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a b s t r a c t

In this paper we provide a method to compute robust control invariant sets for nonlinear discrete-time
systems. A simple criterion to evaluate if a convex set in state space is a robust control invariant set for a
nonlinear uncertain system is presented. The criterion is employed to design an algorithm for computing a
polytopic robust control invariant set. Themethod is based on the properties of DC functions, i.e. functions
which can be expressed as the difference of two convex functions. Since the elements of a wide class
of nonlinear functions have DC representation or, at least, admit an arbitrarily close approximation, the
method is quite general. The algorithm requires relatively low computational resources.
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1. Introduction

Part of the importance of invariant sets in control is due to the
implicit stability properties of these regions of the state space. An
invariant set is a region of the state space such that the trajectory
generated by the dynamical system remains confined in the set
if the initial condition lies within it, see Blanchini and Miani
(2008). Particularly relevant is the property of robust (control)
invariance of a set, useful in the context of stability and constraints
satisfaction for uncertain systems. Also the issue of convergence
of model predictive control strategies, see Camacho and Bordons
(2004), is strongly related to invariance.Many results on invariance
have been obtained in previous years, for both linear, see for
instance Gilbert and Tan (1991), Kolmanovsky and Gilbert (1998)
andRaković, Kerrigan, Kouramas, andMayne (2005), and nonlinear
systems, see Alamo, Cepeda, Fiacchini, and Camacho (2009), Bravo,
Limon, Alamo, and Camacho (2005) and da Silva and Tarbouriech
(1999). The problem of stability of nonlinear uncertain systems has
been recently addressed in Chesi, Garulli, Tesi, and Vicino (2009).
In this paper we present a method for computing a convex

robust control invariant set for discrete-time nonlinear uncertain
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systems, exploiting the properties of DC functions. Since many
nonlinear functions are expressible as DC functions, or at least, can
be arbitrarily closely approximated by one of them, the proposed
procedure is widely applicable.
The paper is organized as follows: Section 2 presents the

problem statement. In Section 3 a brief review on DC functions
is given. Conditions for control invariance for nonlinear systems
are formulated in Section 4. In Section 5 computational issues
are considered. In Section 6 the results are compared with other
methods via a numerical example.

Notation. For every n ∈ N, define Nn = {x ∈ N : 1 ≤ x ≤ n}.
Given A ∈ Rn×m, Ai with i ∈ Nn denotes its i-th row. Given a set
D, co(D) denotes its convex hull, int(D) denotes its interior, ∂D its
boundary and, for every α ≥ 0, define the set αD = {αx : x ∈ D}.
The operators ∇x and ∇u denote the differential with respect to x
and u respectively.

2. Problem statement

Consider the nonlinear discrete-time time-invariant system

x+ = f (x, u)+ w, (1)
where x ∈ X ⊆ Rn is the state, x+ ∈ Rn is the successor,
u ∈ U ⊆ Rm is the control and w ∈ W ⊂ Rn is the unknown but
bounded uncertainty, that can be a function of x and u and other
terms representing noises and exogenous disturbances.

Assumption 1. Assume that sets X ⊆ Rn,U ⊆ Rm and W ⊂ Rn
are closed, convex and contain the origin in their interiors. Assume
also thatW is compact.
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The formal definition of DC function follows.

Definition 1. A function α : Rp → R, defined on D ⊆ Rp convex,
is a DC function if there exist β, γ : Rp → R convex on D and such
that α(x) = β(x)− γ (x) for all x ∈ D.

We will refer to α : Rp → Rq as a DC function if αj(·) is DC for all
j ∈ Nq. Similarly, β : Rp → Rq is convex if βj(·) is convex for all
j ∈ Nq. We say that f (·, ·), as in (1), is a DC function with respect to
variables x ∈ X and u ∈ U , meaning that f (x, u) = g(x, u)−h(x, u)
where g(·, ·) and h(·, ·) are convex in (x, u) ∈ X × U .

Assumption 2. Assume that f (·, ·) in (1) is a DC function defined
on X × U and differentiable at (0, 0). Denote g(·, ·) and h(·, ·)
the convex functions such that f (x, u) = g(x, u) − h(x, u), for all
(x, u) ∈ X × U and assume g(0, 0) = h(0, 0) = 0.

Below we recall general definitions of a robust control invariant
set and a λ-contractive set for a generic nonlinear system, see
Blanchini and Miani (2008).

Definition 2. A set Ω is a robust control invariant set for the
system x+ = f (x, u, w) and constraints x ∈ X and u ∈ U if
Ω ⊆ X and for all x ∈ Ω there exists a u(x) ∈ U such that
f (x, u(x), w) ∈ Ω , for allw ∈ W .

