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a b s t r a c t

In this paper, we study randomized methods for feedback design of uncertain systems. The first
contribution is to derive the sample complexity of various constrained control problems. In particular,
we show the key role played by the binomial distribution and related tail inequalities, and compute
the sample complexity. This contribution significantly improves the existing results by reducing the
number of required samples in the randomized algorithm. These results are then applied to the analysis
of worst-case performance and design with robust optimization. The second contribution of the paper
is to introduce a general class of sequential algorithms, denoted as Sequential Probabilistic Validation
(SPV). In these sequential algorithms, at each iteration, a candidate solution is probabilistically validated,
and corrected if necessary, to meet the required specifications. The results we derive provide the sample
complexity which guarantees that the solutions obtained with SPV algorithms meet some pre-specified
probabilistic accuracy and confidence. The performance of these algorithms is illustrated and compared
with other existing methods using a numerical example dealing with robust system identification.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The use of randomized algorithms for systems and control has
matured thanks to the considerable research effortsmade in recent
years. Key areas where we have seen convincing developments in-
clude uncertain and hybrid systems (Tempo, Calafiore, & Dabbene,
2013; Vidyasagar, 1997). A salient feature of this approach is the
use of the theory of rare events and large deviation inequalities,
which suitably bound the tail of the probability distribution. These
inequalities are crucial in the area of statistical learning theory
(Bousquet, Boucheron, & Lugosi, 2004; Vapnik, 1998), which has
been utilized for feedback design of uncertain systems (Vidyasagar,
2001).
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Design in the presence of uncertainty is of major relevance
in different areas, including mathematical optimization and
robustness (Ben-Tal &Nemirovski, 1998; Petersen& Tempo, 2014).
The goal is to find a feasible solutionwhich is optimal in some sense
for all possible uncertainty instances. Unfortunately, the related
semi-infinite optimization problems are often NP-hard (examples
of NP-hard problems in systems and control can be found in
Blondel & Tsitsiklis, 1997, 2000), and this may seriously limit
their applicability from the computational point of view. There are
two approaches to resolve this NP-hard issue. The first approach
is based on the computation of deterministic relaxations of the
original problem, which are usually polynomial time solvable.
However, thismight lead to overly conservative solutions (Scherer,
2006). An alternative is to assume that a probabilistic description
of the uncertainty is available. Then, a randomized algorithm may
be developed to compute, in polynomial time, a solution with
probabilistic guarantees (Tempo et al., 2013; Vidyasagar, 1997).
Stochastic programming methods (Prékopa, 1995) are similar in
spirit to themethods studied in this paper and take advantage that,
for random uncertainty, the underlying probability distributions
are known or can be estimated. The goal is to find a solution
that is feasible for almost all possible uncertainty realizations
and maximizes the expectation of some function of the decisions
variables.
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The field of probabilisticmethods (Calafiore, Dabbene, & Tempo,
2011; Tempo et al., 2013; Tempo & Ishii, 2007) has received
growing attention in the systems and control community. Two
complementary approaches, non-sequential and sequential, have
been proposed. A classical approach for non-sequential meth-
ods is based upon statistical learning theory (Vapnik, 1998;
Vidyasagar, 1997). Subsequent work along this direction in-
cludes Alamo, Tempo, and Camacho (2009), Chamanbaz, Dabbene,
Tempo, Venkatakrishnan, and Wang (2014), Koltchinskii, Abdal-
lah, Ariola, Dorato, and Panchenko (2000), Vidyasagar (2001) and
Vidyasagar and Blondel (2001). Furthermore, in Alamo, Tempo,
and Luque (2010a,b) and Luedtke and Ahmed (2008) the case in
which the design parameter set has finite cardinality is analyzed.
The advantage of these methods is that the problem under atten-
tionmay be non-convex. For convex optimization problems, a non-
sequential paradigm, denoted as the scenario approach, has been
introduced in Calafiore and Campi (2005, 2006), see also Alamo
et al. (2010b), Calafiore (2010) and Campi and Garatti (2008, 2011)
formore advanced results, and Prandini, Garatti, andVignali (2014)
and Vayanos, Kuhn, and Rustem (2012) for recent developments
in the areas of stochastic hybrid systems and multi-stage opti-
mization, respectively. Finally, we refer to de Farias and Van Roy
(2003) for a randomized approach to solve approximate dynamic
programming.

In non-sequential methods, the original robustness problem
is reformulated as a single optimization problem with sampled
constraints, which are randomly generated. A relevant feature of
these methods is that they do not require any validation step and
the sample complexity is defined a priori. The main result of this
line of research is to derive explicit lower bounds to the required
sample size. However, the obtained explicit sample bounds can be
overly conservative because they rely on a worst-case analysis and
grow (at least linearly) with the number of decision variables.

For sequential methods, the resulting iterative algorithms are
based on stochastic gradient (Calafiore & Polyak, 2001; Polyak &
Tempo, 2001), ellipsoid iterations (Kanev, De Schutter, & Verhae-
gen, 2003; Oishi, 2007); or analytic center cutting plane meth-
ods (Calafiore & Dabbene, 2007; Wada & Fujisaki, 2009), see also
Alamo, Tempo, Ramirez, and Camacho (2007) and Chamanbaz,
Dabbene, Tempo, Venkataramanan, and Wang (2013) for other
classes of sequential algorithms. Convergence properties in finite-
time are one of the focal points of these papers. Various control
problems have been solved using these sequential randomized al-
gorithms, including robust LQ regulators (Polyak & Tempo, 2001),
switched systems (Liberzon & Tempo, 2004) and uncertain linear
matrix inequalities (LMIs) (Calafiore & Polyak, 2001). Sequential
methods are often used for uncertain convex feasibility problems
because the computational effort at each iteration is affordable.
However, they have been studied also for non-convex problems,
see Alamo et al. (2009) and Ishii, Basar, and Tempo (2005).

The common feature of most of these sequential algorithms
is the use of the validation strategy presented in Dabbene,
Shcherbakov, and Polyak (2010) and Oishi (2007). The candidate
solutions provided at each iteration of these algorithms are tested
using a validation set which is drawn according to the probabil-
ity measure associated to the uncertainty. If the candidate solution
satisfies the design specifications for every sampled element of this
validation set, then it is classified as probabilistic solution and the
algorithm terminates. The main point in this validation scheme is
that the cardinality of the validation set increases very mildly at
each iteration of the algorithm. The strategy guarantees that, if a
probabilistic solution is obtained, then it meets some probabilistic
specifications.

In this paper, we derive the sample complexity for various anal-
ysis and design problems related to uncertain systems. In partic-
ular we provide new results which guarantee that the tail of the
binomial distribution is bounded by a pre-specified value. These
results are then applied to the analysis of worst-case performance
and constraint violation. With regard to design problems, we con-
sider the special cases of finite families and robust convex opti-
mization problems. This contribution improves the existing results
by reducing the number of samples required to solve the design
problem. We remark that the results we have obtained are fairly
general and the assumptions on convexity and on finite families
appear only in Section 4which dealswith probabilistic analysis and
design.

The second main contribution of this paper is to propose a
sequential validation scheme, denoted as Sequential Probabilistic
Validation (SPV), which allows the candidate solution to violate
the design specifications for one (or more) of the members of
the validation set. The idea of allowing some violations of the
constraints is not newand can be found, for example, in the context
of system identification (Bai, Cho, Tempo, & Ye, 2002), chance-
constrained optimization (Campi & Garatti, 2011; Nemirovski &
Shapiro, 2006) and statistical learning theory (Alamo et al., 2009).
This scheme makes sense in the presence of soft constraints or
when a solution satisfying the specifications for all the admissible
uncertainty realizations cannot be found. In this way, we improve
the existing results with this relaxed validation scheme that
reduces the chance of not detecting the solution even when it
exists. Furthermore, we also show that a strict validation scheme
may not be well-suited for some robust design problems.

