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a b s t r a c t

This paper proposes some ultimate bounded stability analysis and stabilization conditions for systems
involving actuators with different nonlinear elements, like for instance both saturation and dead-zone or
both saturation and stick–slip. Results are based on the use of a convex differential inclusion approach.
Indeed, an adequate property allowing to upper-bound some product terms related to the nonlinearity
is provided. Thus, constructive conditions associated to convex optimization schemes are developed to
determine suitable regions of the state space in which the closed-loop trajectories can be captured.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Many industrial processes exhibit non-smooth nonlinearities,
generally due to physical, technological or safety constraints, as
in the cases of hydraulic servo valves or electric servo motors.
The interest for this kind of system mainly comes from the fact
that neglecting these nonlinearities, during the stability analysis
or the control design, can be a source of undesirable and even
catastrophic behaviors (see, for example, Nordin, Ma, & Gutman,
2002; Tarbouriech, Garcia, & Glattfelder, 2007; Taware & Tao,
2003). For all these reasons, the specific case of nonlinear actuators
involving saturation elements (position and/or higher dynamics)
has been extensively studied in the last ten years Hu and Lin
(2001), Kapila and Grigoriadis (2002) and Tarbouriech and Garcia
(1997). In particular, several results have been provided in a local
context for stability analysis and synthesis purposes, in which the
key point is to determine an estimate of the basin of attraction
of the closed-loop nonlinear system: see Tarbouriech et al. (2007)
for recent advances on this topic. On the other hand, practical
actuators often involve more complex nonlinearities, such as
friction terms for example, which may generally be represented
by hysteresis, backlash, dead-zone or stick–slip elements Gomes,
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da Rosa, and Albertini (2006), Olsson and Åström (1989) and
Shoukat Choudhury, Thornhill, and Shah (2005). However, such
nonlinear actuators have been rarely studied, and in many cases
only practical solutions without a priori guarantees of stability
have been derived. One reason is certainly that such nonlinearities
are generally poorly known and that mathematical descriptions
are often not very well adapted for stability analysis or synthesis
purposes Thiery, Kunze, Karimi, Curnier, and Longchamp (2006).
Nevertheless, different solutions can be investigated to guarantee
the closed-loop stability requiring some knowledge about the
nonlinearities (see for example Corradini, Orlando, & Parlangeli,
2004; Tarbouriech, Prieur, & Queinnec, 2010, and references
therein).

The current paper is concerned with the study of nonlinear
actuators involving different nonlinear characteristics like both
dead-zone and saturation elements. Literature on this subject is
very limited. One can however cite preliminary results concerning
semi-global stabilization of linear systems interconnected with
such nonlinear elements Lin (1997), but with the main drawback
that open-loop stability hypothesis has to be satisfied. More
recently, attention was paid to bifurcation analysis of such
nonlinear systems Ortega, Aracil, Gordillo, and Rubio (2000). The
state feedback stabilization problem was addressed in Fong and
Hsu (2000), but for the particular case of single input systems. In
Gomes da Silva, Robaski, and Reginatto (2002), stability analysis
conditions are proposed by considering a hybrid modeling for the
closed-loop discrete-time system. Fliegner, Logemann, and Ryan
(2003) reported some recent results on integral control, but for
single-input single-output open-loop stable systems only.

In this paper, the notion of a generalized saturated function
is presented, which is directly related to the notion of convex
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differential inclusion Alamo, Cepeda, Fiacchini, and Camacho
(2009) and Fiacchini (2010). Such a tool allows us to address the
problem of computing estimates of the domain of attraction for a
broad class of actuator nonlinearities. Based on this, an adequate
property allowing to upper-bound some pertinent product terms
related to the nonlinearity is provided. Then, using quadratic
Lyapunov functions, constructive conditions are proposed in a
quasi-LMI form, in the sense that the nonlinearity only appears
through the product of a matrix by a scalar variable. The proposed
approach allows us to characterize both an inner and an outer set.
The closed-loop trajectories starting in the outer set are ultimately
bounded in the inner set. The outer set is a positively invariant
and contractive set for the closed-loop system. The objective of
the related optimization problem is then to maximize a measure
of the size of the outer set, whereas the inner set is minimized.
It is important to point out that the technique proposed does not
require the open-loop system to be stable. The main contribution
resides in the fact that the results developed encompass those in
Alamo, Cepeda, and Limon (2005), Fong and Hsu (2000), Gomes
da Silva et al. (2002) and Hsu and Fong (2003). Furthermore,
the proposed conditions can be considered as complementary to
that ones provided in Dai, Hu, Teel, and Zaccarian (2009) and Hu,
Thibodeau, and Teel (2009).

