tc(t)

τ
. (22c)

The parameters of the system can be found in Magni, De
Nicolao, Magnani, and Scattolini (2001), with τ = 1.5min. The
sampling time is 30 s. The output is CA, and its sensor has a 2.5%
error margin, generated randomly using a uniform distribution.
The constraints are given by 0.38 ≤ CA ≤ 0.954mol/l and
280 ≤ Tr ≤ 310 K. The reference equilibrium point is given by
C ref
A = 0.62mol/l and T ref

r = 304.5 K.
In order to identify the system, several data sets are gener-

ated. The training data set is obtained using the following input
sequence of chirp signals: five chirp signals of length 1000min,
initial and final frequencies of 1mHz and 0.15Hz (respectively),
amplitude 5K, and centres starting from 285K with 5K inter-
val; followed by two chirp signals of length 5000min, centred
in 295K, 15K of amplitude, and initial and final frequencies of
10 and 200mHz and 1 and 90mHz, respectively, as represented
in Fig. 2.

Another data set is obtained to calculate µ via cross-validation,
applying a pseudorandom binary input sequence, where Tr
switches randomly between 280 and 310 K with switching pe-
riods between 12 and 75min.

Following standard cross-validation procedures (Ljung, 1998),
these data sets are used to define a predictor for different values
of the memory horizons na and nb. Setting the prediction horizon
to N = 4 and applying LACKI (Calliess, 2016) to calculate L
while fixing p = 1, the optimal na, nb are obtained minimizing
d4, which is calculated using (16). The minimum is obtained for
na = nb = 2, for which L = 1.38, µ = 0.032mol/l and d4 =

0.22mol/l.
Both the stage and the terminal cost of the MPC are defined

as follows, with xref = (yref, . . . , yref, uref, . . . , uref):

ℓ(x, u) = ∥x − xref∥2
Q + ∥u − uref

∥
2
R, (23a)

Vf (x) = ∥x − xref∥2
P . (23b)

Q is set to 100, R = 0.1, and λ = 10. Using the model with
na = nb = 2 the terminal cost is obtained solving a LQR
for the linearized model around the reference point. To ensure
robust stability (Theorem 1), Assumptions 2–5 must hold true.
The prediction error was obtained via cross-validation. The value
of dN results in YN = {y : 0.60 ≤ y ≤ 0.73}. Following the
procedure in Section 3 and in Manzano et al. (2019) results in
γ = 16796, ν(µ) = 53.553 and φ = 9.2189 × 105, which satisfy
all the assumptions.

The proposed controller is applied in 100 closed-loop simula-
tions, subject to random noise. The results are shown in the last

Fig. 3. Closed-loop output for 100 simulations of the ideal MPC (top), the robust
learning MPC for systems without output constraints (middle) and the proposed
robust constrained learning MPC (bottom). The grey band groups the trajectories,
the blue dashed line represents its mean, the green dotted one the reference
and the black dash-dotted one the constraints.

row of Fig. 3. Note that the output is steered to the reference
while the constraints are satisfied. The optimization problem is
solved in Matlab on an Intel R⃝ CoreTM i7-6700HQ CPU @ 2.60 GHz
12GB RAM and each iteration takes less than one second to
complete, much shorter than the 30 s required by the sampling
time.

In order to compare the proposed controller to other methods,
the same setup is simulated with two different MPCs. First, a
controller derived from (17), but with the set of ODEs (22) as the
state-feedback prediction model, for which µ is the maximum
noise, 0.025mol/l. This aims to resemble the ideal case of perfect
knowledge of the plant (result shown in the first row of Fig. 3).
As expected, the data-based controller performs slower than
the ideal since, unlike the latter, an output-feedback uncertain
framework is considered.

Second, the controller proposed in Manzano et al. (2019) is
applied. It is based on KI and guarantees closed-loop stability but
does not take into account output constraints, so as shown in the
second row of Fig. 3, the minimum CA limit is violated. To sum
up, the controller proposed in this paper is able to robustly satisfy
hard constraints in the outputs, learning the model from input–
output data with a closed-loop performance similar to the ideal
case.

5. Conclusion

A novel learning-based predictive controller capable of ensur-
ing robust stability without terminal constraint was proposed and
proven to be robustly stable (in the ISS sense) and recursively fea-
sible under some assumptions. The plant model of this controller
is learned from input–output data, using the LACKI approach. Un-
der assumptions on conservatism of estimated maximum bounds,
tight bounds on the effect of the multiple step look-ahead un-
certainty were derived and ISS stability was proven. Simulation
of a continuously-stirred tank reactor illustrated the practical
feasibility of the proposed controller.



