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a b s t r a c t

In this work, we present an iterative design method for a coalitional networked control scheme for linear
systems. In this scheme, the links in the communication network are enabled or disabled depending
on their contribution to the overall system performance. Likewise, the control law is adapted to these
changes. In particular, new conditions are included at the design phase, in order to consider constraints
on the links and the agents regarding the game theoretical tools utilized while optimizing the matrices
that define the controller.
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1. Introduction

Non-centralized control techniques have been well addressed
by the control community: their well-known advantages such
as scalability and modularity, are suitable to control large-scale
systems such as traffic, water or power networks (Negenborn, De
Schutter, & Hellendoorn, 2006). The main idea of these schemes
(in comparison with centralized ones) is to divide the overall
system into several pieces, each of them governed by a local
controller or agent. In this way, we refer to decentralized control, if
there is no communication among the agents, i.e., the subsystems
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are isolated; or distributed control, in case the controllers share
information to improve the overall system performance.

Focusing on distributed control, it is possible to find in the
literature many examples – very specifically under the framework
of model based control – which consider that the groups of
connected agents, also called coalitions, do not vary along the
time. In other words, there is no possibility of modifying the way
in that the agents are grouped. Examples of these approaches
are: Maestre, Muñoz de la Peña, Camacho, and Alamo (2011a),
where the agents always send proposals regarding the control
actions to the same neighbors; or Lagrangian prices based schemes
as Negenborn, van Overloop, Keviczky, and De Schutter (2009),
because prices are always updated by the set of agents that share
the common resource. See Maestre and Negenborn (2014) and
Scattolini (2009) for surveys of these techniques in a distributed
model predictive control context.

Recently, different works that consider explicitly interactions
among the agents that evolve dynamically with time to reduce
the communication burden without compromising the system
performance have appeared. To this end, groups of cooperating
controllers are merged into dynamic neighborhoods or coalitions
that behave as a single agent. Examples of this type of schemes,
known as coalitional control schemes, can be found in: Jilg and
Stursberg (2013), where the coupling of the plant is used to
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partition it into hierarchically coupled clusters; Trodden and
Richards (2009), where coalitions are formed using the set of active
constraints; Núñez, Ocampo-Martinez, De Schutter, Valencia,
López, and Espinosa (2013), Núñez, Ocampo-Martinez, Maestre,
andDe Schutter (2015),where several possible hierarchical control
structures are considered to implement the most appropriate
one; or Maestre, Muñoz de la Peña, Jiménez Losada, Algaba, and
Camacho (2011b); Maestre, Muñoz de la Peña, Jiménez Losada,
Algaba, and Camacho (2014), where the control scheme enables
or disables links depending on their contribution to the overall
system performance. Recently, this setting has been extended to
a MPC framework in Fele, Maestre, Muros, and Camacho (2013),
Fele, Maestre, Shahdany, Muñoz de la Peña, and Camacho (2014)
and Maestre, Muros, Fele, and Camacho (2015).

The applications of cooperative game theory into engineering
problems are becoming more common. For example, Saad, Han,
Debbah, Hjørungnes, and Başar (2009) present a tutorial regarding
coalitional game theory and its applications in communication
networks. Some interesting applications of this framework into
control problems have been presented by Bauso and his coworkers,
who proposed in Bauso and Timmer (2012) a robust dynamic
scheme in which instantaneous and averaged games are analyzed
and allocation rules are presented. The problem of robust
allocation rules for cooperative games is also considered in Bauso
and Timmer (2009). Finally, this line of work is enhanced in
Nedić and Bauso (2013), where a distributed bargaining protocol
is developed so that an allocation inside the core of the game is
provided in different cases.

In particular, in Maestre et al. (2011b, 2014) some game
theoretical tools are introduced to consider a bound on the cost
function minimized by the control scheme, as the characteristic
function of a cooperative game where the players are the links
that connect the agents. Once the game is defined in that way,
it is necessary to choose a payoff rule to distribute the benefit
or cost of the grand coalition among the players (links). From
the different solution concepts, there are some recent works
Muros,Maestre, Algaba, Alamo, andCamacho (2014a,b) andMuros,
Maestre, Algaba, Ocampo-Martinez, and Camacho (2015) that have
focused on the Shapley value of the game (Shapley, 1953). This
value deals with the averaged contribution of each link, which
is interesting to obtain information when considering all the
different network configurations by the link-game. In addition, if
the cost function has an economical meaning, the position value
(Borm, Owen, & Tijs, 1992) also provides a reasonable way of
distributing the costs among the agents.

In this work, we enhance and present in a more formal way
the preliminary results given in Muros et al. (2014a,b). More
specifically, we will focus on the following directions:

• We derive conditions to consider Shapley and position value
constraints in the overall control problem. In particular, we
introduce a matrix notation that extends the Shapley standard
matrix concept (Xu, Driessen, & Sun, 2008) to the position value.
Ultimately, this settingwill make possible to bound or establish
comparisons for each link or agent inside the network and also
combine constraints for the links and the agents.

• We propose an iterative design algorithm which optimizes the
matrices that define the controller. In addition, we present
a new suboptimality index, which gives a measure of the
convergence achieved.

In order to achieve the objectives mentioned above, we will use
linearmatrix algebra and linearmatrix inequalities (LMIs) tomodel
the optimization problem. The key idea is to minimize a linear
objective under LMI constraints. In this way, if there exists a set
of matrices that simultaneously satisfy all the LMIs, this set is
convex and hence the interior point methods (IPMs) find a solution
of the optimization problem with an affordable computational
time (Alamo, Normey-Rico, Arahal, Limon, & Camacho, 2006; Boyd,
El Ghaoui, Feron, & Balakrishnan, 1994). In this work, we will
use a Matlab R⃝ solver which implements the IPMs proposed in
Nesterov and Nemirovskii (1994). Nevertheless, in the context
of design, there are other solvers in the literature, such as the
active set methods. In this sense, the choice of the optimization
methodwill depend on the specific problem to solve in each case. A
comparative analysis of the different solvers available can be found
in Bartlett, Wätchet, and Biegler (2000), Geletu (2007), Leyffer and
Mahajan (2010) and Wright (1997).

