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a b s t r a c t

This paper presents a new approach for guaranteed state estimation based on zonotopes for linear
discrete-timemultivariable systemswith intervalmultiplicative uncertainties, in thepresence of bounded
state perturbations and noises. At each sample time, the presented approach computes a zonotope which
contains the real system state. A P-radius-based criterion is minimized in order to decrease the size of
the zonotope at each sample time and to obtain an increasingly accurate state estimation. The proposed
approach allows one to efficiently handle the trade-off between the complexity of the computation and
the accuracy of the estimation. An illustrative example is analyzed in order to highlight the advantages of
the proposed state estimation technique.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

State estimation is of great interest for feedback control and
diagnosis of dynamical systems. This problem can be formulated as
follows: given amathematicalmodel of a real system, and allowing
some state perturbations and noise corrupted measurements, the
state of the real system has to be estimated. In the literature,
the state estimation problem is mainly treated using a stochastic
approach or a deterministic approach.

Stochastic procedures (e.g., the Kalman filter Kalman, 1960;
Maybeck, 1979; Sorenson, 1983) have been developed since the
1960s, and they are still a widely applied technique. These ap-
proaches are based on probabilistic assumptions on perturbations
and noise. The state estimation is done byminimizing the variance
of the state estimation error. However, these probabilistic assump-
tions are sometimes not realistic, and they are difficult to validate
(e.g., in a real application, it is not easy to know the distribution
law of perturbations).

The deterministic approach or set-membership estimation as-
sumes that the perturbations and the noises are unknown but
bounded (Alamo, Bravo, & Camacho, 2005; Combastel, 2003;
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Kurzhanski & Vályi, 1996; Schweppe, 1968; Vicino & Zappa, 1996;
Walter & Piet-Lahanier, 1989). Under this hypothesis, the infor-
mation about the system states at each sample time is character-
ized as a compact set containing all possible system states that
are consistent with the measurement sample, the perturbations,
the uncertainties, and the noise. No other hypotheses related to
the distribution of perturbations and noises are necessary. In the
set-membership approach, different domain representations can
be used to bound the consistent set, such as polytopes (boxes, par-
allelotopes) (Vicino & Zappa, 1996; Walter & Piet-Lahanier, 1989),
ellipsoids (Bertsekas & Rhodes, 1971; Chernous’ko, 1994; Durieu,
Walter, & Polyak, 2001; Kurzhanski & Vályi, 1996; Milanese, Nor-
ton, Piet-Lananier, & Walter, 1996; Polyak, Nazin, Durieu, & Wal-
ter, 2004; Schweppe, 1968; Witsenhausen, 1968), and zonotopes
(Alamo et al., 2005; Combastel, 2003; Puig, Cugueró, & Quevedo,
2001). When different domain representations are used, there is a
trade-off between the computation load and the precision of the
estimation. On the one hand, due to the simplicity of the formula-
tion, ellipsoids have been used by different authors (Durieu et al.,
2001; Kurzhanski & Vályi, 1996). On the other hand, polytopes (or
certain classes of polytopes, e.g., parallelotopes) have been pro-
posed to obtain a better estimation accuracy (Vicino&Zappa, 1996;
Walter & Piet-Lahanier, 1989). They can be used for an exact rep-
resentation of the variation domains of the system’s state in a lin-
ear formulation. However, efficient results can be obtained only
for a reasonable number of vertices of polytopes (Walter & Piet-
Lahanier, 1989).

In recent years, zonotopes (Alamo et al., 2005; Althoff,
Stursberg, & Buss, 2007; Combastel, 2003; Kühn, 1998; Vicino
& Zappa, 1996) have received increased attention because of
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their accuracy and compactness of representation compared to
ellipsoids and their reduced complexity compared to polytopes.
In contrast to ellipsoids, the Minkowski sum of two zonotopes
is a zonotope, this property being very useful in set-membership
estimation. Moreover, zonotopes can represent uncertainties due
to perturbations independently in each direction of the state
space. In addition, zonotopes are a suitable representation for
controlling the wrapping effect (Kühn, 1998) (the growth of the
domain representation due to uncertainty at each sample time).
The zonotopic domain is used for many applications: reachability
analysis (Althoff et al., 2007), collision detection (Guibas, Nguyen,
& Zhang, 2005), state estimation (Alamo et al., 2005; Combastel,
2003; Puig et al., 2001), ultimate bound (Stoican, Olaru, Doná,
& Seron, 2011), and fault diagnosis (Combastel, Zhang, & Lalami,
2008).