This paper is based on the previous works of the authors Alamo,
Luque, Ramirez, and Tempo (2012) and Alamo et al. (2010b). How-
ever, some results are completely new (Property 4) and others
(Theorem 2, Property 1 and Property 3 and their proofs) are signifi-
cant improvements of the preliminary results presented in the con-
ference papers. Furthermore, the unifying approach studied here,
which combines sample complexity results with SPV algorithms,
was not present in previous papers. Finally, the numerical exam-
ple in Section 8, which compares various approaches available in
the literature, is also new. The rest of the paper is organized as fol-
lows. In the next section, we first introduce the problem formula-
tion. In Section 3, we provide bounds for the binomial distribution
which are used in Section 4 to analyze the probabilistic proper-
ties of different schemes involving randomization. In Section 5, we
introduce the proposed family of probabilistically validated algo-
rithms. The sample complexity of the validating sets is analyzed
in Section 6. A detailed comparison with the validation scheme
presented in Oishi (2007) is provided in Section 7. A numerical
example where different schemes are used to address a robust
identification problem is presented in Section 8. The paper ends
with a section of conclusions and an Appendix which contains
some auxiliary properties and proofs that are used in the previous
sections.

2. Problem statement

We assume that a probability measure PrW over the sample
space W is given. Given W , a collection of N independent identi-
cally distributed (i.i.d.) samples w = {w(1), . . . , w(N)

} drawn from
W belongs to the Cartesian product WN

= W ×· · ·×W (N times).
Moreover, if the collection w of N i.i.d. samples {w(1), . . . , w(N)

} is
generated from W according to the probability measure PrW , then
the multisample w is drawn according to the probability measure
PrWN . The scalars η ∈ (0, 1) and δ ∈ (0, 1) denote probabilistic
parameters called accuracy and confidence, respectively. Further-
more, ln(·) is the natural logarithm and e is the Euler number. For
x ∈ R, x ≥ 0, ⌊x⌋ denotes the largest integer smaller than or equal
to x; ⌈x⌉ denotes the smallest integer greater than or equal to x. For
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α > 1,

ξ(α) :=

∞
k=1

1
kα

denotes the Riemann zeta function.
In a robustness problem, the controller parameters and auxil-

iary variables are parameterized by means of a decision variable
vector θ , which is denoted as design parameter and is restricted to
a set Θ . Furthermore, the uncertainty w is bounded in the set W
and represents one of the admissible uncertainty realizations. We
also consider a binary measurable function g : Θ × W → {0, 1}
and a real measurable function f : Θ × W → R which help to
formulate the specific design problem under attention. More pre-
cisely, the binary function g : Θ × W → {0, 1}, is defined as

g(θ, w) :=


0 if θ meets design specifications for w
1 otherwise,

where design specifications are, for example, H∞ norm bounds
on the sensitivity function, see specific examples in Tempo et al.
(2013), or the numerical example in Section 8.

Given θ ∈ Θ , the constraint g(θ, w) = 0 is satisfied for a subset
of W . This concept is rigorously formalized by means of the notion
of probability of violation, which is now introduced.

Definition 1 (Probability of Violation). Consider a probability
measure PrW over W and let θ ∈ Θ be given. The probability of
violation of θ for the function g : Θ × W → {0, 1} is defined as

E(θ) := PrW {g(θ, w) = 1}.

Using this notion we study the robust optimization problem

min
θ∈Θ

J(θ) subject to E(θ) ≤ η, (1)

where J : Θ → (−∞, ∞) is a measurable function which rep-
resents the controller performance and η ∈ (0, 1) is a proba-
bilistic accuracy. This is a chance constrained problem that may
happen to be computationally intractable (Nemirovski & Shapiro,
2006). Given accuracy η ∈ (0, 1) and confidence δ ∈ (0, 1), the
main point of the probabilistic approach is to design an algorithm
such that any probabilistic solution θ̂ obtained by running the al-
gorithm, satisfies E(θ̂) ≤ η with probability no smaller than 1− δ.

Even in analysis problems when θ ∈ Θ is given, it is often very
hard to compute the exact value of the probability of violation E(θ)
because this requires to solve a multiple integral with a usually
non-convex domain of integration. However, we can approximate
its value using the concept of empirical mean. For given θ ∈ Θ ,
and multisample w = {w(1), . . . , w(N)

} drawn according to the
probability measure PrWN , the empirical mean of g(θ, w) with
respect to w is defined as

Ê(θ,w) :=
1
N

N
i=1

g(θ, w(i)).

Clearly, the empirical mean Ê(θ,w) is a random variable. Since
g(·, ·) is a binary function, Ê(θ,w) is always within the closed
interval [0, 1].

The power of randomized algorithms stems from the fact that
they can approximately solve non-convex design problems (with
no-violation) of the type

min
θ∈Θ

J(θ) subject to g(θ, w) = 0, for all w ∈ W . (2)

In this setting,wedrawN i.i.d. samples {w(1), . . . , w(N)
} fromW

according to probability PrW and solve the sampled optimization
problem

min
θ∈Θ

J(θ) subject to g(θ, w(ℓ)) = 0, ℓ = 1, . . . ,N. (3)
Since obtaining a global solution to this problem is still a difficult
task in general, in this paper we analyze the probabilistic proper-
ties of any suboptimal solution. Furthermore, if atmostm violations
of the N constraints are allowed, the following sampled problem
can be used to obtain a probabilistic relaxation to the original prob-
lem (2)

min
θ∈Θ

J(θ) subject to
N

ℓ=1

g(θ, w(ℓ)) ≤ m. (4)

Randomized strategies to solve problems (3) and (4) have been
studied in Alamo et al. (2009), see also Tempo et al. (2013). In order
to analyze the probabilistic properties of any feasible solution to
problem (4), we introduce the definitions of non-conforming fea-
sible set and probability of failure.

Definition 2 (Non-Conforming Feasible Set). Given N , the integer
m where 0 ≤ m < N , η ∈ (0, 1), g : Θ × W → {0, 1}
and multisample w = {w(1), . . . , w(N)

}, drawn according to
the probability measure PrWN , the non-conforming feasible set
Θ(w, η,m) is defined as

Θ(w, η,m) :=


θ ∈ Θ : Ê(θ,w) ≤

m
N

and E(θ) > η


.

Definition 3 (Probability of Failure). Given N , the integer m where
0 ≤ m < N , η ∈ (0, 1) and g : Θ × W → {0, 1}, the probability
of failure, denoted by p(N, η,m) is defined as

p(N, η,m) := PrWN {Θ(w, η,m) is not empty}.

The probability p(N, η,m) defined here is slightly different than
the probability of one-sided constrained failure introduced in
Alamo et al. (2009). We notice that the non-conforming feasibility
set is empty with probability 1 − p(N, η,m). This means that
every feasible solution θ ∈ Θ to problem (4) satisfies E(θ) ≤ η
with probability 1 − p(N, η,m). Given the confidence parameter
δ ∈ (0, 1), the objective is to obtain explicit expressions yielding a
minimum number of samples N such that p(N, η,m) ≤ δ.

3. Sample complexity for the binomial distribution

In this section, we provide bounds for the binomial distribution
which are used in Section 4. Given a positive integer N and a
nonnegative integer m, m ≤ N , and η ∈ (0, 1), the binomial
distribution function is given by

B(N, η,m) :=

m
i=0


N
i


ηi(1 − η)N−i.