Another relevant topic in this context is that of networked
control systems (NCSs), which consider spatially distributed
systems for which the communication between their parts is
supported by a shared communication network. These control
systems deal with the issues derived from the communication,
e.g., packet data rates, networking technology, sampling, network
security, packet dropout or network delays (see Gupta & Chow,
2010; Hespanha, Naghshtabrizi, & Xu, 2007 for surveys about
these topics). Nevertheless, in this particular work, we will not
deal with these challenges, but we will focus on analyzing control
architecture changes that depend on the state, by considering
game theory tools. Another noteworthy point in this regard is that
some schemes proposed in the NCSs literature are also designed
by means of LMIs (Millán,Orihuela,Vivas,Rubio,Dimarogonas &
Johansson, 2013), which may simplify its integration with the
design method presented in this article.

Note that thiswork contains significant differenceswith respect
to Muros et al. (2014a,b). First, the design algorithm has been
generalized to consider constraints on the agents by the position
value, and the corresponding position value LMI conditions have
been derived. In addition, an extension for multiplayer constraints
is also considered. Likewise, the steady state is studied, the limit
case conditions for the LMIs are also given and the decentralized
case has been analyzed more explicitly. Moreover, performance
indices have been redefined and proofs for the theorems have
been provided. Finally, new examples and figures are presented to
enhance and illustrate the explanation of the scheme proposed.

The rest of the paper is organized as follows. In Section 2
the problem setting and the game theory tools are presented. In
Section 3, a controller design procedure based on LMIs, which
integrates conditions on the Shapley and the position values, is
introduced. In Section 4, a very simple numerical example is
used to illustrate the proposed approach. Finally, conclusions and
comments about future research are presented in Section 5.

2. Problem formulation

In this section, we present the model used to represent the
system dynamics, a description of the control scheme and how
some cooperative game theory tools can be applied to distributed
control.

2.1. System description

Consider the class of distributed linear systems composed of
a set of N = {1, 2, . . . , |N |} interconnected subsystems. The
dynamics of subsystem i ∈ N can be described mathematically
as1

xi(k + 1) = Aiixi(k) + Biiui(k) + di(k),
di(k) =


j≠i


Aijxj(k) + Bijuj(k)


, (1)

1 In Section 3.4 the possibility of including extra state or input constraints is
considered.
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Fig. 1. Three different cases of 3-link networks (N , E).

where xi(k) ∈ Rnxi is the state of subsystem i,ui(k) ∈

Rnui is its corresponding input, and Aij ∈ Rnxi×nxj , Bij ∈

Rnxi×nuj are, respectively, the state transition and the input-to-
state matrices. Notice that we use di(k) to denote the influence of
other subsystems on subsystem i.

The overall system dynamics can be described as

xN (k + 1) = AN xN (k) + BN uN (k), (2)

where xN (k) =

xT1(k), . . . , x

T
|N |

(k)
T

∈ RnxN ,uN (k) =
uT
1(k), . . . ,u

T
|N |

(k)
T

∈ RnuN are, respectively, the aggregated
state and input vectors, and AN =


Aij

i,j∈N

∈ RnxN ×nxN , BN =
Bij

i,j∈N

∈ RnxN ×nuN are the state transition and the input-to-
state global matrices.

2.2. Networked control architecture

The agents in N are connected by a network whose topology is
characterized by an undirected graph (N , E), where E ⊆ EN

=

N × N is the set of edges or links l ∈ E corresponding to
the physical connections among the subsystems. We assume that
each link l can be enabled or disabled at each time step, with a
corresponding cost per link c ∈ R+

\{0} in case it is enabled. Notice
that this cost could be different for each link as well. Therefore, the
network described by graph (N , E) has a dynamic configuration
depending on its enabled (or disabled) links at each time step.

Definition 1. Consider a network described by an undirected
graph (N , E). The set of enabled links in a time step k, denoted
by Λ(k), is named network topology and it verifies Λ(k) ⊆ E . The
2|E | possible network topologies in (N , E) will be symbolized as
Λ0, Λ1, . . . , Λ2|E |−1.

Definition 2. Consider a network described by an undirected
graph (N , E). The set that contains all the possible network
topologies that can be taken by network (N , E) in any time step
k, denoted by 3 = {Λ0, Λ1, . . . , Λ2|E |−1} ∈ R2|E |

, is named
topologies set.

Remark 1. The set of possible topologies described by 3 is static
and only depends on network (N , E) considered. The network
topology Λ(k), which describes the dynamic graph configuration
at each time step k, will take one specific value from the different
elements Λ0, Λ1, . . . , Λ2|E |−1 that belong to 3. In other words,
Λ(k) ∈ 3.

Example 1. Consider the 3-link networks shown in Fig. 1, where
we use arabic numbers for the agents and roman letters for
the links. The network topologies, the enabled/disabled links,
and the corresponding maximal connected agent coalitions or
communication components for each network are represented in
Table 1.
In this work, we will consider that the control purpose is to
minimize the following cost function:
J(xN (k),uN (k), Λ(k))

=

Js(xN (k),uN (k),Λ(k))  
∞
j=0


xTN (k + j)QN xN (k + j) + uT

N (k + j)RN uN (k + j)


+

Jc(Λ(k))  
c|Λ(k)|, (3)

with Js(xN (k),uN (k), Λ(k)), Jc(Λ(k)) ∈ R+ being, respectively,
the cost-to-go and the communication cost, where QN ∈

RnxN ×nxN ,RN ∈ RnuN ×nuN are positive semi-definite and definite
weighting matrices, respectively, and with c ∈ R+

\ {0} being the
cost per enabled link that we introduced previously. We assume
that the following linear topology-dependent feedback is used to
control the system
uN (k) = KΛ(k)xN (k), (4)
with KΛ(k) ∈ RnuN ×nxN .

As can be seen, Eq. (3) sums a cost related to the system perfor-
mance from a control viewpoint, i.e., Js(xN (k),uN (k), Λ(k)), and
another related with the number of communication links used by
the control system, i.e., Jc(Λ(k)). Notice that Js(xN (k),uN (k), Λ(k))
is the classical cost minimized by an LQR and it is also affected
by the topology of the control system. Hence, the topology used
has an indirect effect on the evolution of the stage cost of the
system, i.e., the control law changes with the network topology.
Term Jc(Λ(k)) is then introduced to explicitly penalize the use of
the communication network. Thisway the control systemdesigner
can attain a trade-off between control performance and commu-
nication burden. Otherwise, full communication at each time step
would be used because it provides optimal control performance.