In Puig et al. (2001), themeasured output is utilized to estimate
the state bymeans of a gainmatrix. In Combastel (2003), a singular
value decomposition is used to obtain an outer approximation of
the intersection between the uncertain trajectory and the region of
the state space that is consistent with the measured output vector.
In Alamo et al. (2005), interval arithmetics and zonotopic sets are
used to obtain a guaranteed state estimation for single-output
systems with interval parameter uncertainties. The solution is
elaborated online as a family of zonotopes parameterized by a free
vector. Two different criteria are used to minimize the size of this
zonotope. Segment minimization offers a fast computation of the
optimal parameterizing vector, but the results can be conservative.
Volume minimization offers a better result by solving a convex
optimization problem on each iteration, sometimes leading to a
very narrow zonotope, i.e., the uncertainty in one direction can
remain extremely large, but at the same time the volume of the
zonotope tends to zero.

Most of the works cited above solve the estimation problem
when the plant model is known and the uncertainty is only related
to state perturbations and measurement noises. In Polyak et al.
(2004), a conservative assumption on the relation between the
state uncertainty matrix and the state perturbation is used to
obtain an ellipsoidal state estimation for multi-output systems.

Based on the results in Alamo et al. (2005), one contribution
of this paper is to present a new optimization criterion that
minimizes the P-radius associated to the zonotope, which is an
original notion to characterize the size of the zonotope in order
to obtain good accuracy and reasonable computation load. Our
method allows performing an off-line optimization which is a
major advantage for real-time applications. The proposed method
offers a trade-off between the segment minimization method and
the volume minimization method (Alamo et al., 2005). Initially
developed in the case of linear discrete-time single-output systems
with bounded state perturbations and measurement noise, part
of this method was published in Le, Alamo, Camacho, Stoica,
and Dumur (2011). An extension for single-output uncertain
systems has been proposed in Le, Alamo, Camacho, Stoica, and
Dumur (2012). An original contribution of the present paper is
the generalization of this result to multi-output systems with
interval multiplicative uncertainties, bounded state perturbations,
and measurement noises. A first idea is to consider the multi-
output system as separate single-output systems. A second idea is
to estimate the system’s state based on the information fromall the
output sensors at the same time in order to obtain a better accuracy
compared to the first idea.

The paper is organized as follows. Section 2 presents useful
mathematical notation and basic definitions. In Section 3, the
class of dynamical systems used in this paper is defined. The
Section 4 formulates the main results of this paper, presenting a
new approach to compute an outer bound of the state estimation
by zonotopes formulti-output systemswith interval uncertainties.
In Section 5, an example is proposed in order to illustrate the
advantages of the developed methods. Finally, some concluding
remarks and future works are discussed in Section 6.
2. Notation, basic definitions, and properties

An interval [a, b] is defined as the set {x : a ≤ x ≤ b}, with
mid[a, b] =

a+b
2 and rad[a, b] =

b−a
2 denoting its center and its

radius, respectively. The unitary interval is B = [−1, 1]. The set
of real compact intervals [a, b], where a, b ∈ R and a ≤ b, is
denoted by I. A box ([a1, b1], . . . , [an, bn])⊤ is an interval vector.
A unitary box in Rn, denoted by Bn, is a box composed by n unitary
intervals. An intervalmatrix [M] ∈ In×m is amatrixwhose elements
are intervals. This means that each elementMij, with i = 1, . . . , n,
j = 1, . . . ,m, of this matrix is defined as the set Mij = {mij :

aij ≤ mij ≤ bij}. In the matrix space, the interval matrix is a
hyperrectangle and, hence, a convex set. Let vert[M] denote the
set of all matrices G = [gij], i = 1, . . . , n, j = 1, . . . ,m, such
that gij = aij or gij = bij. The notation mid[M]ij =

aij+bij
2 and

the notation rad[M]ij =
bij−aij

2 define the center and the radius of
an interval matrix [M], respectively. The row sum diagonal matrix
of a matrix M ∈ Rn×m (Combastel, 2003) is defined as rs(M) =

diag([. . . , m̃ii, . . .]), with m̃ii =
m

j=1 |mij|, i = 1, . . . , n.
The Minkowski sum of two sets X and Y is defined by X ⊕ Y =

{x + y : x ∈ X, y ∈ Y }. A strip S is defined as the set {x ∈ Rn
:

|c⊤x − y| ≤ φ}, with c ∈ Rn and y, φ ∈ R.
Zonotopes are a special class of convex symmetric polytopes.