The problemwe address in this section is the explicit computation
of the sample complexity, i.e. a function Ñ(η,m, δ) such that the
inequality B(N, η,m) ≤ δ holds for any N ≥ Ñ(η,m, δ), where
δ ∈ (0, 1). As illustrated in the following section, the inequality
B(N, η,m) ≤ δ plays a fundamental role in probabilistic methods.
Although some explicit expressions are available, e.g. the multi-
plicative and additive forms of Chernoff bound (Chernoff, 1952),
the results obtained in this paper are tuned on the specific inequal-
ities stemming from the problems described in Section 4.

The following technical lemma provides an upper bound for the
binomial distribution B(N, η,m).

Lemma 1. Suppose that η ∈ (0, 1) and that the nonnegative integer
m and the positive integer N satisfy m ≤ N. Then, B(N, η,m) ≤

am


η

a + 1 − η
N

, ∀a ≥ 1.
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Proof. The proof of the lemma follows from the following se-
quence of inequalities:

B(N, η,m) = am
m
i=0


N
i


a−mηi(1 − η)N−i

≤ am
m
i=0


N
i


a−iηi(1 − η)N−i

≤ am
N
i=0


N
i

η

a

i
(1 − η)N−i

= am
η

a
+ 1 − η

N
. �

We notice that each particular choice of a ≥ 1 provides an up-
per bound for B(N, η,m). When using Lemma 1 to obtain a specific
sample complexity, the selected value for a plays a significant role.

Lemma 2. Given δ ∈ (0, 1) and the nonnegative integer m, suppose
that the integer N and the scalars η ∈ (0, 1) and a > 1 satisfy the
inequality

N ≥
1
η


a

a − 1


ln

1
δ

+ m ln a


. (5)

Then, m < N and B(N, η,m) ≤ δ.

Proof. We first prove that if inequality (5) is satisfied, thenm < N .
Since η ∈ (0, 1) and δ ∈ (0, 1), (5) implies

N >


a

a − 1
ln a


m.

Next, we notice that

d
da


a

a − 1
ln a


=


−1

(a − 1)2


ln a +

1
a − 1

.

Since ln a < a − 1 for every a > 1, it follows that

d
da


a

a − 1
ln a


>


−1

(a − 1)2


(a − 1) +

1
a − 1

= 0.

Using this fact, we conclude that a
(a−1) ln a is a strictly increasing

function for a > 1. This means that

N >


a

a − 1
ln a


m ≥ lim

â→1


â

â − 1
ln â


m = m.

We now prove that (5) guarantees that am(
η

a + 1 − η)N ≤ δ. The
inequality (5) can be rewritten as

Nη


a − 1
a


≥ ln

1
δ

+ m ln a. (6)

Since x ≤ − ln (1 − x) for every x ∈ (0, 1), and η( a−1
a ) ∈ (0, 1),

from inequality (6), we obtain a sequence of inequalities

−N ln

1 − η


a − 1
a


≥ ln

1
δ

+ m ln a

ln δ ≥ m ln a + N ln

1 − η


a − 1
a


δ ≥ am

η

a
+ 1 − η

N
.

We have therefore proved that inequality (5) implies m ≤ N and
am(

η

a + 1 − η)N ≤ δ. The claim of the property follows directly
from Lemma 1. �
Obviously, the best sample size bound is obtained taking the
infimum with respect to a > 1. However, this requires to solve
numerically a one-dimensional optimization problem for given η,
δ and m. We observe that a suboptimal value can be immediately
obtained setting a equal to the Euler constant, which yields the
sample complexity

N ≥
1
η


e

e − 1


ln

1
δ

+ m


. (7)

Since e
e−1 < 1.59, we obtain N ≥

1.59
η


ln 1

δ
+ m


, which is

(numerically) a significant improvement of the bound given in
Calafiore (2010) and other bounds available in the literature
(Calafiore et al., 2011). We also notice that, if m > 0, then the
choice

a = 1 +
ln 1

δ

m
+


2
ln 1

δ

m

provides a less conservative bound at the price of a more involved
expression (Alamo et al., 2010b). Based on extensive numerical
computations for several values of η, δ andmwe conclude that this
bound is very close to the ‘‘optimal’’ one. Note, however, that the
optimal value can be obtained numerically using the Lambert W
function (Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996). In the next
corollary, we present another more involved sample complexity
bound which improves (7) for some values of the parameters.

Corollary 1. Given δ ∈ (0, 1) and the nonnegative integer m, sup-
pose that the integer N and the scalar η ∈ (0, 1) satisfy the inequality

N ≥
1
η


m + ln

1
δ

+


2m ln

1
δ


. (8)

Then, m < N and B(N, η,m) ≤ δ.

The proof of this corollary is shown in the Appendix.

4. Sample complexity for probabilistic analysis and design

We now study some problems in the context of random-
ized algorithms where one encounters inequalities of the form
B(N, η,m) ≤ δ. In particular,we showhow the results of the previ-
ous section can be used to derive explicit sample size boundswhich
guarantee that the probabilistic solutions obtained from differ-
ent randomized approaches meet some pre-specified probabilistic
properties.

In Section 4.2 we derive bounds on p(N, η,m) when Θ

consists of a finite number of elements. On the other hand, if
Θ consists of an infinite number of elements, a deeper analysis
involving statistical learning theory is needed (Tempo et al.,
2013; Vidyasagar, 1997). In Section 4.3 we study the probabilistic
properties of the optimal solution of problem (3) under the
assumption that g(θ, w) = 0 is equivalent to f (θ, w) ≤ 0, where
f : Θ ×W → R is a convex function with respect to θ in Θ . In this
case, the result is not expressed in terms of probability of failure
because it applies only to the optimal solution of problem (3), and
not to every feasible solution.

4.1. Worst-case performance analysis

We recall a result shown in Tempo, Bai, and Dabbene (1997) for
the probabilistic worst-case performance analysis.
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Theorem 1. Given the function f : Θ×W → R and θ̂ ∈ Θ , consider
the multisamplew = {w(1), . . . , w(N)

} drawn from WN according to
probability PrWN and define γ = maxℓ=1,...,N f (θ̂ , w(ℓ)). If

N ≥
ln 1

δ

ln 1
1−η

,

then PrW {w ∈ W : f (θ̂ , w) > γ } ≤ η with probability no smaller
than 1 − δ.

The proof of this statement can be found in Tempo et al. (1997)
and is based on the fact that PrW {w ∈ W : f (θ̂ , w) > γ } ≤ η with
probability no smaller than 1 − (1 − η)N . Therefore, it suffices to
take N such that B(N, η, 0) = (1 − η)N ≤ δ.

4.2. Finite families for design

We consider the non-convex sampled problem (4) for the
special case when Θ consists of a set of finite cardinality nC .
As a motivation, we study the case when, after an appropriate
normalization procedure, the design parameter set is rewritten as
Θ̂ = {θ ∈ Rnθ : ∥θ∥∞ ≤ 1}. Suppose also that a gridding
approach is adopted. That is, for each component θj, j = 1, . . . , nθ

of the design parameters θ ∈ Rnθ , only nCj equally spaced values
are considered. That is, θj is constrained into the set Υj = {−1 +
2(t−1)
(nCj−1) : t = 1, . . . , nCj}. With this gridding procedure, the

following finite cardinality set Θ = {[θ1, . . . , θnθ
]
T

: θj ∈ Υj, j =

1, . . . , nθ } is obtained. We notice that the cardinality of the set is
nC =

nθ
j=1 nCj . Another situation in which the finite cardinality

assumption holds is when a finite number of random samples in
the space of design parameter are drawn according to a given
probability, see e.g. Fujisaki and Kozawa (2006) and Vidyasagar
(2001).

The following theorem states the relation between the binomial
distribution and the probability of failure under this finite
cardinality assumption.