In general, it is not possible to solve the problem of minimizing
(3) in a straightforward way because it belongs to the class
of NP-complete problems (Fletcher & Leyffer, 1998). The choice
regarding the state of each link can be modeled as a binary
decision-variable. With the exception of particular structures,
mixed-integer programming problems involving 0–1 variables are
classified as NP-complete (Bemporad & Morari, 1999; Raman &
Grossmann, 1991). Note that the nature of NP-complete problems
seriously compromises their numerical solution. Therefore, from
now on, we provide a heuristic solution of the original problem. To
this end, we make the following assumption.

Assumption 1. Let (4) be the feedback control law used for system
(2). There exists a Lyapunov function f (xN (k)) = xTN (k)PΛ(k)xN (k)
of the closed-loop system, which satisfies, ∀xN (k), Λ(k), the
following point-wise inequality

xTN (k)PΛ(k)xN (k) ≥ Js(xN (k),uN (k), Λ(k)), (5)

with Js(xN (k),uN (k), Λ(k))being the cost-to-go of the overall cost
J(xN (k),uN (k), Λ(k)), which is defined in (3), and where PΛ(k) ∈

RnxN ×nxN is a positive definite matrix.

Following Maestre et al. (2014), KΛ(k) and PΛ(k) are related by

≥J+s (xN (k),uN (k),Λ(k))  
xT+N (k)PΛ(k)x+

N (k)

+

stage cost  
xTN (k)QN xN (k) + xTN (k)KT

Λ(k)RN KΛ(k)xN (k)

≤

≥Js(xN (k),uN (k),Λ(k))  
xTN (k)PΛ(k)xN (k) , (6)

where x+

N (k) is the successor state.
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Table 1
Network topologies and communication components.

Set 3 Links Communication components
I II III (N , E)a (N , E)b (N , E)c

Λ0 ∅ X X X {1}, {2}, {3} {1}, {2}, {3}, {4}, {5} {1}, {2}, {3}, {4}
Λ1 {I} ✓ X X {1, 2}, {3} {1, 2}, {3}, {4}, {5} {1, 2}, {3}, {4}
Λ2 {II} X ✓ X {1}, {2, 3} {1, 3}, {2}, {4}, {5} {1}, {2, 3}, {4}
Λ3 {III} X X ✓ {1, 3}, {2} {1, 4}, {2}, {3}, {5} {1}, {2}, {3, 4}
Λ4 {I, II} ✓ ✓ X N {1, 2, 3}, {4}, {5} {1, 2, 3}, {4}
Λ5 {I, III} ✓ X ✓ N {1, 2, 4}, {3}, {5} {1, 2}, {3, 4}
Λ6 {II, III} X ✓ ✓ N {1, 3, 4}, {2}, {5} {1}, {2, 3, 4}
Λ7 E ✓ ✓ ✓ N {1, 2, 3, 4}, {5} N
Notice that there is a different KΛ(k) and PΛ(k) for each network
topology Λ(k). Likewise, if there is no physical path between two
agents i and j in a particular topology defined by Λ(k), which will
be denoted as i Λ(k)= j, the sub-blocks ofKΛ(k) and PΛ(k) that connect
both agents, denoted as Kij

Λ(k),K
ji
Λ(k) and Pij

Λ(k), P
ji
Λ(k), respectively,

are zero (see for instance agent 5 in the network of Fig. 1(b)).

Assumption 2. It is possible to find a feasible solution for each
KΛ(k) and PΛ(k) that verify (6), with Λ(k) ∈ 3.

Remark 2. In this work, we consider that all the topologies are
feasible, i.e., |3| = 2|E |. Nevertheless, itmay be possible to limit set
3, in order to satisfy Assumption 2, to include only those topologies
for which KΛ(k) and PΛ(k) exist.

Remark 3. The Lyapunov function f (xN (k)) establishes a finite
upper bound on the cost-to-go Js(xN (k),uN (k), Λ(k)) by satisfy-
ing (5).

Based on Assumptions 1 and 2, and according to Maestre et al.
(2014), we can define the following upper bound on the cost
function J(xN (k),uN (k), Λ(k))

rv(Λ(k), xN (k)) = xTN (k)PΛ(k)xN (k) + c|Λ(k)|, (7)

which can be minimized with respect to Λ(k) to find out the
most appropriate network topology at state xN (k), according to
the improvement of the system’s performance. In this way, the
following two-layer networked control scheme is proposed.
Control Scheme 1

Let ks ∈ N+
\ {0} be a number of time samples. At each time

step k,

(1) If k is a multiple of ks, all the agents broadcast their state
to calculate the network topology Λ(k) that minimizes (7).
Otherwise, each agent sends its state only to those agents that
are connected to it.

(2) Each agent uses the state information received to update its
control action. Globally, this implies that linear controller
uN (k) = KΛ(k)xN (k) is applied.

As it can be seen, this scheme is appropriate for small or medium
scale networks. The combinatorial explosion problems make it
inadequate for large scale networks.2

Remark 4. In this work, we assume an implementation of the
control scheme in a hierarchical fashion, with a centralized top
layer with only one decision-maker that calculates the optimal
network topology by using information from all the agents, and a
coalitional bottom layer,where there aremultiple decision-makers
that, depending on the network topology commandedby the upper

2 From now on, states, inputs and topologies dependence on time step k will be
omitted, for simplicity.
layer, enable or disable the corresponding links in a dynamicalway,
and also apply the corresponding optimal control law.

It may also be possible to consider a centralized implementa-
tion. Hence, there would not be independent agents, i.e., only one
decision-maker. Finally, the control scheme may also be imple-
mented in a distributed fashion so that the agents calculate the best
network topology by exchanging information using standard dis-
tributed optimization methods (Maestre & Negenborn, 2014).