An m-zonotope in Rn can be defined as the affine image of an m-
dimensional hypercube in Rn. Given a vector p ∈ Rn and a matrix
H ∈ Rn×m, anm-zonotope Z is the set Z = p⊕HBm

= {p+Hx : x ∈

Bm
}. This is the Minkowski sum of the m-segments defined as m

columns ofmatrixH inRn. The P-radius of a zonotope Z = p⊕HBm

is defined as L = maxz∈Z ∥z − p∥2
P , where P = P⊤

≻ 0 is a
symmetric and positive definite matrix.

Property 1. The Minkowski sum of two zonotopes Z1 = p1 ⊕

H1Bm1 ∈ Rn and Z2 = p2 ⊕ H2Bm2 ∈ Rn is also a zonotope, defined
by Z = Z1 ⊕ Z2 = (p1 + p2)⊕


H1 H2


Bm1+m2 .

Property 2. The image of a zonotope Z = p ⊕ HBm
∈ Rn by a

linear mapping K can be computed by a standard matrix product
KZ = (Kp)⊕ (KH)Bm.

Property 3 (Zonotope Reduction Alamo et al., 2005; Combastel,
2003). Given the zonotope Z = p ⊕ HBm

∈ Rn and the integer
s, with n < s < m, denote Ĥ the resulting matrix after reordering
the columns of the matrix H =


h1 · · · hi · · · hm


in decreasing order

of Euclidean norm (Ĥ =

ĥ1 · · · ĥi · · · ĥm


, with ∥ĥi∥2 ≥ ∥ĥi+1∥2).

Denote by ĤT thematrix obtained from the first s−n columns ofmatrix
Ĥ, and by ĤQ the rest of the matrix Ĥ. Then the following inclusion is
obtained: Z ⊆ p ⊕


ĤT rs(ĤQ )


Bs.

Property 4 (Zonotope Inclusion Alamo et al., 2005). Consider a family
of zonotopes represented by Z = p ⊕ [M]Bm, where p ∈ Rn is
a real vector and [M] ∈ In×m is an interval matrix. A zonotope
inclusion is an outer approximation of this family defined by p ⊕
mid[M] rs(rad[M])


Bm+n.

Property 5. Given an interval matrix [M] ∈ In×p and a real matrix
N ∈ Rp×q, the center and the radius of the product [M]N are given
by mid([M]N) = (mid[M])N and rad([M]N) = (rad[M])|N|, where
|N| refers to thematrix formedwith the absolute value of each element
of N.

Property 6 (Alamo et al. (2005)). Given a zonotope Z = p ⊕ HBr
∈

Rn, a strip S = {x ∈ Rn
: |c⊤x − y| ≤ φ}, and a vector λ ∈ Rn,

define a vector p̂(λ) = p + λ(y − c⊤p) ∈ Rn and a matrix Ĥ(λ) =
(I − λc⊤)H φλ


. Then a family of zonotopes parameterized by λ

that contains the intersection of a zonotope and a strip is obtained
such as Z ∩ S ⊆ Ẑ(λ) = p̂(λ)⊕ Ĥ(λ)Br+1.
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Fig. 1. State estimation for multi-output systems.

3. Problem formulation

Consider the following linear discrete-time invariant system:
xk+1 = Axk + ωk
yk = Cxk + vk,

(1)

where xk ∈ Rnx is the state of the system, yk ∈ Rny is the measured
output at sample time k, and the pair (C, A) ∈ Rny×nx × Rnx×nx

is detectable (Combastel, 2003; Plarre & Bullo, 2008), with A a
constant unknown matrix belonging to an interval matrix [A]. The
vector ωk ∈ Rnx represents the state perturbation, and vk ∈ Rny

is the measurement perturbation (noise, offset, etc.). It is assumed
that the perturbations and the initial state are bounded: ωk ∈ W ,
vk ∈ V , and x0 ∈ X0, whereW and X0 are zonotopes and V is a box.
To simplify the computation, V andW are assumed to be centered
at the origin. Note that, if this assumption is not satisfied, a change
of coordinates can be used. From the definition of a zero-centered
zonotope, W and V can be written as W = FBnω and V = ΦBny ,
with the matrix F ∈ Rnx×nω and the diagonal matrix Φ ∈ Rny×ny .
It is assumed that the interval matrix [A] is quadratically stable
(not necessary if rad[A] = 0; see Le et al. (2011)) for a common
quadratic Lyapunov function. This assumption is not restrictive,
because in many applications the matrix A is given by a closed-
loop matrix Ã + B̃K , with Ã, B̃ the open-loop matrices and Ã ∈ [Ã],
B̃ ∈ [B̃]. A feedback gain K can be computed by solving a Linear
Matrix Inequality problem (Alamo, Tempo, Ramírez, & Camacho,
2008; Mao & Chu, 2003), so that this assumption is satisfied.