Notation. 1 and 0 denote respectively the identity matrix and the
null matrix of appropriate dimensions. Furthermore, 1m denotes
a vector of dimension m with all components equal to 1. The
elements of a matrix A ∈ ℜ

m×n are denoted by A(i,j), i = 1, . . . ,
m, j = 1, . . . , n. A(i) and Ai denote the ith row and ith column of
matrix A, respectively. A′ denotes the transpose of A. He[A] = A +

A′. |A| is the matrix given by the absolute value of each element of
A. For two symmetric matrices, A and B, A > B (resp. A ≥ B) means
that A−B is positive definite (resp. positive semi-definite). For two
vectors x, y ∈ ℜ

n, the notation x ≥ y means that x(i) − y(i) ≥

0, ∀i = 1, . . . , n. For any vector u ∈ ℜ
m and u0 ∈ ℜ

m, with
u0 > 0, one defines each component of satu0(u) by satu0(u(i)) =

sign(u(i))min(u0(i), |u(i)|), i = 1, . . . ,m. Given an integer m, the
setVm is defined as the set of all the subsets of Tm = {1, 2, . . . ,m},
that is, Vm = {S; S ⊆ Tm}. Sc denotes the complement of S in Tm
(see Alamo et al., 2005, for more details). Given a set E, ∂E denotes
its boundary. Given a symmetric and positive definite matrix P , an
ellipsoid E(P, 1) is defined by E(P, 1) = {x ∈ ℜ

n
; x′Px ≤ 1}.

2. Generalized saturated functions

In this section, the notion of generalized saturated functions
is introduced. As it will be shown, this class of functions
encompasses many common nonlinearities which appear in real
control processes. The following definition introduces this notion
for scalar (possibly time-varying) nonlinearities.

Definition 1 (Scalar Case). The scalar function ϕ : ℜ × ℜ → ℜ is
said to be a generalized saturated function with saturation level
u0 ∈ ℜ, u0 > 0, dead-zone σ ∈ ℜ, σ ≥ 0, and linear slope
µ ∈ ℜ, µ > 0, if

−Γ (−u) ≤ ϕ(u, t) ≤ Γ (u), ∀u, ∀t

where Γ (u) = max{µ(u + σ), −u0}.

See Fig. 1 for an example of a scalar generalized saturated
function. Any nonlinear function involving a combination of dead-
zone, stick–slip and saturation elements can be shown to be an
element of the class of generalized saturated functions (see Figs. 2
and 3). Moreover, it is also worth mentioning that some time-
varying nonlinear phenomena like, for example, hysteresis and
friction can be easily modeled by means of this class of functions
(see Fig. 4).

The notion of (scalar) generalized saturated function is easily
extended to the vector case.
Fig. 1. Generalized saturated function (scalar case).

Fig. 2. Input–output characteristics of a nonlinear actuator involving a dead-zone
plus a saturation element.

Fig. 3. Input–output characteristics of a nonlinear actuator involving a stick–slip
plus a saturation element.

Fig. 4. Input–output characteristics of a nonlinear actuator involving a hysteresis
plus a saturation element.

Definition 2 (Vector Case). The function ϕ : ℜ
m

× ℜ → ℜ
m is

said to be a generalized saturated function with saturation level
u0 ∈ ℜ

m, u0 > 0, dead-zone σ ∈ ℜ
m, σ ≥ 0, and linear slope
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µ ∈ ℜ
m, µ > 0, if

−Γ (−u) ≤ ϕ(u, t) ≤ Γ (u), ∀u, ∀t

where them components of function Γ (u) are given by

Γ(i)(u) = max{µ(i)(u(i) + σ(i)), −u0(i)}, i = 1, . . . ,m.

The main results of the paper are based on the following common
properties of the (scalar and vector) generalized saturated function
(see the Appendix for a proof).