2.3. Game theoretical perspective

In Maestre et al. (2011b, 2014) the key to incorporate game
theory results to distributed control is the interpretation of pair
(E, rv) as a cooperative game with transferable utility, where the
set of edges E is the set of players and with rv defined by (7). Once
the game is defined, we need to choose a payoff rule to give us
the corresponding cost or benefit that each player expects from
the game. In general, useful players will be associated to lower
costs in the payoff rule. In this work, we will use the Shapley value
(Shapley, 1953), which assigns to game (E, rv) the vectorφ(E, rv),
which is defined ∀l ∈ E as

φl(E, rv) =


Λ⊆E,l∉Λ

|Λ|!(|E | − |Λ| − 1)!
|E |!

· [rv(Λ ∪ {l}, xN ) − rv(Λ, xN )], (8)

that is, the marginal contribution of each link l is averaged for all
the possible network permutations it can be part of. Without any
doubt, the Shapley value is the most studied solution concept in
cooperative games because of its reasonable properties. Moreover,
the position value defined by the Shapley value of the link-game is
completely characterized (Borm et al., 1992). In fact, the original
axiomatization of the Shapley value (Shapley, 1953) is by the
properties of linearity, efficiency, dummy player and symmetry.

Based on Xu et al. (2008), it is possible to find a matrix
expression for the Shapley value. Consider a matrix M ∈ R|E |×2|E |

,
where the rows correspond to each link l ∈ E and the columns
to the different network topologies Λ ⊆ E , in the lexicographic
order. Given a link-game (E, rv), the Shapley value φ(E, rv) can
be represented by the Shapley standard matrixM as

φ(E, rv) =


φI
φII
...

φ|E |

 = M


rv(Λ0, xN )
rv(Λ1, xN )
rv(Λ2, xN )

...
rv(Λ2|E |−1, xN )

 = Mrv, (9)

where each component of rv is given by (7), and each element of
M is denoted bymlΛ, defined as

mlΛ =


(|Λ| − 1)!(|E | − |Λ|)!

|E |!
, l ∈ Λ,

−
|Λ|!(|E | − |Λ| − 1)!

|E |!
, l ∉ Λ.

(10)
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Example 2. Consider any link-gamewith 3 links, as represented in
Fig. 1. The Shapley standardmatrix can be easily obtained by using
(10)

M3 =


−1/3 1/3 −1/6 −1/6 1/6 1/6 −1/3 1/3
−1/3 −1/6 1/3 −1/6 1/6 −1/3 1/6 1/3
−1/3 −1/6 −1/6 1/3 −1/3 1/6 1/6 1/3


.

By combining (7) and (10) with (9) and taking into account that
Λ⊆E

mlΛc|Λ| = c, ∀l ∈ E, (11)

it is possible to obtain the Shapley value of each link l ∈ E asMuros
et al. (2014a,b)

φl(E, rv) = c +


Λ⊆E

mlΛ

xTN PΛxN


. (12)

Remark 5. The Shapley value of a link l ∈ E given by (12)
analyzes the behavior of this link inside the network from a control
perspective. In this sense, this value provides us information about
link l (by means of its communication cost c) but also takes into
account its interdependence on other links inside the network (by
means of elements mlΛ of the Shapley standard matrix) and the
system dynamics (by means of matrices PΛ).

An analysis by agents from the link-game is obtained in Borm et al.
(1992) through the position value, which gives a payoff for each
agent i ∈ N using the Shapley value of the link-game, according to

πi(N , v, E) =
1
2


l∈Ei

φl(E, rv), ∀i ∈ N , (13)

where Ei represents the subset of links connected to agent i. This
allocation rule is the only one that satisfies the properties of
efficiency by components and balanced total threats (Slikker, 2005).
In fact, we can calculate a matrix expression that connects the
position and Shapley values.

Definition 3. Consider a network described by an undirected
graph (N , E). Let 5 ∈ R|N |×|E | be a matrix, where the rows refer
to each agent i ∈ N and the columns to each link l ∈ E . The Πil
element of 5 is defined as

Πil =


1/2, l ∈ Ei,
0, l ∉ Ei.

(14)

In otherwords,matrix5 is related to the incidencematrix (Diestel,
2005) of a graph (N , E). In this sense, matrix 5, with its Πil
elements defined by (14), satisfies

π(N , v, E) =


π1
π2
...

π|N |

 = 5φ(E, rv) = 5Mrv . (15)

Example 3. Consider the different networks represented in Fig. 1.
Matrix 5 for each case, is given by

5a =
1
2

1 0 1
1 1 0
0 1 1


, 5b =

1
2


1 1 1
1 0 0
0 1 0
0 0 1
0 0 0

 ,

5c =
1
2

1 0 0
1 1 0
0 1 1
0 0 1

 .
Finally, it is possible to reach an expression for the position value
of each agent i ∈ N if we rewrite (15) by using (12)–(14), and
rearranging

πi(N , v, E) =


l∈E

Πilφl(E, rv)

= c

l∈E

Πil +

l∈E


Λ⊆E

ΠilmlΛ

xTN PΛxN


. (16)

Remark 6. If there are no links connected to an agent j ∈ N in a
given network (N , E), i.e., agent j is isolated, then Πjl = 0, ∀l ∈ E ,
and consequently πj(N , v, E) = 0. See for example agent 5 for the
network shown in Fig. 1(b).

Remark 7. Matrix M only depends on the number of players in
the link-game. Therefore, we will have a unique matrixM|E | for all
the possible combinations of link-games with |E | links. However,
matrix 5 depends on the topology of network (N , E) considered.
Hence, we have a univocal matrix 5(N ,E) that defines every net-
work (N , E).

Remark 8. If we consider the decentralized network topology, i.e.,
Λ0 = ∅ (isolated subsystems), the corresponding cost rv(Λ0, xN )
could not be other than zero. Thus, in order to use (7) as a cost
function of a game, it has to be redefined as

rv ′
(Λ, xN ) = rv(Λ, xN ) − rv(Λ0, xN ), ∀Λ ⊆ E . (17)

Nevertheless, the Shapley value for the redefined game (and con-
sequently, the position value) remains constant, according to (8),
because both cost functions rv ′(Λ, xN ) and rv(Λ, xN ) only differ
in a term that does not depend on Λ.