Theorem 2. Suppose that the cardinality of Θ is no larger than nC ,
nC > 0, η ∈ (0, 1) and m < N. Then,

p(N, η,m) < nCB(N, η,m).

Proof. If there is no element in Θ with probability of violation
larger than η, then the non-conforming feasible set is empty for
every multisample w and p(N, η,m) = 0 < nCB(N, η,m).

Suppose now that the subset of Θ of elements with prob-
ability of violation larger than η is not empty. Denote by
{θ (1), θ (2), . . . , θ (ñ)

} such a set. In this case, given a multisample
w, the non-conforming feasible set is not empty if and only if the
empirical mean is smaller than or equal to m

N for at least one of the
elements of this set. Therefore

p(N, η,m) = PrWN {Θ(w, η,m) is not empty}

= PrWN


min
1≤k≤ñ

Ê(θ (k),w) ≤
m
N


≤

ñ
k=1

PrWN


Ê(θ (k),w) ≤

m
N


=

ñ
k=1

B(N, E(θ (k)),m)

<

ñ
k=1

B(N, η,m) = ñB(N, η,m).
Notice that the last inequality is due to the fact that E(θ (k)) >
η, k = 1, . . . , ñ and that the binomial distribution is a strictly
decreasing function of η ifm < N (see Property 4 in the Appendix).
To conclude the proof it suffices to notice that ñ ≤ nC . �

Consider now the optimization problem (4). It follows from
Theorem 2 that to guarantee that every feasible solution θ̂ ∈ Θ

satisfies E(θ̂) ≤ η with probability no smaller than 1 − δ, it
suffices to take N > m such that nCB(N, η,m) ≤ δ, where nC is an
upper bound on the cardinality of Θ . As it will be shown next, the
required sample complexity in this case grows with the logarithm
of nC . This means that we can consider finite families with high
cardinality and still obtain very reasonable sample complexity
bounds.

Theorem 3. Suppose that the cardinality of Θ is no larger than nC .
Given the nonnegative integer m, η ∈ (0, 1) and δ ∈ (0, 1), if

N ≥ inf
a>1

1
η


a

a − 1


ln

nC

δ
+ m ln a


(9)

then p(N, η,m) ≤ δ. Moreover, if

N ≥
1
η


m + ln

nC

δ
+


2m ln

nC

δ


then p(N, η,m) ≤ δ.

Proof. FromTheorem2wehave that p(N, η,m) ≤ δ provided that
m < N and B(N, η,m) ≤

δ
nC

. The two claims of the property now
follow directly from Lemma 2 and Corollary 1 respectively. �

From the definition of p(N, η,m) and Theorem 3 we conclude
that if one draws N i.i.d. samples {w(1), . . . , w(N)

} from W
according to probability PrW , thenwith probability no smaller than
1 − δ, all the feasible solutions to problem (4) have a probability
of violation no larger than η, provided that the cardinality of Θ is
upper bounded by nC and the sample complexity is given by

N ≥
1
η


m + ln

nC

δ
+


2m ln

nC

δ


.

We remark that taking a equal to the Euler constant in (9), the
following sample size bound

N ≥
1
η


e

e − 1


ln

nC

δ
+ m


is immediately obtained from Theorem 3. If m > 0, then a
suboptimal value for a is given by

a = 1 +
ln nC

δ

m
+


2
ln nC

δ

m
.

4.3. Robust optimization for design

In this subsection, we study the so-called scenario approach
for robust control introduced in Calafiore and Campi (2006). To
address the semi-infinite optimization problem (2), we solve the
randomized optimization problem (3). That is, we generate N i.i.d.
samples {w(1), . . . , w(N)

} from W according to the probability PrW
and then solve the following sampled optimization problem:

min
θ∈Θ

J(θ) subject to g(θ, w(ℓ)) = 0, ℓ = 1, . . . ,N. (10)

We consider here the particular case in which J(θ) = cT θ , the con-
straint g(θ, w) = 0 is convex in θ for all w ∈ W and the solution
of (10) is unique. These assumptions are now stated precisely.
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Assumption 1 (Convexity). Let Θ ⊂ Rnθ be a convex and closed
set. We assume that

J(θ) := cT θ and g(θ, w) :=


0 if f (θ, w) ≤ 0,
1 otherwise

where f : Θ ×W → [−∞, ∞] is convex in θ for every fixed value
of w ∈ W .

Assumption 2 (Feasibility and Uniqueness). For all possible mul-
tisample extractions {w(1), . . . , w(N)

}, the optimization problem
(10) is always feasible and attains a unique optimal solution.More-
over, its feasibility domain has a nonempty interior.

Uniqueness may be assumed essentially without loss of gener-
ality, since in case of multiple optimal solutions one may always
introduce a suitable tie-breaking rule (Calafiore & Campi, 2006).
We now state a result that relates the binomial distribution to the
probabilistic properties of the optimal solution obtained from (10),
see Calafiore (2010) and Campi and Garatti (2008, 2011).

Lemma 3. Let Assumptions 1 and 2 hold. Suppose that N, η ∈ (0, 1)
and δ ∈ (0, 1) satisfy the inequality

nθ −1
i=0


N
i


ηi(1 − η)N−i

≤ δ. (11)

Then, with probability no smaller than 1 − δ, the optimal solution θ̂N
to the optimization problem (10) satisfies the inequality E(θ̂N) ≤ η.

We now state an explicit sample size bound, which improves
upon previous bounds, to guarantee that the probability of
violation is smaller than η with probability at least 1 − δ.

Theorem 4. Let Assumptions 1 and 2 hold. Given η ∈ (0, 1) and
δ ∈ (0, 1), if

N ≥ inf
a>1

1
η


a

a − 1


ln

1
δ

+ (nθ − 1) ln a


(12)

or

N ≥
1
η


ln

1
δ

+ (nθ − 1) +


2(nθ − 1) ln

1
δ


(13)

then, with probability no smaller than 1 − δ, the optimal solution θ̂N
to the optimization problem (10) satisfies the inequality E(θ̂N) ≤ η.

Proof. From Lemma 3 it follows that it suffices to take N such that
B(N, η, nθ − 1) ≤ δ. Both inequalities (12) and (13) guarantee that
B(N, η, nθ − 1) ≤ δ (see Lemma 2 and Corollary 1 respectively).
This completes the proof. �

Taking a equal to the Euler constant in (12), we obtain

N ≥
1
η


e

e − 1


ln

1
δ

+ nθ − 1


which improves the bound given in Calafiore (2010) and other
bounds available in the literature (Calafiore et al., 2011). More
precisely, the constant 2 appearing in Calafiore (2010) is reduced
to e

(e−1) ≈ 1.59, which is (numerically) a substantial improvement
for small values of η. If nθ > 1, a suboptimal value for a is given
by

a = 1 +
ln 1

δ

nθ − 1
+


2

ln 1
δ

nθ − 1
.

5. Sequential algorithms with probabilistic validation

In this section, we present a general family of randomized
algorithms, which we denote as Sequential Probabilistic Validation
(SPV) algorithms. The main feature of this class of algorithms
is that they are based on a probabilistic validation step. This
family includesmost of the sequential randomized algorithms that
have been presented in the literature and are discussed in the
introduction of this paper.

Each iteration of an SPV algorithm includes the computation of
a candidate solution for the problem and a subsequent validation
step. The results provided in this paper are basically independent
of the particular strategy chosen to obtain candidate solutions.
Therefore, in the following discussion we restrict ourselves to a
generic candidate solution. The accuracy η ∈ (0, 1) and confidence
δ ∈ (0, 1) required for the probabilistic solution play a relevant
role when determining the sample size of each validation step. The
main purpose of this part of the paper is to provide a validation
schemewhich guarantees that, for given accuracyη and confidence
δ, all the probabilistic solutions obtained by running the SPV
algorithm have a probability of violation no larger than η with
probability no smaller than 1 − δ.