Property 1 (Scalar Case). Suppose that the scalar function ϕ : ℜ ×

ℜ → ℜ is a generalized saturated function with saturation level
u0 ∈ ℜ, u0 > 0, dead-zone σ ∈ ℜ, σ ≥ 0, and linear slope
µ ∈ ℜ, µ > 0. Then the following inequality is satisfied for every
z ∈ ℜ, u ∈ ℜ, and t ∈ ℜ:

zϕ(u, t) ≤ max{zµu + |z|µσ, −|z|u0}. (1)

By extension, a general property may be stated in the vector case
(see the Appendix for a proof).

Property 2 (Vector Case). Suppose that ϕ : ℜ
m

× ℜ → ℜ
m is a

generalized saturated function with saturation level u0 ∈ ℜ
m, u0 >

0, dead-zone σ ∈ ℜ
m, σ ≥ 0, and linear slope µ ∈ ℜ

m, µ > 0. Then
the following inequality is satisfied for every z ∈ ℜ

m, u ∈ ℜ
m, and

t ∈ ℜ:

z ′ϕ(u, t) ≤ max
S∈Vm

−
i∈Sc

z(i)µ(i)u(i) + |z(i)|µ(i)σ(i)

−

−
i∈S

|z(i)|u0(i)


. (2)

Relation (2) is enclosed in the convex differential inclusion
framework. Notice that the component-wise nonlinear inclusion
−Γ (−u) ≤ ϕ(u, t) ≤ Γ (u), and the inequality (2) are valid for
every u ∈ ℜ

m. This is clearly an advantage with respect to most
of the inclusions (and/or sector conditions) that can be found in
the literature, which are valid only on a bounded region of ℜ

m

(see Alamo, Cepeda, Limon, & Camacho, 2006; Hu & Lin, 2001;
Pittet, Tarbouriech, & Burgat, 1997; Tarbouriech et al., 2007).

3. Problem statement

Consider the following continuous-time system:

ẋ(t) = Ax(t) + Bϕ(Kx(t), t) (3)

where x(t) ∈ ℜ
n is the state. Matrices A, B and K are constant

matrices of appropriate dimensions. According to Section 2, the
function ϕ : ℜ

m
× ℜ → ℜ

m is assumed to be a generalized
saturated function with saturation level u0 ∈ ℜ

m, u0 > 0, dead-
zone σ ∈ ℜ

m, σ ≥ 0, and linear slope µ ∈ ℜ
m, µ > 0.

When studying the behavior of such a system (3), any
nonlinear functionϕ(., .) bounded byΓ (.) and−Γ (−.) is suitable.
This means that the closed-loop trajectories do not necessarily
converge to the origin. However, under some conditions (see
Theorem 1), the ultimate boundedness of the trajectories Khalil
(2002) can be obtained. The first problem under consideration
is then to evaluate a domain, as small as possible, where it is
guaranteed that the trajectories will be ultimately bounded. Such
a domain is called the inner set.

Remark 1. The case of presence of dead-zone is a particular case,
which induces the system to behave in open-loop inside the inner
ellipsoid.
On the other hand, according to the saturation level u0, we face
the classical problem of determining admissible initial state sets.
In other words, we want to estimate an outer set of safe operation,
such that the associated closed-loop trajectories are contractive,
as far as they are captured in the inner set. Hence, the problem
we intend to solve by exploiting Property 2 can be summarized as
follows:

Problem 1 (Analysis Problem). Given the state feedback K ,
• compute an outer ellipsoidal invariant and contractive set Ω1, as
large as possible, for the closed-loop system (3);
• compute an inner set Ω2, as small as possible, in which the
closed-loop trajectories, initiated in the outer ellipsoid Ω1, are
ultimately bounded.

Throughout the paper, this problem is addressed by considering
quadratic Lyapunov functions. Related to the computation of both
ellipsoidal sets Ω1 and Ω2, optimization issues are discussed.
Moreover, some remarks regarding the control design are also
provided.

4. Stability analysis and stabilization conditions

4.1. Main result

The following theorem uses Property 2 (and Properties 3 and 4
given in the Appendix) in order to solve Problem 1.

Theorem 1. If there exist three symmetric positive definite matrices
W ∈ ℜ

n×n,Q ∈ ℜ
n×n, R ∈ ℜ

n×n, matrix Y S
∈ ℜ

m×n for every
S ∈ Vm, positive vector β and positive scalar θ satisfying:
He


AW +

−
i∈Sc

Biµ(i)K(i)W +

−
i∈S

BiY S
(i)


+

−
i∈Sc

µ(i)σ(i)


β(i)R +

BiB′

i

β(i)


− θW θW

θW −θQ


< 0, ∀i ∈ Vm (4)

W − Q ≥ 0 (5)[
R W
W Q

]
≥ 0 (6)[

u2
0(i) Y S

(i)
Y S

(i)

′
W

]
> 0, ∀i ∈ S (7)

then the closed-loop trajectories of the nonlinear system (3) initiated
in the outer ellipsoid E(W−1, 1) are ultimately bounded in the set
E(Q−1, 1).