With this notation, the exact uncertain set and the consistent
state set are defined as in Alamo et al. (2005).

Definition 1. Given system (1) and a measured output vector yk,
the consistent state set at time k (the state set which is consistent
with the measured output vector yk) is defined as Xyk = {x ∈ Rn

:

(yk − Cx) ∈ V }.

Definition 2. Consider system (1). The exact uncertain set Xk =

(AXk−1 ⊕W )∩ Xyk , with k ≥ 1, is equal to the set of states that are
consistent with the measured output vectors and the initial state
set X0.

The computation of the exact uncertain state set is difficult. In
practice, this set is approximated by conservative outer bounds to
reduce the complexity. This paper presents a newmethod to com-
pute an outer approximation using a zonotope-based procedure.
Let us consider that an outer bound of the exact uncertain state set,
denoted X̂k−1, is available at time instant k−1. Suppose that amea-
sured output vector yk is obtained at time instant k. Under these
assumptions, an outer bound of the exact uncertain state set can
be estimated using the following algorithm (similar to the Kalman
filter which is based on a prediction step and an update step Brown
and Hwang (1997)).
Algorithm 1. Step 1. (Prediction) Given system (1), compute a pre-
dicted state set X̄k = AX̂k−1 ⊕W bounding the uncertain trajectory.

Step 2. (Update) For i = 1, . . . , ny:
– Measurement: Compute the consistent state set Xyk/i using the

output measurement yk/i;
– Correction: Compute an outer approximation X̂k/i of the inter-

section between Xyk/i and X̂k/i−1, with X̂k/0 = X̄k.

The guaranteed state estimation obtained at time instant k is
X̂k/ny . This algorithm will be detailed in the next section.

4. Main results

At each time, the system (1) has ny available measurements,
i.e., strips represented by yk/i = c⊤

i xk + vk/i, i = 1, . . . , ny, with
ci ∈ Rnx . Here, c⊤

i is the ith row of matrix C , and the noise vk/i is
bounded by the interval Vi = φiB1, with φi = Φii.

Supposing an outer approximation of the state set X̂k−1 =

p̂k−1 ⊕ Ĥk−1Br at time instant k− 1, then the predicted state set at
the next instant X̄k can be computed as follows:

X̄k = Ap̂k−1 ⊕

AĤk−1 F


Br+nω . (2)

The exact estimation set at time instant k will be obtained after
intersecting the predicted state set with the consistent state set
given by the measured output vector yk. In the general case, an
outer approximation of this set can be found by intersecting the
predicted zonotopic state set with the first measurement strip,
using Property 6. Then this intersection is outer approximated
by a new zonotope which is further intersected with the second
measurement strip. The procedure is repeated until the last
measurement strip (i.e., for 1 ≤ i ≤ ny), leading to

X̂k/i(λ1, . . . , λi) = p̂k/i(λ1, . . . , λi)⊕ Ĥk/i(λ1, . . . , λi)Br+nω+i, (3)

with p̂k/i(λ1, . . . , λi) = p̂k/i−1(λ1, . . . , λi−1) + λi(yk/i −

c⊤

i p̂k/i−1(λ1, . . . , λi−1)), p̂k/0 = Ap̂k−1, Ĥk/i(λ1, . . . , λi) =
κiĤk/i−1(λ1, . . . , λi−1) φiλi


, κi = I − λic⊤

i , Ĥk/0 = [AĤk−1 F ].
The zonotopic guaranteed state estimation set at instant k is

denoted by X̂k = X̂k/ny . This procedure is illustrated in Fig. 1 for
a two-output system. At time instant k, the predicted state set is
represented by the zonotope X̄k. First, this set is intersected with
the strip obtained by the first element of the measured output
|c⊤

1 x − yk/1| ≤ φ1. Second, this intersection is approximated by
the zonotope X̂k/1 (dashed line) using Property 6. The procedure is
repeated with X̂k/1 and the strip obtained by the second element
of the measured output |c⊤

2 x − yk/2| ≤ φ2, leading to the
outer approximation X̂k/2 of this intersection. The guaranteed state
estimation set is then the zonotope X̂k/2 (dash–dotted line). Note
that the order of the considered measurement strips can influence
the accuracy of the estimation.

To obtain the guaranteed state estimation, the free vectors
λi, with i = 1, . . . , ny, must be computed. Two procedures are
proposed to compute these vectors.