Remark 9. In the steady state, the Shapley value of a link l ∈ E and
the position value of an agent i ∈ N are, respectively

φss
l (E, rv) = c, (18a)

π ss
i (N , v, E) = c


l∈E

Πil. (18b)

In other words, the Shapley value in the steady state does not
depend on the link considered. However, the position value in the
steady state will be affected by the number of links connected to
the agent under study.

3. Controller design procedure

In this section, we present an offline method to design the
matrices for the controller using LMIs. We first introduce very
briefly the original design method used in Maestre et al. (2011b,
2014). Next, we develop new LMIs that can be added to guarantee
that the Shapley and the position values of the cooperative
game satisfy certain conditions. Finally, we describe an iterative
procedure to optimize the design method proposed.

3.1. Original design method

The problem of finding matrices KΛ, which stabilize the overall
system, and PΛ, which provide us with a bound on the cost to go,
can be solved via

PΛ > 0,
PΛ − (AN + BN KΛ)T PΛ (AN + BN KΛ)

−QN − KT
ΛRN KΛ > 0,

(19a)

i Λ= j =⇒


Kij

Λ = Kji
Λ = 0,

Pij
Λ = Pji

Λ = 0.
(19b)
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Using the Schur complement (Zhang, 2005) it is possible to rewrite
(19) as the following LMI3 (see Maestre et al., 2014)

WΛ WΛAT
N + YT

ΛB
T
N WΛQ

1/2
N YT

ΛR
1/2
N

AN WΛ + BN YΛ WΛ 0 0
Q1/2

N WΛ 0 I 0
R1/2

N YΛ 0 0 I


> 0, (20a)

i Λ= j =⇒


Yij

Λ = Yji
Λ = 0,

Wij
Λ = Wji

Λ = 0
(20b)

whereWΛ = P−1
Λ and YΛ = KΛP−1

Λ are the decision variables.

Remark 10. Control matrices KΛ and PΛ can be rearranged as
block diagonalmatrices, which guarantees that (19b) and (20b) are
equivalent. See Maestre et al. (2014) for further details.

Remark 11. In order to optimize the design of the controller, the
LMI conditions (20) are satisfied aiming to minimize the trace of
PΛ, ∀Λ ⊆ E , by means of the maximization of the trace of WΛ,
which is the inverse of PΛ.

3.2. Constraints on the Shapley and Position values

The Shapley value satisfies efficiency which means that the
cost of the grand coalition in the link-game is allocated among
the links participating in the game. Hence, the higher value a link
has, the more costly for the system it is. Moreover, if the Shapley
value of certain links is bounded under/over certain limits, then
the overall system will be forced to consider these links as more
critical/dispensable. Likewise, if the cost function is economical,
the constraints allow the designer to include limits in the payoff
of the players. In fact, we can interpret the position value of an
agent i as a weighted measure of the Shapley value on all the
links that are connected to this agent. In this way, different types
of Shapley and position value constraints – from now on, shortly
called, value constraints – and the obtention of the corresponding
LMI conditions are next presented, in order to integrate them into
the design algorithm.

3.2.1. Absolute constraints
We impose that the Shapley value of a certain link l ∈ E is kept

under/over given constant thresholds Vl, Wl ∈ R, i.e.,

φl(E, rv) < Vl, (21)

φl(E, rv) > Wl. (22)

Following Muros et al. (2014b), it can be concluded that, solving
(21) and (22) is equivalent to finding, respectively, a solution of

Da > 0, with Da =


Vl − c 0

0 −


Λ⊆E

mlΛPΛ


, (23)

Db > 0, with Db =

c − Wl 0
0


Λ⊆E

mlΛPΛ


. (24)

Analogously, we can force the position value of a certain agent
i ∈ N to be kept under/over given constant thresholds Yi, Zi ∈ R,
i.e.,

πi(N , v, E) < Yi, (25)

πi(N , v, E) > Zi. (26)

3 Fromnowon,matrix Iwill denote the identitymatrix of the corresponding size.
By combining (16) with (25) and (26) it is possible to obtain the
following LMI conditions

Ea > 0, with Ea =

Yi − c

l∈E

Πil 0

0 −


l∈E


Λ⊆E

ΠilmlΛPΛ

 ,(27)

Eb > 0, with Eb =

c

l∈E

Πil − Zi 0

0

l∈E


Λ⊆E

ΠilmlΛPΛ

 . (28)

Remark 12. In order to fulfill the LMI requirements, the first
principal minors of (23), (24), (27) and (28) have to be equal to
or greater than zero, and this depends on the constant thresholds
Vl, Wl, Yi, Zi. Hence, according to (18), it is necessary to satisfy the
following additional steady state constraints

Vl ≥ φss
l (E, rv), Wl ≤ φss

l (E, rv),
Yi ≥ π ss

i (N , v, E), Zi ≤ π ss
i (N , v, E).

(29)

In the limit case, the principal minors are equal to zero and the
resulting LMI conditions are

D0
a > 0, with D0

a = −


Λ⊆E

mlΛPΛ,

D0
b > 0, with D0

b =


Λ⊆E

mlΛPΛ,

E0
a > 0, with E0

a = −


l∈E


Λ⊆E

ΠilmlΛPΛ,

E0
b > 0, with E0

b =


l∈E


Λ⊆E

ΠilmlΛPΛ.

(30)

3.2.2. Relative constraints
Wemay require that the Shapley value of a certain link lp ∈ E is

greater (lower) than the Shapley value of another link lq ∈ E , i.e.,

φlp(E, rv) > φlq(E, rv). (31)

By means of (12), we can obtain the following LMI condition
(Muros et al., 2014a,b)

Dc > 0, with Dc =


Λ⊆E


mlpΛ − mlqΛ


PΛ. (32)

We can also force the position value of a certain agent ip ∈ N to
be greater (lower) than the position value of another agent iq ∈ N ,
i.e.,

πip(N , v, E) > πiq(N , v, E). (33)

By using (16), the following relation is satisfied

Ec > 0, with Ec

=

c

l∈E


Πip l − Πiq l


0

0

l∈E


Λ⊆E


Πip l − Πiq l


mlΛPΛ

 . (34)

Remark 13. In order to fulfill the LMI requirements, the first
principal minor of (34) has to be equal to or greater than zero.
However, in this case, it does not depend on given thresholds but
on the position value steady state defined by (18b). In other words,
it is necessary to satisfy

π ss
ip (N , v, E) ≥ π ss

iq (N , v, E). (35)
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Moreover, for the limit case, i.e., π ss
ip (N , v, E) = π ss

iq (N , v, E), the
resulting LMI condition is

E0
c > 0, with E0

c =


l∈E


Λ⊆E


Πip l − Πiq l


mlΛPΛ, (36)

which is similar to (32). This fact is because the steady state Shapley
value φss

l (E, rv), according to (18a), does not depend on the link
considered.