We enumerate each iteration of the algorithm by means of an
integer k. We denote by mk the number of violations that are al-
lowed at the validation step of iteration k. We assume that mk is a
function of k, that is, mk = m(k) where the function m : N → N

is given. We also denote by Mk the sample size of the validation
step of iteration k. We assume that Mk is a function of k, η and δ.
That is, Mk = M(k, η, δ) where M : N × R × R → N has to
be appropriately designed in order to guarantee the probabilistic
properties of the algorithm. In fact, one of the main contributions
of Dabbene et al. (2010) and Oishi (2007) is to provide this function
for the particular case mk = 0 for every k ≥ 1. The functions m(·)
and M(·, ·, ·) are denoted as level function and cardinality function
respectively.

We now introduce the structure of an SPV algorithm

(i) Set accuracy η ∈ (0, 1) and confidence δ ∈ (0, 1) equal to the
desired levels. Set k equal to 1.

(ii) Obtain a candidate solution θ̂k to the robust optimization
problem (1).

(iii) Setmk = m(k) and Mk = M(k, η, δ).
(iv) Obtain validation set Vk = {v(1), . . . , v(Mk)} drawing Mk i.i.d.

validation samples from W according to probability PrW .
(v) If

Mk
ℓ=1 g(θ̂k, v

(ℓ)) ≤ mk, then θ̂k is a probabilistic solution.
(vi) Exit if the exit condition is satisfied.
(vii) k = k + 1. Goto (ii).

Although the exit condition can be quite general, a reasonable
choice is to exit after a given number of candidate solutions
have been classified as probabilistic solutions or when a given
computational time has elapsed since the starting of the algorithm.
After exiting one could choose the probabilistic solution which
maximizes a given performance index. We notice that in step (iv)
we need to satisfy the i.i.d. assumption, and therefore sample reuse
techniques are not applicable. In the next section, we propose a
strategy to choose the cardinality of the validation set at iteration
k in such a way that, with probability no smaller than 1 − δ,
all candidate solutions classified as probabilistic solutions by the
algorithm meet the accuracy η.

6. Adjusting the validation sample size

The cardinality adjusting strategy provided in this section
constitutes a generalization of that presented in Dabbene et al.
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(2010) and Oishi (2007). To obtain the results of this section we
rely on some contributions on the sample complexity presented in
the previous sections.

We now formally introduce the failure function.

Definition 4 (Failure Function). The function µ : N → R is said to
be a failure function if it satisfies the following conditions:

(i) µ(k) ∈ (0, 1) for every positive integer k.
(ii)


∞

k=1 µ(k) ≤ 1.

We notice that the function

µ(k) =
1

ξ(α)kα
,

where ξ(·) is the Riemann zeta function, is a failure function for
every α > 1. This is due to the fact that


∞

i=1
1
kα converges for

every scalar α greater than 1 to ξ(α). This family has been used in
the context of validation schemes in Dabbene et al. (2010) and in
Oishi (2007) for the particular value α = 2.

Property 1. Consider an SPV algorithm with given accuracy param-
eter η ∈ (0, 1), confidence δ ∈ (0, 1), level function m(·) and car-
dinality function M(·, ·, ·). If m(k) < M(k, η, δ), for all k ≥ 1, and
there exists a failure function µ(·) such that
m(k)
i=0


M(k, η, δ)

i


ηi(1 − η)M(k,η,δ)−i

≤ δµ(k), ∀k ≥ 1

then, with probability greater than 1−δ, all the probabilistic solutions
obtained running the SPV algorithm have a probability of violation no
greater than η.

The proof of this property follows the same lines as the proof of
Theorem 9 in Oishi (2007).

Proof. We denote by δk the probability of classifying at iteration
k the candidate solution θ̂k as a probabilistic solution under the
assumption that the probability of violation E(θ̂k) is larger than η.
Furthermore, letMk = M(k, η, δ), then

δk = PrWMk


Ê(θ̂k,w) ≤

mk

Mk


=

mk
i=0


Mk
i


E(θ̂k)

i(1 − θ̂k)
Mk−i

<

mk
i=0


Mk
i


ηi(1 − η)Mk−i.

Property 4 in the Appendix, mk < Mk, and E(θ̂k) > η have been
used to derive the last inequality. Then, we obtain

δk <

m(k)
i=0


M(k, η, δ)

i


ηi(1 − η)M(k,η,δ)−i

≤ δµ(k).

Therefore, the probability of misclassification of a candidate solu-
tion at iteration k is smaller than δµ(k).We conclude that the prob-
ability of erroneously classifying one or more candidate solutions
as probabilistic solutions is bounded by
∞
k=1

δk <

∞
k=1

δµ(k) = δ

∞
k=1

µ(k) ≤ δ. �

To design a cardinality function M(·, ·, ·) satisfying the condi-
tions of Property 1 we may use Corollary 1.

We now present themain contribution of this part of the paper,
which is a general expression for the cardinality of the validation
set at each iteration of the algorithm.
Theorem 5. Consider an SPV algorithm with given accuracy η ∈

(0, 1), confidence δ ∈ (0, 1) and level function m(·). Suppose also
that µ(·) is a failure function. Then, the cardinality function

M(k, η, δ) =


1
η


m(k) + ln

1
δµ(k)

+


2m(k) ln

1
δµ(k)


guarantees that, with probability greater than 1−δ, all the probabilis-
tic solutions obtained running the SPV algorithm have a probability of
violation no greater than η.

Proof. Corollary 1 guarantees that the proposed choice for the
cardinality function satisfiesm(k) < M(k, η, δ), for all k ≥ 1, and

m(k)
i=0


M(k, η, δ)

i


ηi(1 − η)M(k,η,δ)−i

≤ δµ(k), ∀k ≥ 1.

The result then follows from a direct application of Property 1. �

We notice that the proposed cardinality function M(k, η, δ) in
Theorem 5 depends on the previous selection of the level function
m(·) and the failure function µ(·). A reasonable choice for these
functions is m(k) = ⌊ak⌋, where a is a non-negative scalar and
µ(k) =

1
ξ(α)kα where α is greater than one. We recall that this

choice guarantees that µ(k) is a failure function. As shown in the
following section, the proposed level and failure functions allow us
to recover, for the particular choice a = 0 the validation strategies
proposed in Dabbene et al. (2010) and Oishi (2007). In the next
corollary, we specify the generic structure of the SPV algorithm
with the level function m(k) = ⌊ak⌋, and state a probabilistic
result.

Corollary 2. Consider an SPV algorithm of the form given in Sec-
tion 5 in which steps (i) and (iii) are substituted by

(i) Set accuracy η ∈ (0, 1), confidence δ ∈ (0, 1) and scalars a ≥ 0,
α > 1 equal to the desired levels. Set k equal to 1.

(iii) Set mk = ⌊ak⌋ and

Mk =


1
η


mk + ln

ξ(α)kα

δ
+


2mk ln

ξ(α)kα

δ


.

Then, with probability greater than 1−δ, all the probabilistic solutions
obtained running the SPV algorithm have a probability of violation no
greater than η.

Proof. The result is obtained directly from Theorem 5 using as
level functionm(k) = ⌊ak⌋ and failure functionµ(k) =

1
ξ(α)kα . �

Since the probabilistic properties of the algorithm presented in
Corollary 2 are independent of the particular value of α > 1, a
reasonable choice for α is to select this parameter to minimize the
cardinality of the validation sample set.