In absence of uncertainty the related set is called a control invariant
set. Hence, a setΩ is a robust control invariant set for the system
if and only if there exists an admissible control law u = u(x) ∈ U
defined for all x ∈ Ω such that every trajectory of the controlled
system (1) starting within Ω remains inside it regardless of the
uncertainty realization.

Definition 3. A convex compact set Ω with 0 ∈ int(Ω) is λ-
contractive for system x+ = f (x, u, w) and constraints x ∈ X and
u ∈ U ifΩ ⊆ X and for all x ∈ Ω there exists a u(x) ∈ U such that
f (x, u(x), w) ∈ λΩ , for allw ∈ W , with λ ∈ [0, 1].

Analogous definitions can be given for autonomous systems.
Clearly, λ-contractiveness induces (robust) control invariance. For
Ω ⊆ X polytopic, i.e. Ω = {x ∈ Rn : Hx ≤ 1}, the condition
for λ-contractiveness is the existence of u(x) ∈ U such that
Hf (x, u(x), w) ≤ λ1, for all x ∈ Ω andw ∈ W .

3. Brief overview on DC functions

We recall some important properties of DC functions. First, it
is worth mentioning that the set of DC functions defined on a
compact convex set ofRn is dense in the set of continuous functions
of this set. Then, every function defined on a compact convex set
admits a DC approximation arbitrarily close. Moreover, any twice
differentiable function is DC representable. In fact, suppose f :
D → R satisfies ∂2

∂x2
f (x) ≥ −2aI , for all x ∈ D with a > 0. Then

f (x) = gc(x) − hc(x), with gc(x) = f (x) + axT x and hc(x) = axT x
is a DC representation of f (x). See Adjiman and Floudas (1996) for
methods to obtain appropriate values of a. Some properties of DC
functions, see Horst and Thoai (1999), follow.

Property 1. DC functions satisfy the following properties:
• Every function f : Rn → R whose second partial derivatives are
continuous everywhere is DC.
• Let D be a compact convex subset of Rn. Then, every continuous
function on D is the limit of a sequence of DC functions which
converges uniformly on D.
• Let f : Rn → R be a DC function and g : R → R convex. Then,
the composite function (g ◦ f )(x) = g(f (x)) is DC.

If f (·) is a DC function, also the following functions are DC:
• Any affine combination of DC functions.
• The pointwise maximum and minimum of DC functions.
• Functions |f (x)|,max{0, f (x)} andmin{0, f (x)}.
• The product of DC functions.

Finally, note that there exist infinitelymany DC representations
for every DC function f (x) = g(x) − h(x), obtained by adding the
same convex function to g(·) and h(·), for instance.

4. Control invariance condition for nonlinear systems

The results presented in this section constitute the main
contributions of this paper. Sufficient conditions for a set to be a
control invariant set for a DC system are given.

Definition 4. Let Assumptions 1 and 2 hold. Given the DC function
f (·, ·) : X × U → Rn as in (1) and c ∈ Rn, define F(·, ·, ·) :
X × U × Rn → R as the function

F(x, u, c) =
∑
j∈b+

cj(gj(x, u)− hLj (x, u))

+

∑
j∈b−

cj(gLj (x, u)− hj(x, u)), (2)

where gLj (x, u) = ∇xgj(0, 0)x + ∇ugj(0, 0)u and hLj (x, u) =
∇xhj(0, 0)x + ∇uhj(0, 0)u, for j ∈ Nn, and b+ = b+(c) = {j ∈
Nn : cj ≥ 0} and b− = b−(c) = {j ∈ Nn : cj < 0}.

Notice that b+(c) and b−(c) are the set of indices of non-
negative and negative elements of c , respectively.

Property 2. Let Assumptions 1 and 2 hold. Given the DC function
f (·, ·) : X × U → Rn as in (1), for every c ∈ Rn, function F(·, ·, c)
defined in (2) is convex in (x, u) ∈ X × U.

Proof. Function F(·, ·, c) is the sum of elements composed by the
sum of a convex term and a linear one, then convex. �

In the following it is proved that, for any c ∈ Rn, the function
F(·, ·, c) provides an upper bound of the function cT f (·, ·).

Property 3. Let Assumptions 1 and 2 hold. Given the DC function
f (·, ·) : X × U → Rn as in (1), for every c ∈ Rn we have that
cT f (x, u) ≤ F(x, u, c), for all (x, u) ∈ X × U.