So far, we have obtained LMI conditions depending on the different
value constraints.

3.3. Computation procedure

In order to group the LMI conditions associated to the value
constraints and for the sake of clarity we introduce the following
definition.

Definition 4. We call value constraint set, denoted by G, to the
set of different LMI conditions (23), (24), (27), (28), (32) and (34),
corresponding to the Shapley and position value constraints that
may be imposed in a specific control problem.

The problem of the aforementioned LMI conditions is that they
do not depend on the same variables as (20). In order to deal
with this issue, we propose an iterative optimization procedure
that is similar to that of DK -iterations (Skogestad & Postlethwaite,
2001), i.e., we alternate the optimization with respect to KΛ and
PΛ (keeping the other fixed). To this end, we provide the following
theorem, which was introduced without proof in Muros et al.
(2014b).

Theorem 1. Let Λ ⊆ E and OΛ ∈ RnxN ×nxN be a network topology
and a positive definite constant matrix, respectively, such that Oij

Λ =

Oji
Λ = 0 when i Λ= j holds. Let the dynamics of the overall system be

given by (2) and (4), and the cost function by (3). If there exist amatrix
KΛ ∈ RnuN ×nxN and a scalar ξΛ ∈ R+

\ {0}, such that the following
constraints are satisfied

OΛ Q1/2
N KT

ΛR
1/2
N (AN + BN KΛ)T

Q1/2
N ξΛI 0 0

R1/2
N KΛ 0 ξΛI 0

AN + BN KΛ 0 0 O−1
Λ

 > 0, (37a)

i Λ= j =⇒ Kij
Λ = Kji

Λ = 0, (37b)

then matrices PΛ = ξΛOΛ and KΛ stabilize the whole system,
verify (5) and all the communication constraints imposed by network
topology Λ.

Proof. Applying iteratively backward the Schur’s complement
(Zhang, 2005) to LMI (37a) it can be seen that if (37a) is satisfied,
then the following inequality holds

OΛ − (AN + BN KΛ)TOΛ(AN + BN KΛ) −
QN

ξΛ

−
KT

ΛRN KΛ

ξΛ

> 0.

(38)

Multiplying by ξΛ and taking into account that PΛ = ξΛOΛ, where
ξΛ ∈ R+

\ {0} and OΛ is a positive definite matrix, we obtain a
similar LMI system to that of (19a)

PΛ > 0,
PΛ − (AN + BN KΛ)T PΛ (AN + BN KΛ)

−QN − KT
ΛRN KΛ > 0.

(39)
Finally, considering that Oij
Λ = Oji

Λ = 0 when i Λ= j holds, then
the following topology conditions, similar to those of (19b), are
trivially satisfied

i Λ= j =⇒


Kij

Λ = Kji
Λ = 0,

Pij
Λ = Pji

Λ = 0.
(40)

Consequently, matrices PΛ = ξΛOΛ and KΛ stabilize the overall
system, provide us with a bound on the cost-to-go and satisfy all
the communication constraints. �

Next, we present the optimization algorithm, which generalizes
the algorithmgiven inMuros et al. (2014b) by including constraints
in the position value. The goal of this procedure is to obtain the
minimum bound on the cost-to-go, i.e., to minimize PΛ, while
satisfying the value constraints.
Design Algorithm 1

Let l be the iteration index and r be a counter variable, starting
with l = 1 and r = 0, respectively.

(1) In order to get an initial value of KΛ and PΛ, solve, ∀Λ ⊆ E

max
WΛ,YΛ

Tr(WΛ), (41)

subject to (20), from where we obtain matrices W(r)
Λ and Y(r)

Λ ,
and, consequently, K(r)

Λ and P(r)
Λ .

(2) Let K(r+1)
Λ = K(r)

Λ , and solve

min
PΛ


Λ

Tr(PΛ)


, (42)

subject to (19), ∀Λ ⊆ E , and the value constraint set given by
G. Therefore, we obtain P(r+1)

Λ .
(3) Let P(r+2)

Λ = ξΛP
(r+1)
Λ , and solve

min
ξ,KΛ


Λ

ξΛ


, (43)

subject to (37), ∀Λ ⊆ E , and set G. Hence, we get K(r+2)
Λ .

(4) Make r = r +2, l = l+1 and go to step 2, while l < lmax (with
lmax the maximum number of iterations) or until convergence
has been attained.

Remark 14. In (41) we solve one optimization problem per
network topology, because it is more efficient in terms of time
complexity. However, in (42) and (43) we have to solve amultiple-
topology problem since different network topologies are present
in the value constraint set given by G.

Remark 15. Both (42) and (43) improve the sum of the traces of
the set of matrices PΛ. Given that this sum is lower bounded, it
can be deduced that the algorithm converges in a finite number of
iterations.

Remark 16. In Step 1, we solve the optimization problem by using
variables (YΛ,WΛ), and without considering value constraints,
which are included afterwards. In Steps 2 and 3 we need to solve
the problem by using (KΛ, PΛ), in order to introduce the value
constraint set G that is formulated in these variables. Hence, in
Step 2, the affinity property required to consider (19) as an LMI is
reached by taking KΛ as the solution obtained in Step 1. Likewise,
in Step 3, we utilize (37), with OΛ the solution of PΛ from Step 2,
to modify PΛ proportionally to the previous step.

The key of the algorithm proposed is to consider information of the
previous steps for the control matrices to use (19) and (37) as LMI
conditions. Hence, it is possible to include value constraints, and
also to optimize the value of thematrices that define the controller.
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These are themain advantages of this procedurewith respect to the
one proposed in Maestre et al. (2014).