Proof. Consider the quadratic Lyapunov function V (x) = x′Px,
with P = P ′ > 0 and P = W−1. We want to prove that V̇ (x) < 0
along the trajectories of the nonlinear system (3) for any x such that
x′Px ≤ 1 and x′Ux ≥ 1 with U = U ′ > 0 and U = Q−1.

If relation (4) is satisfied then one gets, by applying the Schur
complement, that

L = He


AW +

−
i∈Sc

Biµ(i)K(i)W +

−
i∈S

BiY S
(i)



+

−
i∈Sc

µ(i)σ(i)


β(i)R +

BiB′

i

β(i)


− θW + θWQ−1W < 0.

Hence, there exists an ϵ > 0 small enough such that

L < −ϵ1. (8)
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From (7) and Property 3 (see Appendix), one gets

BiY S
(i) + (BiY S

(i))
′
≥ −α(i)u0(i)W −

BiB′

i

α(i)
u0(i), ∀α(i) > 0, ∀i ∈ S.

Hence, it follows from relation (8)

He


AW +

−
i∈Sc

Biµ(i)K(i)W



+

−
i∈Sc

µ(i)σ(i)


β(i)R +

BiB′

i

β(i)


−

−
i∈S


α(i)W +

BiB′

i

α(i)


u0(i)

− θW + θWQ−1W ≤ L < −ϵ1.

Thus, by pre- and post-multiplying both sides of the previous
inequality by x′P and Px, respectively, one obtains

x′


PA +

−
i∈Sc

PBiµ(i)K(i) +


PA +

−
i∈Sc

PBiµ(i)K(i)

′

+

−
i∈Sc

µ(i)σ(i)


β(i)PRP +

PBiB′

iP
β(i)



−

−
i∈S


α(i)P +

PBiB′

iP
α(i)


u0(i) − θP + θU


x

≤ x′PLPx < −ϵx′P2x. (9)

Clearly one gets ϵx′P2x ≥
∑

i∈S ϵ x′P2x
m . Thus, by denoting ϵ̄ =

ϵx′P2x
m , it follows from inequality (9)

x′


PA +

−
i∈Sc

PBiµ(i)K(i) +


PA +

−
i∈Sc

PBiµ(i)K(i)

′

+

−
i∈Sc

µ(i)σ(i)


β(i)PRP +

PBiB′

iP
β(i)


− θP + θU


x

−

−
i∈S


α(i)x′Px +

x′PBiB′

iPx
α(i)

−
ϵ̄

u0(i)


u0(i)

≤ x′PLPx + ϵx′P2x < 0. (10)

Since x′Px ≤ 1 for all x ∈ E(W−1, 1), by definition, it follows that

x′


PA +

−
i∈Sc

PBiµ(i)K(i) +


PA +

−
i∈Sc

PBiµ(i)K(i)

′

+

−
i∈Sc

µ(i)σ(i)


β(i)PRP +

PBiB′

iP
β(i)


− θP + θU


x

−

−
i∈S


α(i) +

x′PBiB′

iPx
α(i)

−
ϵ̄

u0(i)


u0(i) (11)

is a lower bound of the left-hand term of (10). Furthermore, from
relation (6) it follows that x′PRPx ≥ x′Ux. Thus, since we are
considering the decreasing of V for x such that x′Ux ≥ 1, it follows
that

x′


PA +

−
i∈Sc

PBiµ(i)K(i) +


PA +

−
i∈Sc

PBiµ(i)K(i)

′

− θP + θU


x −

−
i∈S


α(i) +

x′PBiB′

iPx
α(i)

−
ϵ̄

u0(i)


u0(i)

+

−
i∈Sc

µ(i)σ(i)


β(i) +

x′PBiB′

iPx
β(i)


(12)
is a lower bound of (11) and therefore of the left-hand term of (10).
From this, for a proper positive value ofα(i) (note that this value has
not to be expressly obtained) and using Property 4 the satisfaction
of

x′


PA +

−
i∈Sc

PBiµ(i)K(i) +


PA +

−
i∈Sc

PBiµ(i)K(i)