J.M. Manzano, D. Limon, D. Muñoz de la Peña et al. / Automatica 117 (2020) 108948 7

References

Allgöwer, F., & Zheng, A. (2012). Nonlinear model predictive control: Vol. 26.
Birkhäuser.

Aswani, A., Gonzalez, H., Sastry, S. S., & Tomlin, C. (2013). Provably safe
and robust learning-based model predictive control. Automatica, 49(5),
1216–1226.

Behl, M., Jain, A., & Mangharam, R. (2016). Data-driven modeling, control and
tools for cyber-physical energy systems. In Proceedings of the 7th international
conference on cyber-physical systems (p. 35). IEEE Press.

Beliakov, G. (2006). Interpolation of Lipschitz functions. Journal of Computational
and Applied Mathematics, 196(1), 20–44.

Calafiore, G., & Dabbene, F. (2006). Probabilistic and randomized methods for design
under uncertainty. Springer.

Calliess, J.-P. (2014). Conservative decision-making and inference in uncertain
dynamical systems (Ph.D. dissertation), University of Oxford.

Calliess, J.-P. (2016). Lazily adapted constant kinky inference for nonparametric
regression and model-reference adaptive control. ArXiv preprint. arXiv:1701.
00178.

Canale, M., Fagiano, L., & Signorile, M. C. (2014). Nonlinear model predictive
control from data: a set membership approach. International Journal of Robust
and Nonlinear Control, 24(1), 123–139.

Fiacchini, M., Alamo, T., & Camacho, E. F. (2010). On the computation of
convex robust control invariant sets for nonlinear systems. Automatica, 46(8),
1334–1338.

Fisac, J. F., Akametalu, A. K., Zeilinger, M. N., Kaynama, S., Gillula, J., & Tomlin, C.
J. (2018). A general safety framework for learning-based control in uncertain
robotic systems. IEEE Transactions on Automatic Control, 64(7), 2737–2752.

Hewing, L., Wabersich, K. P., Menner, M., & Zeilinger, M. N. (2019). Learning-
based model predictive control: toward safe learning in control. Annual
Review of Control, Robotics, and Autonomous Systems, 3.

Leontaritis, I., & Billings, S. A. (1985). Input-output parametric models for non-
linear systems part i: deterministic non-linear systems. International Journal
of Control, 41(2), 303–328.

Levin, A., & Narendra, K. (1997). Identification of nonlinear dynamical systems
using neural networks. In Neural Systems for Control (pp. 129–160). Elsevier.

Limon, D., Alamo, T., Raimondo, D. M., Muñoz de la Peña, D., Bravo, J. M.,
& Camacho, E. F. (2008). Input-to-state stability: an unifying framework
for robust model predictive control. In Proceedings of the int. workshop on
assessment and future directions of nonlinear model predictive control.

Limon, D., Alamo, T., Salas, F., & Camacho, E. F. (2006). On the stability of
MPC without terminal constraint. IEEE Transactions on Automatic Control, 42,
832–836.

Ljung, L. (1998). System identification. In Signal analysis and prediction
(pp. 163–173). Springer.

Magni, L., De Nicolao, G., Magnani, L., & Scattolini, R. (2001). A stabilizing model-
based predictive control algorithm for nonlinear systems. Automatica, 37,
1351–1362.

Maiworm, M., Limon, D., Manzano, J. M., & Findeisen, R. (2018). Stability of
gaussian process learning based output feedback model predictive control.
IFAC-PapersOnLine, 51(20), 455–461.

Manzano, J. M., Limon, D., Muñoz de la Peña, D., & Calliess, J. P. (2018). Robust
data-based model predictive control for nonlinear constrained systems.
IFAC-PapersOnLine, 51(20), 505–510.

Manzano, J. M., Limon, D., Muñoz de la Peña, D., & Calliess, J. P. (2019). Output
feedback MPC based on smoothed projected kinky inference. IET Control
Theory & Applications, 13(6), 795–805.

Milanese, M., & Novara, C. (2004). Set membership identification of nonlinear
systems. Automatica, 40(6), 957–975.

Piga, D., Formentin, S., & Bemporad, A. (2017). Direct data-driven control of
constrained systems. IEEE Transactions on Control Systems Technology, 26(4),
1422–1429.

Rawlings, J. B., & Mayne, D. Q. (2009). Model predictive control: theory and design
(1st ed.). Nob-Hill Publishing.