7. Comparison with other validation schemes

In this section, we provide comparisons with the validation
schemes presented in Dabbene et al. (2010) and Oishi (2007). We
notice that setting a = 0 and α = 2 in Corollary 2 we obtain
m(k) = 0 for every iteration k and

M(k) =


1
η
ln


ξ(2)k2

δ


=


1
η
ln


π2k2

6δ


.

This is the same cardinality function presented in Oishi (2007) if
one takes into account that for small values of η, − ln (1− η) can
be approximated by η. In the same way, a = 0 and α = 1.1 lead to
the cardinality function presented in Dabbene et al. (2010).
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We notice that not allowing any failure in each validation test
makes perfect sense for convex problems if the feasibility setΘr =

{θ ∈ Θ : g(θ, w) = 0 for all w ∈ W} is not empty. Under this
assumption, the algorithm takes advantage of the validation sam-
ples that have not satisfied the specifications to obtain a newcandi-
date solution. IfΘr is not empty, a common feature of themethods
which use this strict validation scheme is that a probabilistic solu-
tion (not necessarily belonging to the feasibility setΘr ) is obtained
in a finite number of iterations of the algorithm, see e.g., Alamo
et al. (2007), Calafiore and Dabbene (2007) and Oishi (2007).

A very different situation is encountered whenΘr is empty.We
now state a property showing that a strict validation scheme (a =

0) should not be used to address the case of empty robust feasible
set because the algorithm might fail to obtain a probabilistic
solution even if the set {θ ∈ Θ : E(θ) ≤ η} is not empty.

Property 2. Consider the SPV algorithm presented in Corollary 2with
a = 0 and α > 1. Suppose that E(θ) ≥ µ > 0 for all θ ∈ Θ . Then
the SPV algorithm does not find any probabilistic solution in the first
L iterations of the algorithm with probability greater than

1 −


δ

ξ(α)

 µ
η

Φ


αµ

η
, ⌈log2 L⌉


,

where the function Φ(s, t) is given by

Φ(s, t) :=


1 − 2(1−s)(t+1)

1 − 21−s
if s ≠ 1

t + 1 otherwise

where s is a strictly positive scalar and t is a non-negative integer.

Proof. We notice that a = 0 implies that, at iteration k, the algo-
rithm classifies a candidate solution θ̂k as a probabilistic solution
only if it satisfies the constraint g(θ̂k, v(k)) = 0, k = 1, . . . ,Mk
where {v(1), . . . , v(Mk)} is the randomly obtained validation setVk.
Since E(θ) ≥ µ for all θ ∈ Θ and a = 0, the probability of classi-
fying a candidate solution as a probabilistic solution at iteration k
is no greater than

(1 − µ)Mk = eMk ln(1−µ) < e−µMk

≤ e−
µ
η ln


ξ(α)kα

δ


=


δ

ξ(α)kα

 µ
η

.

Therefore, the probability of providing a probabilistic solution at
any of the first L iterations of the algorithm is smaller than

L
k=1


δ

ξ(α)kα

 µ
η

=


δ

ξ(α)

 µ
η L

k=1


1
kα

 µ
η

.

Taking s =
αµ

η
and using Property 5 in the Appendix we have

L
k=1


1
kα

 µ
η

=

L
k=1

1
ks

≤ Φ(s, ⌈log2 L⌉).

We conclude that the probability of not finding any probabilistic
solution in the first L iterations of the algorithm is smaller than

1 −


δ

ξ(α)

 µ
η

Φ


αµ

η
, ⌈log2 L⌉


. �

We now present an example demonstrating that a strict
validation scheme may not be well-suited for a robust design
problem.
Example 1. Suppose that Θ = [0, 1], W = [−0.08, 1], η = 0.1,
δ = 10−4 and

g(θ, w) =


0 if θ ≤ w
1 otherwise.

Suppose also that PrW is the uniform distribution. It is clear that
θ = 0 minimizes the probability of violation and satisfies η =

0.1 > E(0) =
0.08
1.08 > 0.074. Therefore, we obtain E(θ) ≥

0.074 = µ for all θ ∈ Θ . Consider now the choice α = 1.1 and a
maximum number of iterations L equal to 106. We conclude from
Property 2 that, regardless of the strategy used to obtain candidate
solutions, the choice a = 0 and α = 1.1 in Corollary 2 will not
provide a probabilistic solution with probability greater than 0.98.
The choice α = 2 leads to a probability greater than 0.99. This
illustrates that a strict validation scheme is not well suited for this
robust design problem. �

The next result states that the probabilistic validation scheme
presented in this paper achieves, under minor technical assump-
tions, a solution with probability one in a finite number of itera-
tions.

Property 3. Consider an SPV algorithmwith given accuracy parame-
ter η ∈ (0, 1), confidence δ ∈ (0, 1) and level function m(·). Suppose
that

(i) µ(·) is a failure function.
(ii) The cardinality function M(k, η, δ) is given by

1
η


m(k) + ln

1
δµ(k)

+


2m(k) ln

1
δµ(k)


.

(iii) There exist an integer k∗, scalars µ ∈ (0, 1) and p ∈ (0, 1) such
that at every iteration k > k∗ a candidate solution θ̂k satisfying
E(θ̂k) ≤ µ < η is obtained with probability greater than p.

(iv) limk→∞
1

m(k) ln
1

δµ(k) = 0.

Then, the SPV algorithm achieves with probability one a solution in a
finite number of iterations.

Proof. Using the assumption

lim
k→∞

1
m(k)

ln
1

δµ(k)
= 0

we conclude that

lim
k→∞

M(k)
m(k)

= lim
k→∞

1
η


1 +

1
m(k)

ln
1

δµ(k)
+


2

1
m(k)

ln
1

δµ(k)


=

1
η
.

Since µ < η and m(k)
M(k) converges to η, there exists k̃ such that

µ + η

2
≤

m(k)
M(k)

, for every k > k̃.

That is, at each iteration k, the SPV algorithm provides candidate
solutions θ̂k satisfying

E(θ̂k) ≤ µ ≤
µ + η

2
≤

m(k)
M(k)

for every k ≥ max{k∗, k̃} with probability greater than p. We
notice that 1

M(k)

M(k)
ℓ=1 g(θ̂k, v(ℓ)) is the empirical mean associated

to g(θ̂k, v). We recall that the Chernoff inequality (see Tempo et al.,
2013) guarantees that the probability of obtaining an empirical
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mean larger than ϵ =
η−µ

2 from the value E(θ̂k) is no larger than
e−2M(k)ϵ2 . Notice that

E(θ̂k) + ϵ = E(θ̂k) +
η − µ

2

≤ µ +
η − µ

2
=

µ + η

2
≤

m(k)
M(k)

.

Therefore we have that if k ≥ max{k∗, k̃}, then with probability
no smaller than 1 − e−2M(k)ϵ2 the candidate solution is classified
as a probabilistic solution. Taking into account that M(k) tends
to infinity with k, there exists kϵ such that 1 − e−2M(k)ϵ2

≥
1
2

for every k > kϵ . This means that the probability of classifying a
candidate solution as a probabilistic one is no smaller than p

2 for
every iteration k > max {k∗, k̃, kϵ}. Since

p
2 > 0, we conclude

that the algorithm obtains a probabilistic solution with probability
one. �

8. Numerical example

The objective of this numerical example is to obtain probabilis-
tic upper and lower bounds of a given time function y : W → R

with unknown parameters A and B of the form

y(w) =


A

1 +

1
2
t2

sin(7t + 0.5) + B


e−

3
2 t ,

where w ∈ W . The uncertainty set W is

W =


w =


t A B

T
, t ∈ [0, 1], A ∈ [1, 3], B ∈ [1, 3]


.