4.1. First approach

The vectors λ1, . . . , λny are computed by considering ny
separate single-output systems. The computation of λ1 is detailed
in the following, and the computation of the vectors λ2, . . . , λny is
similar. Consider system (1)with the first component of the output
measurement yk/1 and the constant known matrix A:
xk+1 = Axk + ωk

yk/1 = c⊤

1 xk + vk/1.



V.T.H. Le et al. / Automatica 49 (2013) 3418–3424 3421
Suppose that the guaranteed state estimation at time instant k −

1 is the zonotope X̂k−1 and that its P-radius is Lk−1. Thus, the
guaranteed state estimation at time instant k is obtained similar
to (3). The main idea consists in computing a matrix P = P⊤

≻ 0
and a vector λ1 such that at each sample time the P-radius of the
zonotopic state estimation set (i.e., Lk) and, hence, the zonotopic
state estimation set, is not increased. The non-increasing condition
on the P-radius can be expressed in a mathematical formulation
as follows. The decrease of the P-radius (i.e., Lk) is ensured by the
expression Lk ≤ βLk−1, with β ∈ (0, 1]. Due to the presence
of state perturbations and measurement noise, this condition is
difficult to verify. A relaxation of this condition can be Lk ≤

βLk−1 + ϵ, with ϵ a positive constant which permits one to bound
the influence of perturbations and measurement noises. For ϵ =

maxγ∈Bnω ∥Fγ ∥
2
2 + φ2

1 > 0, this leads to

Lk ≤ βLk−1 + max
γ∈Bnω

∥Fγ ∥
2
2 + φ2

1 , with β ∈ (0, 1], (4)

or, in an equivalent form,

max
ẑ∈Br+nω+1

∥Ĥk(λ1)ẑ∥2
P ≤ max

z∈Br
β∥Ĥk−1z∥2

P + max
γ∈Bnω

∥Fγ ∥
2
2 + φ2

1 , (5)

with ẑ =

z γ η

⊤
∈ Br+nω+1, z ∈ Br , γ ∈ Bnω , η ∈ B1, and

β ∈ (0, 1]. In addition, the next inequality is a sufficient condition
of expression (5):

max
ẑ∈Br+nω+1

(∥Ĥk(λ1)ẑ∥2
P − β∥Ĥk−1z∥2

P − ∥Fγ ∥
2
2 − φ2

1) ≤ 0.

For all ẑ, z, γ , this inequality is implied by the following:

ẑ⊤Ĥ⊤

k (λ1)PĤk(λ1)ẑ − βz⊤Ĥ⊤

k−1PĤk−1z − γ⊤F⊤Fγ − φ2
1 ≤ 0. (6)

Because η ∈ B1, i.e., ∥η∥ ≤ 1, the following expression is
obtained: φ2

1(1 − η2) ≥ 0. Adding this term to the left-hand side
of (6) leads to the following sufficient condition for (6):

ẑ⊤Ĥ⊤

k (λ1)PĤk(λ1)ẑ − βz⊤Ĥ⊤

k−1PĤk−1z − γ⊤F⊤Fγ

−φ2
1 + φ2

1(1 − η2) ≤ 0, ∀ẑ, z, γ . (7)

Multiplying the expression of Ĥk in (3) by the explicit form
of ẑ leads to Ĥk(λ1)ẑ = (I − λ1c⊤

1 )AĤk−1z + Fγ + φ1λ1η =

κ1AĤk−1z + Fγ + φ1λ1η. Denote θ = Ĥk−1z. Then inequality (7)
can be written in a matrix formulation as
θ
γ
η

⊤ A11 A12 A13
∗ A22 A23
∗ ∗ A33


  

J


θ
γ
η


≤ 0, ∀θ, γ , η, (8)

with ‘∗’ denoting the terms required for the symmetry of the
matrix and A11 = A⊤κ⊤

1 Pκ1A − βP , A12 = A⊤κ⊤

1 Pκ1F , A13 =

A⊤κ⊤

1 Pφ1λ1, A22 = F⊤κ⊤

1 Pκ1F − F⊤F , A23 = F⊤κ⊤

1 Pφ1λ1, and
A33 = φ2

1λ
⊤

1 Pλ1 − φ2
1 . Using the definition of a positive definite

matrix allows us to rewrite (8) as J ≼ 0,∀θ, γ , η ≠ 0. Using
the explicit notation of J , and doing some manipulations, a matrix
inequality is derived as follows:βP 0 0