Theorem 2. Let (N , E) be a network controlled by Control Scheme 1.
If matrices KΛ and PΛ, ∀Λ ⊆ E , have been obtained by Design
Algorithm 1, then the closed-loop system is asymptotically stable.

Proof. The proof is built following Maestre et al. (2014), and it
is based on the fact that function rv(Λ, xN ), given by (7), is a
decreasing functionwith a lower bound for the state trajectories of
the closed loop with the proposed controller. Note that an upper
bound on the cost-to-go of the closed-loop system is given by
xTN PΛxN . Then, according toMaestre et al. (2014) and Theorem1, if
matricesKΛ and PΛ are designed subject to (19), (20) and (37), as it
is done in Design Algorithm 1, we can affirm that the cost-to-go of
the closed-loop system controlled by linear feedback KΛ decreases
in time as long as topology Λ does not change.

Next, let us suppose that at a given multiple of ks time steps,
there is a switch of the topology. According to Control Scheme
1, this happens only if the new topology offers a lower value for
the overall cost function rv(Λ, xN ) that includes both control and
communication costs. Otherwise, the topology is kept fixed for
another ks time steps. During these ks time steps the control cost
decreases and the communication cost remains constant, which
again lead to a decrement of rv(Λ, xN ). If we apply this argument
recursively, it can be concluded that rv(Λ, xN ) decreases in time.
Eventually, the communication topology Λ ∈ Λ with the lowest
communication cost is implemented and the cost-to-go of the
closed-loop system becomes zero, which means that the overall
state has been regulated to the origin. �

Notice that the control performance of the system is affected by
the network topology. This is a direct result of the zeros imposed
on matrices KΛ and PΛ, which reduce the degrees of freedom of
the design problem. Given that this problem aims at optimizing
the controller performance, it can be considered that

xTN PΛ0xN ≥ xTN PΛxN , (44a)

xTN PΛxN ≥ xTN PLQRxN , (44b)

where PΛ0 and PLQR are the matrices corresponding to, respec-
tively, the decentralized topology and the LQR solution for the cen-
tralized case, i.e., that with full communication.

Remark 17. Matrix PLQR represents a theoretical minimum and
hence, condition (44b) is always verified. Likewise, it makes sense
to assumematrixPΛ0 as themore expensive one in terms of control
and it can be guaranteed by simply adding to the design procedure
an LMI condition equivalent to (44a).

Note that (44b) can be used to obtain a bound on the suboptimality
of the scheme from a control perspective. In this sense, in order to
determine the impact of satisfying the additional value constraints,
we introduce the following index,whichwill be calculated onceKΛ

and PΛ are obtained.

Definition 5. The suboptimality index of a set ofmatricesPΛ, Λ ⊆

E is defined as

η =


Λ⊆E

Tr(PΛ)

2|E | · Tr(PLQR)
. (45)

Notice that a value of η closer to value 1 implies less degradation of
the set of matrices PΛ, Λ ⊆ E from the theoretical optimal value.
As it will be seen in the simulation section, index η decreases with
the number of algorithm iterations applied.
Fig. 2. Scheme overview.

To finish this subsection and summarize the behavior of the
proposed scheme, an overview for the particular case of a 3-link
network is presented in Fig. 2. First, controlmatricesKΛ and PΛ are
calculated offline. Then, each ks time steps (in this example ks = 3),
the bottom layer sends the states to the top one that calculates
the optimal network topology for the following ks time steps.
Next, during these ks time steps the corresponding control law is
applied and the unnecessary links are disabled in a dynamical way.
Finally, note that the relevance of the local controllers during the
networked control scheme implementation can be dynamically
measured at each time step by using the position value (Borm et al.,
1992).

Remark 18. The design phase, that is, the offline obtention of ma-
tricesKΛ and PΛ that define the controller, is made in a centralized
manner because centralized system information is needed, i.e., by
solving the different optimization problems given for each possi-
ble topology. Once these matrices are calculated, in this work, we
assume an implementation of the control scheme at each time step
in a hierarchical fashion.

3.4. Additional constraints

In Sections 3.2.1 and 3.2.2, we have studied cases that consider
the Shapley or position values of a single player with respect to
a constant threshold (absolute constraints) or to another single
player (relative ones). In this section, we extend the previous anal-
ysis to consider constraints that take into account the lineal com-
bination of Shapley or position values of several players. Hence,
focusing on the first type of absolute Shapley constraints (21), and
given h players (links) that belong to set E , the multiplayer con-
straint generalization is given by

h
j=1

κjφlj(E, rv) < VΣ , (46)

with κj ∈ R, j = 1, . . . , h being the value weights and VΣ ∈ R a
global threshold.

Then, by using again (12), operating with matrices and rear-
ranging terms, it is possible to obtain the following LMI condition

DΣ > 0, with DΣ

=


VΣ − c

h
j=1

κj 0

0 −


Λ⊆E

h
j=1

κjmljΛPΛ

 , (47)
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where the corresponding steady state constraint is given by

VΣ ≥

h
j=1

κjφ
ss
lj (E, rv). (48)

Finally, note that it is possible to include state or input constraints
by adding and/or modifying the LMI conditions, as it is shown in
Alamo et al. (2006) and Kothare, Balakrishnan, and Morari (1996).
For example, if we assume that the set of state constraints of the
overall problem is defined by

XN =

xN : xTN GxN ≤ ρ


, (49)

with G > 0,G ∈ RnxN ×nxN and ρ ∈ R+
\ {0}, we can rewrite

the Shapley value constraint (21) as the following LMI condition
(Muros et al., 2014a)

D′

a > 0, with D′

a =


Vl − c − γ ρ 0

0 γG −


Λ⊆E

mlΛPΛ


, (50)

with γ ∈ R+
\ {0} an optimization variable.

Operating in the same way with other value constraints, it is
possible to obtain analogous LMIs for other multiplayer cases, or
those that consider implicitly state constraints, whenever the re-
sulting expression fulfills the requirements to be an LMI. Neverthe-
less, note that asmore LMIs are introduced in the design phase, the
systemwould be more conservative and it would be more difficult
to find a feasible solution for matrices KΛ and PΛ.