For a given order d, we define the regressor ϕd : W → Rd+1 as

ϕd(w) = ϕd


t A B

T
=

1 t t2 · · · td

T
.

The objective of this example is to find a parameter vector θ =

[γd, λd]
T , γd ∈ Rd+1 and λd ∈ Rd+1 such that, with probability no

smaller than 1 − δ,

PrW {w ∈ W : |y(w) − γ T
d ϕd(w)| ≥ λT

d |ϕd(w)|} ≤ η.

The vector |ϕd(w)| is obtained from the absolute values of ϕd(w).
The binary function g : Θ × W → {0, 1}, is defined as

g(θ, w) :=


0 if θ meets design specifications for w
1 otherwise,

where ‘‘design specifications’’ means satisfying the following
constraint:

|y(w) − γ T
d ϕd(w)| ≤ λT

d |ϕd(w)|

for uniformly randomly generated samples w ∈ W .
A similar problem is addressed in Campi and Garatti (2008)

using the scenario approach. For the numerical computations, we
take δ = 10−6 and η = 0.01. We address the problem studying
the finite families, scenario and SPV approach, and use the explicit
sample complexity derived in the previous sections.

8.1. Finite families approach

We apply the results of Section 4.2 to determine both the
degree d and the parameter vectors (γd, λd) that meet the design
specification and optimize a given performance index.

In this example a finite family of cardinality nC = 400 is
considered. In order to compare the finite family approach with
the scenario one, we consider no allowed failures (i.e. m = 0).
For this choice of parameters (m = 0, nC = 400, δ = 10−6

and η = 0.01), the number of samples N required to obtain a
solution with the specified probabilistic probabilities is 1981 (see
Theorem 3). A set D of M = N samples is drawn (i.i.d.) from W .
We use these samples to select the optimal parameters (γ̃d, λ̃d)
corresponding to each of the different regressors ϕd(·). Each pair
(γ̃d, λ̃d) is obtainedminimizing the empirical mean of the absolute
value of the approximation error. That is, each pair (γ̃d, λ̃d) is the
solution to the optimization problem

min
γd,λd

1
M


w∈D

λT
d |ϕd(w)|

s.t. |y(w) − γ T
d ϕd(w)| ≤ λT

d |ϕd(w)|, ∀w ∈ D.

We notice that the obtained parameters do not necessarily satisfy
the probabilistic design specifications. In order to resolve this
problem, we consider a new set of candidate solutions of the

form Θ = {θd,j = (γ̃d, e

−0.5+ j

20


λ̃d) : d = 1, . . . , dmax, j =

1, . . . , jmax}.
This family has cardinality nC = dmaxjmax. We take a large

factor e

−0.5+ j

20


to increase the probability to meet the design

specifications. Therefore, choosing a large enough value for jmax
leads to a non-empty intersection of Θ with the set of parameters
thatmeet the design specifications. In this example, we take jmax =

20 and dmax = 20, which yields nC = 400.
Using the finite family approach, we choose from Θ the

design parameter that optimizes a given performance index. We
draw from W a set V of N (i.i.d.) samples and select the pair
that minimizes the empirical mean of the absolute value of the
approximation error in the validation set V . That is, we consider
the performance index

1
N


w∈V

e

−0.5+ j

20


λ̃T
d |ϕd(w)|

subject to the constraints

|y(w) − γ̃ T
d ϕd(w)| ≤ e


−0.5+ j

20


λ̃T
d |ϕd(w)|, ∀w ∈ V.

We remark that the feasibility of this problem can be guaranteed in
two ways. The first one is to choose jmax large enough. The second
one is to allowm failures. As previously discussed, in this example
we take jmax = 20 andm = 0.

As the cardinality N of V has been chosen using Theorem 3, the
probability of violation and the probability of failure of the best
solution from Θ are bounded by η and δ respectively.

The obtained solution corresponds to d = 15 and j = 11 and
the value for the performance index is 0.9814. Fig. 1 shows the
approximation for the set V and the obtained probabilistic upper
and lower bounds for the random function.

Finally, for illustrative purposes, we used a validation set of
sample size Nv = 10N , obtaining 5 violations. The empirical
violation probability turned out to be ηexp =

5
10N = 2.5242 · 10−4,

while the specification was η = 0.01.

8.2. Convex scenario approach

In this case we take advantage of the result of Section 8.1 and
choose d = 15 as the order of the approximation polynomial.
Following the scenario approach we draw a set Wk of N samples
(i.i.d.) from W and solve the convex optimization problem

min
γd,λd

λT
dE{|ϕd(t)|}

s.t. |y(w) − γ T
d ϕd(w)| ≤ λT

d |ϕd(w)|, ∀w ∈ Wk.

In order to guarantee the design specifications we use Theorem 4
to determine the value ofN . Since the number of decision variables
is 2(d + 1) = 32, η = 0.01 and δ = 10−6, the resulting
value for N is 7090. We notice that the convex scenario approach
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Fig. 1. Initial data set and envelope of the set of solutions.

does not apply directly to the minimization of the empirical mean.
This is why one has to resort to the exact computation of the
mean of the approximation error λT

dE{|ϕd(t)|}, see Campi and
Garatti (2008). Fig. 1 shows the initial data set generated using the
procedure described above, plus the envelope that contains all the
polynomials.

For illustrative purposes, we check with a validation set of size
Nv = 10N . The experimental value ηexp = 8.4626 · 10−5 is ob-
tained, while the specification was η = 0.05. Using this strategy,
7090 samples are required, considerably bigger than in the finite
families approach. We obtained a performance index of 0.9613,
slightly better than that obtainedby the finite families strategy. The
advantage of the finite families approach is that, using a smaller
number of samples, a similar performance is obtained. This allows
us to determine the best order of the polynomial with the further
advantage that the exact computation of the mean of the error is
not required. Furthermore, the finite family approach does not rely
on a convexity assumption.

8.3. SPV algorithm

We again take advantage of the result of Section 8.1 and choose
d = 15 as the order of the approximation polynomial. Following
the SPV algorithmapproach,webegin settingη = 0.01, confidence
δ = 10−6, scalars a = 0.75, α = 2 and iteration index k = 1.
The initial Wk is a set of 500 samples drawn from W according to
probability PrW .

(i) A candidate solution θ̂k to the problem

min
γd,λd

λT
d


|ϕd(t)|

s.t. |y(w) − γ T
d ϕd(w)| ≤ λT

d |ϕd(w)|, ∀w ∈ Wk

is obtained.
(ii) Setmk = ⌊ak⌋ and

Mk =


1
η


mk + ln

ξ(α)kα

δ
+


2mk ln

ξ(α)kα

δ


.

(iii) Obtain validation set Vk = {v(1), . . . , v(Mk)} drawing Mk i.i.d.
validation samples from W according to the probability PrW .

(iv) If
Mk

ℓ=1 g(θ̂k, v
(ℓ)) ≤ mk, then θ̂k is a probabilistic solution.

(v) Exit if the exit condition is satisfied.
(vi) k = k + 1. Wk = Wk−1


Vk−1. Goto (i).
Table 1
Sample complexity for different values of η.

η Nfinite Nconvex NSPV

0.1 398 488 988
0.05 794 849 1972
0.01 3962 7090 4163
0.005 7924 16078 13652
0.001 39614 74062 41617

Table 2
Performance index for different values of η.

η Jfinite Jconvex JSPV

0.1 1.0411 0.8803 0.8589
0.05 1.0085 0.9217 0.9597
0.01 0.9841 0.9613 0.9406
0.005 1.0111 1.0447 0.9741
0.001 0.9904 1.0183 0.9828

Fig. 1 shows the initial data set generated using the procedure
described above, and the envelope that contains all the solution
polynomials. Using this strategy, 4163 samples are required. We
obtained a performance index of 0.9406, slightly better than the
ones obtained by the other approaches.