0 F⊤F 0
0 0 φ2

1

− ΞP−1Ξ⊤
≽ 0, withΞ =

A⊤κ⊤

1 P
F⊤κ⊤

1 P
λ⊤

1 Pφ1

 .
Using the Schur complement (Boyd, Ghaoui, Feron, & Balakrish-

nan, 1994), this expression is equivalent to the following matrix
inequality:
βP 0 0 A⊤P − A⊤c1Y⊤

∗ F⊤F 0 F⊤P − F⊤c1Y⊤

∗ ∗ φ2
1 Y⊤φ1

∗ ∗ ∗ P

 ≽ 0,

with the change of variable Y = Pλ1.
To verify (8) for ∀A ∈ [A], with [A] a convex set, we need to
verify this inequality on each vertex Gi of [A], with i = 1, . . . , 2q

and q the number of interval elements of matrix [A].
As the 2-norm is a convex function and W is a convex set,

the constant term ψ = maxγ∈Bnω ∥Fγ ∥
2
2, where γ ∈ Bnω , can

be easily computed. Then condition (4) can be written as Lk ≤

βLk−1 + ψ + φ2
1 . At infinity, this expression is equivalent to L∞ =

βL∞ + ψ + φ2
1 , leading to L∞ =

φ21+ψ

1−β , with the additional
hypothesis on the convergence of the {Lk} sequence. Let us consider

an ellipsoid E = {x : x⊤Px ≤
φ21+ψ

1−β } which can be normalized to

E = {x : x⊤ (1−β)P
φ21+ψ

x ≤ 1}. To minimize the P-radius (i.e., L∞) of

the zonotope, the ellipsoid of the smallest diameter must be found
(Boyd et al., 1994). This leads to solving the following eigenvalue
problem (EVP), i.e., to finding the values of P = P⊤

≻ 0, P ∈ Rnx×nx

and λ1 ∈ Rnx :

max
τ ,β,P

τ

subject to
(1 − β)P
φ2
1 + ψ

≽ τ Inx ,

with τ ∈ R+, β ∈ (0, 1] and the identity matrix Inx ∈ Rnx×nx . Then,
the diameter of the ellipsoid obtained is given by 2

√
τ∗

(Boyd et al.,
1994), with τ ∗ the optimal value of τ .

Finally, to find the values of P = PT
≻ 0, P ∈ Rnx×nx and

λ1 ∈ Rnx , the following optimization problem must be solved:

max
τ ,β,P,Y

τ

subject to τ > 0,
(1 − β)P
φ2
1 + ψ

≽ τ Inx
βP 0 0 G⊤

i P − G⊤

i c1Y
⊤

∗ F⊤F 0 F⊤P − F⊤c1Y⊤

∗ ∗ φ2
1 Y⊤φ1

∗ ∗ ∗ P

 ≽ 0,

(9)

where Gi are the vertices of the interval matrix [A], with i =

1, . . . , 2q. As β is a scalar variable, this optimization problem can
be efficiently solved by using a Bilinear Matrix Inequality (BMI)
solver (e.g., Penbmi Kocvara and Stingl (2003)) or by executing
a simple search-loop on β . In the optimization problem (9), the
decision variables are P = P⊤

∈ Rnx×nx , Y ∈ Rnx , β ∈ (0, 1],
and τ ∈ R+. Thus, the total number of scalar decision variables is
nx(nx+1)

2 + nx + 2. The dimensions of inequalities (9) are 1, nx × nx,
and (2nx + nω + 1)× (2nx + nω + 1), respectively.

When A is unknown but belongs to the interval matrix [A], the
predicted state set X̄k cannot be directly computed by expression
(2) at each iteration. This set is replaced by the following outer
approximation. The starting point is given by Eq. (2). As A is
bounded by the interval matrix [A], an outer approximation of X̄k
can be obtained by [A]p̂k−1⊕


[A]Ĥk−1 F


Br+nω . Using Property 4,

the following expression is true: [A]p̂k−1 ∈ (mid[A])p̂k−1 ⊕

rs((rad[A])|p̂k−1|)Bnx . In addition, Properties 4 and 5 imply that
[A]Ĥk−1Br

⊆

(mid[A])Ĥk−1 rs((rad[A])|Ĥk−1|)


Br+nx .

The Minkowski sum of the last two expressions leads to
[A]p̂k−1 ⊕ [A]Ĥk−1Br

⊆ (mid[A])p̂k−1 ⊕ rs((rad[A])|p̂k−1|)Bn
⊕

⊕

(mid[A])Ĥk−1 rs((rad[A])|Ĥk−1|)


Br+n.