′

− θP + θU


x − 2

−
i∈S

|x′PBi|u0(i)

+

−
i∈Sc

µ(i)σ(i)


β(i) +

x′PBiB′

iPx
β(i)


< 0 (13)

implies the satisfaction of inequality (10). By using the fact that
2|a| ≤ b +

a2
b , for all b > 0 and for all a, it follows that

x′


PA +

−
i∈Sc

PBiµ(i)K(i) +


PA +

−
i∈Sc

PBiµ(i)K(i)

′

− θP + θU


x + 2

−
i∈Sc

µ(i)σ(i)|x′PBi|

− 2
−
i∈S

|x′PBi|u0(i) < 0. (14)

The inequality is satisfied for every S ∈ Vm, and therefore one gets

x′(A′P + PA − θP + θU)x

+2 max
S∈Vm

−
i∈Sc


x′PBiµ(i)K(i)x + |x′PBi|µ(i)σ(i)



−

−
i∈S

|x′PBi|u0(i)


< 0. (15)

Then, by using Property 2 with z = B′Px, one has

2x′PAx + 2x′PBϕ(Kx, t) − θx′Px + θx′Ux
≤ x′(A′P + PA − θP + θU)x

+ 2 max
S∈Vm

−
i∈Sc


x′PBiµ(i)K(i)x + |x′PBi|µ(i)σ(i)


−

−
i∈S

|x′PBi|u0(i)


< 0

along the trajectories of the closed-loop system, for all x ∈

E(W−1, 1) and x ∉ E(Q−1, 1). Hence, the satisfaction of relations
(4), (6) and (7) guarantees, by referring to the S-procedure Boyd,
El Ghaoui, Feron, and Balakrishnan (1994), that V̇ (x) < 0 for any x
such that x′Px ≤ 1 and x′Ux ≥ 1. Furthermore, from the definition
of the ellipsoids E(W−1, 1) and E(Q−1, 1), the condition (5)means
that E(Q−1, 1) is included in E(W−1, 1). Finally, the satisfaction
of conditions (4)–(7) means that the ellipsoid E(W−1, 1) is
contractive with respect to the trajectories of the nonlinear system
(3) until the state enters the set E(Q−1, 1). In other words, the
closed-loop trajectories initiated in the outer ellipsoid E(W−1, 1)
are ultimately bounded in the inner ellipsoid E(Q−1, 1). �

Remark 2. Note that the conditions stated in Theorem 1 do not
impose the asymptotic stability of the origin of the state space,
and then, do not require any stability condition on the open-loop
matrix A.
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Remark 3. Theorem 1 gives a solution to the analysis Problem 1.
The conditions can be directly extended to consider the control
design case by consideringmatrixY instead of termsKW , as further
optimization variables.

Remark 4. In Theorem 1, the outer ellipsoid E(W−1, 1) is contrac-
tive and invariant contrarily to the inner ellipsoid E(Q−1, 1). Nev-
ertheless, we can determine the smallest invariant ellipsoid whose
shape is determined by W and containing E(Q−1, 1). For this, it
suffices to compute the greatest scalar ρ such that the resulting el-
lipsoid E(W−1, ρ−1) is invariant and contains E(Q−1, 1); in other
words one has to compute the maximal scalar ρ ≥ 1 such that
W − ρQ ≥ 0.

Remark 5. It can be of interest to impose a rate of convergence
γ , γ > 0, for the closed-loop system trajectories by adding in
the (1, 1) block of matrix in relation (4) the term +γW . Moreover,
from the satisfaction of (4) and since according to Remark 4 there
exists a scalar ρ ≥ 1 such that E(Q−1, 1) ⊂ E(W−1, ρ−1), it
follows V̇ (x) < θx′Px−θx′Q−1x ≤ θ(1−ρ)x′Px. The positive scalar
−θ(1−ρ) then represents a rate of convergence for the closed-loop
system trajectories.