Salvador, J. R., Ramirez, D. R., Alamo, T., & Muñoz de la Peña, D. (2019). Offset
free data driven control: application to a process control trainer. IET Control
Theory & Applications, 13(18), 3096–3106.

Smarra, F., Jain, A., De Rubeis, T., Ambrosini, D., DInnocenzo, A., & Mang-
haram, R. (2018). Data-driven model predictive control using random forests
for building energy optimization and climate control. Applied Energy, 226,
1252–1272.

Sukharev, A. (1978). Optimal method of constructing best uniform approxima-
tions for functions of a certain class. USSR Computational Mathematics and
Mathematical Physics, 18(2), 21–31.

Zabinsky, Z. B., Smith, R. L., & Kristinsdottir, B. P. (2003). Optimal estimation of
univariate black-box Lipschitz functions with upper and lower error bounds.
Computers & Operations Research, 30(10), 1539–1553.

José María Manzano received his MSc degree in In-
dustrial Engineering from the University of Seville in
2016. He is currently a PhD candidate and faculty
member in the Department of Systems Engineering and
Automation at the University of Seville. His doctoral
research merges nonlinear model predictive controllers
and data-based learning algorithms. He focuses on the
study of the stability and robustness properties of MPCs
whose models are inferred from observed data, using
machine learning techniques.

Daniel Limon received the M.Eng. and Ph.D. degrees
in electrical engineering from the University of Seville,
Spain, in 1996 and 2002, respectively. From 1999 to
2007, he was an Assistant Professor with the De-
partamento de Ingeniería de Sistemas y Automática,
University of Seville, from 2007 to 2017 Associate
Professor and since 2017, a Full Professor in the same
Department. He has been visiting researcher at the
University of Cambridge and the Mitsubishi Electric
Research Labs in 2016 and 2018 respectively. Dr. Limon
has been a Keynote Speaker at the International Work-

shop on Assessment and Future Directions of Nonlinear Model Predictive Control
in 2008 and Semiplenary Lecturer at the IFAC Conference on Nonlinear Model
Predictive Control in 2012. He has been the Chair of the fifth IFAC Conference on
Nonlinear Model Predictive Control (2015). His current research interests include
model predictive control, stability and robustness analysis, tracking control and
data-based control.

David Muñoz de la Peña was born in Badajoz, Spain,
in 1978. He received the Laurea degree in telecommu-
nication engineering in 2001 and the Ph.D. degree in
automation, robotic and telecommunication in 2005,
both from the University of Seville, Spain. He spent
the academic year 2003–2004 at the Systems Control
Group at the Department of Information Engineering
of the University of Siena. In 2006–2007 he held a
postdoctoral position at the Chemical & Biomolecular
Engineering Department at the University of California
Los Angeles. Since 2007, he is with the Department of

Ingeniería de Sistemas y Automática of the University of Seville, becoming full
professor in 2017. His theoretical research interests include model predictive
control, distributed systems, process control, multiparametric optimization, and
machine learning. His research work has resulted in a large number of articles
in leading scientific journals and conferences.

Jan-Peter Calliess is a Senior Research Fellow at the
Oxford-Man Institute of Quantitative Finance and the
Department of Engineering Science at the University of
Oxford, UK. His main research interests focus on the
intersection of machine learning and adaptive decision
making.

Prior to joining Oxford in his current post, he had
repeated stays at Carnegie Mellon University, USA, had
received his undergraduate degrees from University of
Karlsruhe, Germany (now KIT), a DPhil in Engineer-
ing Science from Oxford University and had been a

research associate at the Control Group and the Computational and Biological
Learning Lab at the University of Cambridge, UK.

http://refhub.elsevier.com/S0005-1098(20)30146-1/sb1
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb1
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb1
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb2
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb3
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb4
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb4
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb4
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb5
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb5
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb5
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb6
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb6
http://arxiv.org/abs/1701.00178
http://arxiv.org/abs/1701.00178
http://arxiv.org/abs/1701.00178
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb8
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb9
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb10
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb11
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb12
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb13
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb15
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb16
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb17
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb17
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb17
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb17
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb17
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb18
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb19
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb20
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb21
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb22
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb22
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb22
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb22
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb22
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb23
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb23
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb23
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb24
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb25
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb26
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb27
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb27
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb27
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb27
http://refhub.elsevier.com/S0005-1098(20)30146-1/sb27

	Robust learning-based MPC for nonlinear constrained systems
	Introduction
	Problem setting
	The learning method

	Stabilizing data-based NMPC
	Case study
	Conclusion
	References