Therefore, the zonotope representing the outer approxima-
tion of X̄k is (mid[A])pk−1 ⊕ QBl, with l = r + 2nx + nω and
Q = [(mid[A])Ĥk−1 rs((rad[A])|Ĥk−1|) rs((rad[A])|p̂k−1|) F ].
This zonotope is formed by generators which depend on Ĥk−1 and
p̂k−1. From the quadratic stability assumption on A ∈ [A] ma-
trix, and considering that rad[A] is small enough, these allow us to
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bound the effect of the considered interval uncertainties (i.e., the
generator (rad[A])|p̂k−1| is bounded) and, thus, the states of the
system converge to a region containing the origin. Moreover, the
computation of vector λ depends only on the vertices of the inter-
val matrix [A] and not X̄k, and this outer approximation is done at
each time instant. This implies that the approximation has a lim-
ited effect on the P-radius of the state outer bound obtained.More-
over, since the P-radius has a shrinking nature when rad[A] is zero,
it follows that for small enough values of rad[A] the P-radius will
also be shrinking with each iteration of the algorithm.

4.2. Second approach

As the coupling effect of multi-output systems is not consid-
ered, the first method proposed can be conservative. To reduce the
conservatism of the previous method, the following procedure is
proposed. Using yk/1, the predicted state set X̄k, expressions (3) and
(9) allow us to compute λ1 and a smaller zonotope X̂k/1. Intersect-
ing this new zonotope with the strip corresponding to yk/2 (sup-
posing λ1 to be known from the previous step) leads to λ2 and an-
other zonotope X̂k/2. This procedure is repeated until the last com-
ponent of the output vector yk/ny (supposing all the previous vec-
torsλ1, . . . , λny−1 to be known). The following algorithmdescribes
this off-line procedure.

Algorithm 2. Step 1. Usingmeasurement yk/1 and (9), compute λ1.
For j = 2, . . . , ny:
Step j: Using the measurement information of yj and the

previous vectors λ1, . . . , λj−1, compute λj.
The guaranteed state estimation set at Step j is computed

by replacing i by j in expression (3). A similar condition on the
P-radius of the zonotopic estimation set is applied, leading to
maxẑ∈Br+nω+j ∥Ĥk/jẑ∥2

P ≤ maxz∈Br β∥Ĥk−1z∥2
P +maxγ∈Bnω ∥Fγ ∥

2
2 +

φ2
1 + · · · + φ2

j , with ẑ =

z⊤ γ⊤ η1 · · · ηj

⊤
∈ Br+nω+j,

z ∈ Br , γ ∈ Bnω , ηj ∈ B1, and β ∈ (0, 1].
At Step j, similar to the first approach, the following optimiza-

tion problem is obtained for i = 1, . . . , 2q:

max
τ ,β,P,Y

τ

subject to τ > 0,
(1 − β)P

ψ + φ2
1 + φ2

2 + · · · + φ2
j

≽ τ Inx

βP 0 0 · · · 0 0


j

l=1

κj+1−l


Gi

⊤

P

∗ F⊤F 0 · · · 0 0


j

l=1

κj+1−l


F

⊤

P

∗ ∗ φ2
1 · · · 0 0


j−1
l=1

κj+1−l


φ1λ1

⊤

P

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

∗ ∗ ∗ · · · φ2
j−1 0 (κjφj−1λj−1)

⊤P
∗ ∗ ∗ · · · ∗ φ2

j φjY⊤

∗ ∗ ∗ · · · ∗ ∗ P



≽ 0,

with Gi the vertices of the interval matrix [A], q the number of
interval elements of [A], and the decision variables Y = Pλj,
P = P⊤

≻ 0, τ ∈ R+, and β ∈ (0, 1].

The order used to take into account the differentmeasurements
can influence the precision of the estimation (the size of the
guaranteed state estimation); thus, to obtain the best performance,
ny! combinations of the order can be tried.
Fig. 2. Intersection X̂k between X̄k and Xyk .

Fig. 3. Guaranteed bound of x1 .

5. Illustrative example

The example considered here is inspired from Alamo et al.
(2005) in order to compare the performance of the proposed
algorithm to that of the existing approaches:
xk+1 =


0 −0.5
1 1 + 0.3δ


xk + 0.02


−6
1


ωk

yk =


−2 1
1 1


xk +


0.2 0
0 0.2


vk,

with parameter uncertainty |δ| ≤ 1, measurement noise ∥vk∥∞ ≤

1, and state perturbation ∥ωk∥∞ ≤ 1. The values of δ, vk, ωk
are generated by random functions of Matlab R⃝. The initial state
belongs to the box 3B2, and is randomly generated. The order
of the m-zonotopes is limited to m ≤ 20 for the purpose of
a fast simulation. In this example, the results obtained by the
first approach (Section 4.1) and the second approach (Section 4.2)
are compared with the results obtained by the segment mini-
mization approach and the volume minimization approach from
Alamo et al. (2005) applied for the multivariable case. The first
approach gives the correction factors λ1 = [−0.2137 0.5726]⊤
and λ2 = [0.3684 0.3570]⊤. The correction factors computed
by the second approach are λ1 = [−0.2137 0.5726]⊤ and λ2 =