Remark 6. Consider a (normalized) saturationwhich is equivalent
to the generalized saturated function with µ(i) = 1, σ(i) = 0, u0(i)
= 1, ∀i = 1, . . . ,m. By adapting to this case the conditions
of Theorem 1, it follows that the variable β does not appear
and R is no more affecting (4) but is involved only in (6).
This relation admits infinite solutions R provided that Q >
0, as assumed in the statement of the theorem, then (6) does
not affect the problem. Moreover, by choosing Q = W , (5)
holds and hence, in this case, only conditions (4) and (7) of
Theorem 1 have to be tackled. With Q = W , relation (4) reads:
He

AW +

∑
i∈Sc BiK(i)W +

∑
i∈S BiY S

(i)


< 0 and therefore the

current Theorem 1 is equivalent to Theorem 1 in Alamo et al.
(2005). Then the current result can be viewed as an extension of
the results proposed in Alamo et al. (2005), and thus also of those
in Hu and Lin (2001) and Hu, Lin, and Chen (2002).

4.2. Optimization aspects

Theorem 1 provides a condition on ellipsoids E(W−1, 1) and
E(Q−1, 1) with E(Q−1, 1) ⊆ E(W−1, 1), such that E(W−1, 1) is
contractive and E(Q−1, 1) captures the ultimate bounded closed-
loop trajectories. Finally, an optimization problem may be stated,
for the analysis or the synthesis case, to simultaneously evaluate
the smallest inner ellipsoid and the largest outer ellipsoid1:

min η1Trace(M) + η2Trace(Q )

subject to (4)–(7) and
[
M 1
1 W

]
> 0 (16)

where ηi, i = 1, 2, are weighting parameters. The search for the
largest outer ellipsoidal set mainly corresponds to evaluate the
influence of the saturation u0 on the stability properties of the
nonlinear closed-loop system Alamo et al. (2005), Gomes da Silva
and Tarbouriech (2005) and Hu et al. (2002). The determination
of the smallest inner ellipsoidal set corresponds to the evaluation
of the smallest domain in which the closed-loop trajectories are
ultimately bounded. The conditions stated in Theorem 1 are not

1 Rigorously speaking, we do not compute the smallest and largest ellipsoids, due
to the nonlinearities in the optimization problem. What we denote abusively the
smallest and largest ellipsoids are only sub-optimal solutions, which depend also
on the measure chosen to evaluate the size of the ellipsoid.
LMI conditions, due to vector β , and due to the products θW and
θQ implying that the optimization problem proposed above is not
convex. Note however, that, as pointed out in new Remark 5, θ is
a sort of measure of how high the decreasing rate is required to be
ensured. Posing θ very close to zero, means that inside E(W−1, 1)
and outside E(Q−1, 1) the convergence rate is required to be close
to null, that is, we are trying to approximate the basin of attraction
(outer set) and the ultimately bounded stability region (inner set).
Vice versa, high values of θ would entail the requirement of a high
convergence rate, convergence rate that could be not possible to
be guaranteed inside any region (in fact, infeasibility can occur).
Then, in the following, θ is viewed as a design parameter and fixed
as a small value since we are interested in the set optimization
problem. On the other hand, the influence of the choice of vector β
cannot be neglected. Either an iterative search on the components
of this vector or an encapsulation of the LMI optimization step
(16) in some overall nonlinear optimization procedure (such as
fminsearchMatlab function)may be considered. In the single-input
case (m = 1), β is a scalar and the optimal solution of (16) can
be obtained from a search over a mere one-dimensional grid. For
systems with m ≥ 2, a preliminary hypothesis (which has been
clearly sufficient in all tested examples)may be to consider a vector
β = a11m with scalar a1, that is, one yet considers a mere one-
dimensional parameter of the problem. Hence, in all these cases
an optimal or sub-optimal solution for (16) can be easily obtained
from the solution of LMI-based problems. Such a point is illustrated
in the numerical examples.

5. Numerical examples

5.1. Single input example

Let us consider the following single-input unstable example
borrowed from Fong and Hsu (2000):

A =

[
0.5 −1
1 0.5

]
; B =

[
0.5
1

]
.

The nonlinear element ϕ(Kx, t) is the one described in Fig. 2 (dead-
zone + saturation) with u0 = 4, µ = 1 and σ = 0.4. The S-
procedure parameter is set to: θ = 10−6. Let us first consider
the controller gain provided in Fong and Hsu (2000): K = Ka =

[0.93 − 3.84]. The optimization of the ellipsoid sizes with respect
to the scalar β has been performed using the Matlab fminsearch
function, from an initial guess 0.5, and with η1 = η2 = 1. The
optimal inner and outer ellipsoidal sets solution to (16), plotted in
Fig. 5 (dashed lines), have then been obtained for β = 0.0125.