4. Simulation results

In this section, we show an academic example with four agents
and three links, i.e., N = {1, 2, 3, 4}, E = {I, II, III}, correspond-
ing to the configuration shown in Fig. 1(c). The eight different net-
work topologies and their respective components are specified in
Table 1. The matrices that define the subsystem dynamics are the
following

A11 =


1 0.8
0 0.7


, A22 =


1 0.9
0 −2.5


,

A33 =


1 −2
0 3


, A44 =


1 2.2
0 0.5


,

Bii =


0
1


, Aij =


0 0
0 0


, Bij =


0

0.15


, i ≠ j,

(51)

where xi ∈ R2 and ui ∈ R are, respectively, the states and the in-
put of each subsystem i ∈ N . The stage cost of all the subsystems
is defined by matrices Q = I ∈ R8×8 and R = I ∈ R4×4. We also
suppose c = 0.5 and lmax = 20.

In order to demonstrate the feasibility of the design procedure,
we will consider the following two scenarios of value constraints
that will be imposed on the overall problem. Note that the multi-
player constraint case has been taken into account in Scenario II.

• Scenario I:

φII(E, rv) > 0,
φIII(E, rv) < 1, (52a)

π1(N , v, E) < 1,
π1(N , v, E) > π4(N , v, E).

(52b)
Fig. 3. Suboptimality index evolution of the design procedure with the number of
iterations l.

• Scenario II:

φII(E, rv) < 0.8,
φI(E, rv) + φIII(E, rv) > 0.7, (53a)

π1(N , v, E) + π4(N , v, E) > π3(N , v, E). (53b)

Notice that the constraints defined in (52) and (53) verify (29), (35)
and (48). From both scenarios the corresponding value constraint
sets G have been derived.

The design algorithm of Section 3.3 has been implemented
using Matlab R⃝ LMI Control Toolbox (Gahinet, Nemirovskii, Laub,
& Chilali, 1995) in a 2.7 GHz quad-core Intel R⃝ CoreTM i5/4 GB
RAM computer. More specifically, we have used the solver mincx
which implements the interior point methods proposed in Nesterov
and Nemirovskii (1994). In Fig. 3, it is possible to check the
decrease of η with the number of iterations l. Hence, the design
algorithm improves the control matrices, as expected. As a result
of the considered algorithm, we have obtained matrices KΛ and
PΛ, ∀Λ ⊆ E . For example, the resulting matrices for network
topology Λ2, for the case of Scenario I, are

KΛ2

=


−0.3306 −0.6582 0 0 0 0 0 0

0 0 −0.2583 2.2856 −0.0134 0.3015 0 0
0 0 0.0103 −0.2080 0.1904 −3.5048 0 0
0 0 0 0 0 0 −0.2765 −0.9987

 ,

PΛ2

=



3.5656 2.7105 0 0 0 0 0 0
2.7105 4.6089 0 0 0 0 0 0

0 0 7.9322 4.6286 0.1044 −0.0001 0 0
0 0 4.6286 18.0402 0.1998 −1.4256 0 0
0 0 0.1044 0.1998 3.4475 −5.8143 0 0
0 0 −0.0001 −1.4256 −5.8143 31.7684 0 0
0 0 0 0 0 0 2.4712 3.5220
0 0 0 0 0 0 3.5220 9.9426


.

Note that these control matrices satisfy the communication con-
straints imposed by the network topology.

Once the design problem is solved, we test the two-layer net-
worked control scheme proposed taking ks = 3. Consider the ini-
tial state

x1 =


5
2


, x2 =


0.5
1


,

x3 =


−1
2


, x4 =


0
0


. (54)
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Fig. 4. Input and state trajectories.
At this point, we present some simulations of the given controller.
First, Fig. 4 shows the input and state trajectories as a function
of time after considering, respectively, constraints (52) and (53).
Next, the evolution of the Shapley and position values and the
network topologies are shown, respectively, in Figs. 5 and 6, for
both scenarios and also without considering any value constraints.
It is possible to see that both Shapley and position values
satisfy the specifications. Furthermore, depending on the scenario
considered, the evolution of the network topologies denotes a
deactivation/predominance of link II, themost expensive/cheapest
one due to constraints (52)/(53).

Note that both the Shapley and position values steady state
do not depend on the constraints imposed. More specifically, the
Shapley value of each link tends to the cost c per enabled link, but
the position value steady state has a dependence on the number
of links connected to each agent, as expected according to (18). In
the network analyzed in this example, the position value tends to
c/2 for agents 1 and 4, and tends to c for agents 2 and 3, because
these agents are the end-points of one and two links, respectively.
Finally, the network topology always tends to the one with the
least communicational costs, i.e., the decentralized configuration.

Finally, in Fig. 7 the cumulated cost of the proposed coalitional
algorithm for both scenarios is compared with the cumulated
cost of considering full communication (centralized system)
and no communication (decentralized system). As expected, the
hierarchical-coalitional schemes outperform the decentralized
one, and they are not far away from the centralized controller
during the initial steps. Later, the communication cost makes the
coalitional schemes to be the most appropriate ones.
5. Conclusions

In this paper, we have enhanced the design method proposed
in Maestre et al. (2011b, 2014) for a coalitional networked control
scheme. In particular, we have focused on how to include con-
straints on the links and the agents regarding the Shapley and po-
sition values, respectively, at the design phase. Moreover, the new
conditions allow the designer to analyze if a certain coalitional con-
trol scheme verifies the constraints. In addition to this, we have
proposed an iterative design method that improves the perfor-
mance of the matrices that define the controller. In this sense, the
simulation results have shown the good performance of the pro-
posed scheme.

Future research will include the possibility of considering other
game theory solution concepts for the design procedure.Moreover,
scenarios with a limited topologies set 3, i.e., verifying |3| <
2|E |, and methods for the distributed design of the local feedback
controllers will be researched. Finally, the issues derived from the
combinatorial explosion in systems with a large number of agents
will also be addressed. In fact, possible applications to traffic,
power, water networks and smart grids are currently object of
study, by using randomized methods as (Castro, Gómez, & Tejada,
2009) to estimate the Shapley value.
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Fig. 5. Shapley and position values evolution.
Fig. 6. Network topology evolution.
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