[0.2839 0.5085]⊤. The simulation results are shown in Figs. 2–6.
Fig. 2 shows the evolution of the predicted state set and the

outer approximation of the exact uncertain state set at time instant
k = 1, 2, 3 using the second proposed approach. The intersection
between the predicted state set and the strip obtained from
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Fig. 4. Comparison of the bound’s width of x1 .

Fig. 5. Comparison of the bound’s width of x2 .

yk/1 (dash line) is approximated by a zonotope (gray); then this
zonotope is intersected with the strip obtained from yk/2. Finally,
the guaranteed state estimation at time instant k (black) is the
outer approximation (which is rapidly reduced at each iteration
due to condition (5)) of this intersection.

Figs. 3–6 compare the bound obtained on xk/1, xk/2, and the
volume of the guaranteed bound of the state obtained with
different methods: the segment minimization method (Alamo
et al., 2005), the volume minimization method (Alamo et al.,
2005), and the proposed P-radius minimization method. In Fig. 3,
the real system states are found between the upper bound and
the lower bound of xk/1, which confirms that these bounds are
well estimated. As the bounds obtained by different methods are
similar, Figs. 4 and 5 compare the width of the bounds for xk/1
and xk/2 computed by different methods, considering the segment
minimization algorithm as reference. The bound on xk/1, xk/2, and
the volume of the zonotope obtained by the proposed methods
are smaller than the values obtained by the segment minimization
method. The accuracy is almost the same in the second proposed
method and the volume minimization method.

The results obtained by the first approach and the second
approach are also compared.We can see the accuracy of the second
approach is better than that of the first approach, which confirms
the less conservative result of the second approach.

Table 1 compares the computation time of different methods.
These results were obtained with an Intel Core 2 Duo E8500
3.16 GHz. The BMI optimization is solved with the Penbmi solver,
the volume minimization problem is dealt with by the fmincon
Fig. 6. Comparison of the volume of state estimation zonotopic set.

Table 1
Total computation time after 50 samples.

Algorithm Time (s)

Segment minimization 0.0780
First approach and second approach (without off-line BMI) 0.0780
First approach and second approach (off-line BMI included) 1.2636
Volume minimization 22.2457

function of Matlab R⃝, and the segment minimization problem is
solved with a simple computation. The online computation time is
the same in the proposed methods and the segment minimization
method. The computation time of the proposed methods is 20
times faster than that of the volumeminimizationmethod. This can
be explained by the fact that in the volume minimization method
an optimization problem must be solved online at each sample
time but in the proposed methods almost all the computation is
dealt off-line.

To conclude, the proposed methods combine the low complex-
ity of segmentminimization and the good accuracy of volumemin-
imization.

6. Conclusion

A new approach based on P-radius minimization allows guar-
anteed state estimation for stable multi-output systems with
bounded state perturbations and bounded noises. The procedure
computes a zonotopic set of all the possible states that are con-
sistent with the measured output vector and the given noise. The
size of this zonotope is non-increasing at each sample time, lead-
ing to a better estimation accuracy. Using P-radius minimization
offers a good trade-off between the complexity reflected by the
computation time and the accuracy of the estimation. With the
additional assumption on the quadratic stability of interval sys-
tems,and based on bounded outer approximations, this approach
still guarantees convergence of the estimation in the presence of
interval uncertainties.

First, future works will be related to zonotopic guaranteed
state estimation for uncertain multivariable systems. Considering
all the measurements at the same time (i.e., all the vectors
λ1, . . . , λny must be computed at the same time) leads to a
Polynomial Matrix Inequality (PMI). A sub-optimal solution for
PMI problems can be found using different relaxation techniques
(e.g., Henrion and Lasserre (2011)); this can be investigated in
the future. A more interesting and not trivial direction is to
investigate the consistent state set computed by all the strips
of measurement at the same time (leading to a polytope), and
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then the intersection of the obtained polytope with the zonotopic
predicted state set. Second, further developments will focus on
combining this estimation technique together with tube-based
model predictive control. Finally, the proposed zonotopic set-
membership estimation technique canbe applied to fault detection
and fault-tolerant control purposes.
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