The synthesis problem is classically a compromise between
several objectives, in the present case, a small activity around the
origin (small inner ellipsoid), a large domain of admissible initial
state (large outer ellipsoid), a not-too-high gain and a convenient
pole placement for the linear closed-loop system (ϕ(Kx, t) = Kx).
In this example, one considers a pole-placement requirement in
a disk of ray 5 and centered in −5 Peaucelle, Arzelier, Bachelier,
and Bernussou (2000), and the optimization problem is solved
with the trade-off objective given by η1 = η2 = 1. One then
obtains the controller gain K = Ks =


0.6750 −8.1591


and

β = 0.0035 as the solution to the encapsulation of problem (16)
in fminsearch. The optimal inner and outer ellipsoids associated
to this controller are plotted in Fig. 5 in solid lines. Trajectories
starting from several initial states are also plotted in Fig. 5. They
illustrate that the outer ellipsoid obtained through Theorem 1with
the optimization procedure (16) remains a good approximation of
the domain of attraction.

A zoomof the inner ellipsoids and, by theway, of the trajectories
of the system for the controller gains Ka (dashed lines) and Ks (solid
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Fig. 5. Example 1—Inner and outer ellipsoids related to Ka (dashed lines) and to
Ks (solid lines). State space trajectories initiated from various states, related to the
controllers Ka (dotted line) Ks (dashed–dotted line).

Fig. 6. Example 1—Zoom on the inner ellipsoids related to Ka (dashed lines) and to
Ks (solid lines). State space trajectories related to the controllers Ka (dotted lines) Ks
(dashed–dotted lines).

lines), is shown in Fig. 6. It illustrates that around the origin, the
system is not controlled and does not converge to the origin but to
a limit cycle. This limit cycle remains however confined inside the
inner ellipsoid.

According to Remark 6 focusing on the case of saturation only,
the ellipsoidal approximation of the basin of attraction with the
controller Ka is plotted in Fig. 7 (in black). Note that when the
optimization (in Theorem 1 framework) is oriented mainly on the
maximal outer set solution (in blue, with η1 = 1, η2 = 0.01),
it approaches the case with saturation only. However, this is to
the detriment of the size of the inner ellipsoid. A compromise is
given by the solution issued from Theorem 1 with η1 = η2 = 1
(in red).

5.2. Multivariable example

The second example is a multi-input example, with three states
and two inputs derived fromAmato, Cosentino, andMerola (2007),
which intends to illustrate the computational burden associated to
the nonlinear influence of β . System (3) is defined by the following
4

4 5

3

3

2

2

1

10

-1

-1

-2

-2

-3

-3
-4

-5 -4

x 2 0

x1

Fig. 7. Example 1—Ellipsoidal approximations of the basin of attraction. The dotted
ellipsoid refers to the case with saturation only Alamo et al. (2005). The solid line
outer (W1) and inner (W2) ellipsoids refer to the case with η2 = 0.01. The dashed
line outer (W1) and inner (W2) ellipsoids refer to the case with η2 = 1.

Table 1
Illustration of the influence of β in the calculus of the optimal inner and outer
ellipsoids.

Case 1 Case 2

β

[
0.7250
0.7250

] [
0.1621
0.8142

]
√
det(W ) 0.0576 0.0283

√
det(Q ) 1.3219 1.5099

nb iteration in fminsearch 8 26
nb execution pb (16) 16 52

data:

A =


−0.5 1.5 4
4.3 6.0 5.0
3.2 6.8 7.2


; B =


−0.7 −1.3

0 −4.3
0.8 −1.5


(17)

with nonlinear elements given by:

u0 =

[
2
2

]
, µ =

[
1
1

]
and σ =

[
0.2
0.2

]
.

Note that the open-loop system is unstable, with spectrum given
by {13.9600; −0.6300 ± 0.7368i}. One considers the following
control gain:

K =

[
−1.5120 −2.5839 −5.2308
2.0067 3.1215 4.3454

]
for which the linear closed-loop spectrum (ϕ(Kx, t) = Kx) is
{−8.1394; −2.4180 ± 1.6404i}.

Two cases are considered to determine the smallest and largest
inner and outer ellipsoids, using fminsearch and problem (16): the
first case is with β = a1m, and the second case considers that all
components ofβ are independent. The results, presented in Table 1
provide a comparison in terms of computation time and volume2 of
ellipsoids. They illustrate that considering only one parameter for
β is sufficient to give a good approximation of the ellipsoids with
a reasonable computation burden.