The level function in the last step of the algorithm is mk = 1,
being the empirical probability of failure 1

Mk
=

1
2231 < 0.01.

Remark 1. If we set a = 0 in the algorithm, there are no allowed
failures and this coincides with the approach studied in Oishi
(2007). In this case, the algorithm did not find a solution for η =

0.05 and Mk < 30 000. This is consistent with the results of
Section 7.

In Table 1 the results of the three approaches are compared for
different values of η. Note that Nfinite, Nconvex and NSPV denote the
total number of samples required in each of the three proposed
strategies. We notice that, for small values of the probability of
violation η, the sample complexity corresponding to the convex
scenario is the largest one. On the other hand, as can be observed in
Table 2, the performance index obtained with the SPV algorithms
is slightly better than the ones corresponding to the other two
approaches. We recall that the SPV algorithms do not rely on a
convexity or finite cardinality assumptions.

9. Conclusions

In this paper, we have derived the sample complexity for var-
ious analysis and design problems related to uncertain systems.
In particular, we provided new results which guarantee that a
binomial distribution is smaller than a given probabilistic confi-
dence. These results are subsequently exploited for analysis prob-
lems to derive the sample complexity of worst-case performance
and robust optimization.With regard to design problems, these re-
sults can be used for finite families and for the special case when
the design problem can be recast as a robust convex optimization
problem.

We also presented a general class of randomized algorithms
based on probabilistic validation, denoted as Sequential Probabilis-
tic Validation (SPV). We provided a strategy to adjust the car-
dinality of the validation sets to guarantee that the obtained
solutionsmeet the probabilistic specifications. The proposed strat-
egy is compared with other existing schemes in the literature. In
particular, it has been shown that a strict validation strategywhere
the design parameters need to satisfy the constraints for all the
elements of the validation set might not be appropriate in some
situations. We have shown that the proposed approach does not



170 T. Alamo et al. / Automatica 52 (2015) 160–172
suffer from this limitation because it allows the use of a non-strict
validation test. As it has been shown in this paper, this relaxed
scheme allows us to reduce, in some cases dramatically, the num-
ber of iterations required by the sequential algorithm. Another ad-
vantage of the proposed approach is that it does not rely on the
existence of a robust feasible solution. Finally, we remark that this
strategy is quite general and it is not based on finite families or
convexity assumptions.

Appendix. Auxiliary proofs and properties

Proof of Corollary 1. We first notice that ifm = 0, then B(N, η, 0)
= (1 − η)N = eN ln (1−η)

≤ e−ηN . Therefore, it follows from
ηN ≥ ln 1

δ
that e−ηN

≤ eln δ
= δ. This proves the result for

m = 0.
Consider now the case m > 0. We first prove that h(r) :=√
2(r − 1)− ln


r +

√
2(r − 1)


≥ 0 for all r ≥ 1. Since h(1) = 0,

the inequality h(r) ≥ 0 holds if the derivative of h(r) is non
negative for every r > 1.

d
dr

h(r)

=
1

√
2(r − 1)

−
1

r +
√
2(r − 1)


1 +

1
√
2(r − 1)


=


1

√
2(r − 1)


1 −

1 +
√
2(r − 1)

r +
√
2(r − 1)


=


1

√
2(r − 1)


r − 1

r +
√
2(r − 1)


≥ 0, ∀r > 1.

This proves the inequality h(r) ≥ 0, for all r ≥ 1. Denote now
â = r +

√
2(r − 1), with r = 1+

1
m ln 1

δ
. Clearly â > 1. Therefore,

from a direct application of Lemma 2, we conclude that it suffices
to choose N such that

Nη ≥
â

â − 1


ln

1
δ

+ m ln â


=
r +

√
2(r − 1)

r − 1 +
√
2(r − 1)


r − 1 + ln (r +


2(r − 1))


m.

Since h(r) ≥ 0 we conclude that

r − 1 + ln (r +
√
2(r − 1))

r − 1 +
√
2(r − 1)

≤ 1.

From this inequality,we finally conclude that inequality B(N, η,m)
≤ δ holds if

Nη ≥ (r +


2(r − 1))m = m + ln

1
δ

+


2m ln

1
δ
. �

Property 4. For fixed values of m and N, m < N, the binomial
distribution function B(N, η,m) is a strictly decreasing function of
η ∈ (0, 1).

Proof. To prove the property, we show that the derivative of
B(N, η,m) with respect to η is negative. Let us define the scalars
ϕi, i = 0, . . . ,N as follows:

ϕi(η) :=
d
dη


ηi(1 − η)N−i

= iηi−1(1 − η)N−i
− (N − i)ηi(1 − η)N−i−1

= (i(1 − η) − (N − i)η)ηi−1(1 − η)N−i−1

= (i − Nη)ηi−1(1 − η)N−i−1. (A.1)
With this definition we have

d
dη

B(N, η,m) =
d
dη

m
i=0


N
i


ηi(1 − η)N−i

=

m
i=0


N
i


ϕi(η). (A.2)

We consider here two cases, m − Nη < 0 and m − Nη ≥ 0. In the
first case we have from Eq. (A.1) that ϕi(η) < 0, for i = 0, . . . ,m.
This fact, along with Eq. (A.2) implies that the derivative with
respect to η is negative and therefore the claim of the property is
proved for this case.

Consider now the case m − Nη ≥ 0. In this case we have that
ϕi(η) > 0, for i > m. Sincem < N we obtain

d
dη

B(N, η,m) =

m
i=0


N
i


ϕi(η)

<

N
i=0


N
i


ϕi(η)

=

N
i=0


N
i


d
dη


ηi(1 − η)N−i

=
d
dη

N
i=0


N
i


ηi(1 − η)N−i

=
d
dη

(η + (1 − η))N =
d
dη

(1)N = 0.

We notice that in the last step of the proof the identity

(x + y)N =

N
i=0


N
i


xiyN−i

has been used. �

Property 5. Suppose that L is a positive integer and that s is a strictly
positive scalar. Then,

L
k=1

1
ks ≤ Φ(s, ⌈log2 L⌉) where, given s ≥ 0

and the integer t ≥ 0,

Φ(s, t) :=


1 − 2(1−s)(t+1)

1 − 21−s
if s ≠ 1

t + 1 otherwise.

Proof. Given L > 0 and s > 0, define t := ⌈log2(L)⌉ and S(t) :=2t
k=1

1
ks . Then we have

L
k=1

1
ks ≤

2t
k=1

1
ks = S(t). Next we show

that S(t) ≤ 1+21−sS(t−1) for every integer t greater than 0. Since
S(0) = 1 and S(1) = 1 + 2−s, the inequality is clearly satisfied for
t = 1. We now prove the inequality for t greater than 1

S(t) =

2t
k=1

1
ks

=

2t−1
k=1


1

(2k)s
+

1
(2k − 1)s



= 2−s
2t−1
k=1

1
ks

+

2t−1
k=1

1
(2k − 1)s

≤ 2−sS(t − 1) + 1 +

2t−1
k=2

1
(2k − 2)s

= 2−sS(t − 1) + 1 + 2−s
2t−1

−1
k=1

1
ks

≤ 2−sS(t − 1) + 1 + 2−s
2t−1
k=1

1
ks

= 1 + 21−sS(t − 1).
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Wehave therefore proved the inequality S(t) ≤ 1+21−sS(t−1) for
every integer t greater than 0. Using this inequality in a recursive
way with S(0) = 1 we obtain S(t) ≤

t
k=0 2

(1−s)k
= Φ(s, t). This

proves the result. �
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