Finally, Figs. 8 and 9 show the outer and inner ellipsoids,
respectively, for the two evaluation cases. State space trajectories

2 The expression
√
det(W ) is proportional to the volume of the ellipsoid

E(W−1, 1).
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-1

-1

-1.5

-1.5

2

-2 -4

-2

0

2

4

x1

x2

x 3

Fig. 8. Example 2—3D outer ellipsoids related to case 1 (internal blue ellipsoid)
and case 2 (external red ellipsoid) and unstable state space trajectories. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

illustrate both the correct approximation of the overall invariant
domain for the system (unstable trajectories for initial states
taken outside the outer ellipsoids) and the confinement of the
stable trajectories in the inner ellipsoids after some transient
time.

6. Conclusion

In this paper, constructive conditions to deal with ultimate
bounded stability analysis or stabilization have been proposed
for systems interconnected with actuators involving different
nonlinear elements, like for instance both saturation and dead-
zone or both saturation and stick–slip. Appropriate properties
allow to upper-bound the nonlinearity and then to derive quasi-
linear matrix inequality conditions. Optimization schemes have
been derived in order to evaluate two ellipsoids such that the
trajectories initiated inside the largest outer one will be ultimately
bounded in the smallest inner one, without any restriction on
the open-loop stability. The main limitation of the approach is
related to the optimization scheme which involves several tuning
parameters. Some possible approaches are however proposed to
select an adequate set of parameters.

In the context of actuators involving different nonlinear
elements, there are still some possible interesting extensions and
open problems. The technique developed should be extended
to handle a larger class of nonlinear elements, like piecewise
affine nonlinearities or dynamic nonlinearities, leading to the
construction ofmore adequate Lyapunov functions (more complex
than the quadratic ones).

Appendix

A.1. Proof of Property 1

Two cases are considered.
• If z ≥ 0, one obtains from the inequality: ϕ(u, t) ≤ Γ (u),
zϕ(u, t) ≤ zΓ (u) = z max{µ(u + σ), −u0} = max{zµ(u +

σ), −zu0} = max{zµu + |z|µσ, −|z|u0}.
• If z < 0 then one can multiply the inequality −Γ (−u) ≤

ϕ(u, t) by the negative scalar z to obtain: zϕ(u, t) ≤ −zΓ (−u) =

|z|max{µ(−u + σ), −u0} = max{|z|µ(−u + σ), −|z|u0} =

max{zµu + |z|µσ, −|z|u0}.

A.2. Proof of Property 2

Following Property 1, one directly writes

z ′ϕ(u, t) =

m−
i=1

z(i)ϕ(i)(u, t)

≤

m−
i=1

max{z(i)µ(i)u(i) + |z(i)|µ(i)σ(i), −|z(i)|u0(i)}.

Moreover one can verify that
m−
i=1

max{z(i)µ(i)u(i) + |z(i)|µ(i)σ(i), −|z(i)|u0(i)}

= max
S∈Vm

−
i∈Sc

z(i)µ(i)u(i) + |z(i)|µ(i)σ(i) −

−
i∈S

|z(i)|u0(i)


.

A.3. Additional properties

Property 3. Let a symmetric matrix W ∈ ℜ
n×n and a matrix Y ∈

ℜ
1×n being such that[
u2
0 Y

Y ′ W

]
> 0

then, ∀B ∈ ℜ
n, one has

BY + Y ′B
′
≥ −αu0W − u0

B B
′

α
, ∀α > 0.

The proof is directly extended from Alamo et al. (2005), by

considering that: 0 ≤ u0

√
α

u0
Y ′

+
B

√
α

 √
α

u0
Y ′

+
B

√
α

′

, ∀α > 0.
0.2
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0.5

0.05

0
0

0
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Fig. 9. Example 2—3D inner ellipsoids related to case 1 (external blue ellipsoid) and case 2 (internal red ellipsoid) and stable state space trajectories. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)



1480 S. Tarbouriech et al. / Automatica 47 (2011) 1473–1481
Property 4 (Alamo et al. 2005). Suppose that ϵ > 0. Then, for every
a ∈ ℜ

−2|a| < sup
α>0

−α −
a2

α
+ ϵ.
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