Proof. Being gLj (·, ·) and h
L
j (·, ·) the linearizations at (0, 0) of

convex functions, then gLj (x, u) ≤ gj(x, u) and h
L
j (x, u) ≤ hj(x, u)

for all j ∈ Nn and (x, u) ∈ X × U . Thus, cj(hLj (x, u) − hj(x, u)) ≤ 0
if j ∈ b+ and cj(gj(x, u)− gLj (x, u)) ≤ 0 if j ∈ b− for all j ∈ Nn and
(x, u) ∈ X × U . From this and (2), we have

cT f (x, u)− F(x, u, c) =
∑
j∈b+

cj
(
hLj (x, u)− hj(x, u)

)
+

∑
j∈b−

cj
(
gj(x, u)− gLj (x, u)

)
≤ 0

for all c ∈ Rn and for any (x, u) ∈ X × U . �

If gj(·, ·) and hj(·, ·) are convex but not differentiable at (0, 0),
the linear functions gLj (·, ·) and h

L
j (·, ·) can be obtained by means

of the subgradient of gj(·, ·) and hj(·, ·) at (0, 0).

Property 4. Let Assumptions 1 and 2 hold. Given the DC function
f (·, ·) : X × U → Rn as in (1), for every ck ∈ Rn and θ k ≥ 0,
with k ∈ Nnk , such that c =

∑nk
k=1 θ

kck, we have

F(x, u, c) ≤
nk∑
k=1

θ kF(x, u, ck), ∀(x, u) ∈ X × U . (3)

Proof. Given j ∈ Nn, denote d = d(j) = [c1j , c
2
j , . . . , c

nk
j ]
T and

define d+ =
∑
k∈b+(d) θ

kckj and d
−
=
∑
k∈b−(d) θ

kckj . We have that
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d+ ≥ 0, d− ≤ 0, by definition. Suppose that cj ∈ b+(c), the case of
cj ∈ b−(c) is similar. If we prove

cj
(
gj(x, u)− hLj (x, u)

)
≤ d+

(
gj(x, u)− hLj (x, u)

)
+ d−

(
gLj (x, u)− hj(x, u)

)
, (4)

that is, if the j-th term of the left-hand side of (3) is smaller than or
equal to the j-th termof the right-hand side, the property is proved.
Since cj = d+ + d−, gj(x, u)− gLj (x, u) ≥ 0, hj(x, u)− h

L
j (x, u) ≥ 0

by convexity, and d− ≤ 0, we have

cj
(
gj(x, u)− hLj (x, u)

)
≤ (d+ + d−)

(
gj(x, u)− hLj (x, u)

)
− d−

(
gj(x, u)− gLj (x, u)

)
− d−

(
hj(x, u)− hLj (x, u)

)
,

which is equivalent to (4). Then the property is proved. �

We recall here the definition of support function of a set.

Definition 5. Given a set Γ ⊆ Rn, the support function of Γ
evaluated at c ∈ Rn is defined as: φΓ (c) = supx∈Γ cT x.

If Γ is bounded then its support function is finite for any c ∈ Rn.
If Γ is convex and compact, it can be expressed as Γ = {x ∈ Rn :
cT x ≤ φΓ (c),∀c ∈ Rn} and if Γ is a polytope, Γ = {x ∈ Rn : Hx ≤
b}, then x ∈ Γ if and only if Hix ≤ bi = φΓ (HTi ), for all i ∈ Nnh , see
Rockafellar (1970). The following property provides the necessary
and sufficient condition for λ-contractiveness (and then for robust
control invariance) for system (1) in terms of support functions.

Property 5. Let Assumptions 1 and 2 hold. Given λ ∈ [0, 1], a
convex, compact set Ω ⊆ X is a λ-contractive set for system (1) and
constraints x ∈ X and u ∈ U if and only if there exists a control law
u = u(x) ∈ U such that

cT f (x, u(x)) ≤ λφΩ(c)− φW (c), ∀x ∈ Ω, ∀c ∈ Rn. (5)

Proof. By definition, Ω ⊆ X is a λ-contractive set for system
(1) if there exists a control law u = u(x) ∈ U such that x+ =
f (x, u(x)) + w ∈ λΩ , for all x ∈ Ω , and w ∈ W . Since Ω is a
convex, compact set, this is equivalent to

cT (f (x, u(x))+ w) ≤ φλΩ(c), ∀x ∈ Ω, ∀w ∈ W ,∀c ∈ Rn. (6)

Since φλΩ(c) = λφΩ(c), then (6) holds if and only if cT f (x, u(x)) ≤
λφΩ(c)−supw∈W cTw, for all x ∈ Ω and any c ∈ Rn, which, in turn,
is equivalent to (5). �

Notice that condition (5) is given by an infinite number of
non-convex constraints, for all x ∈ Ω and all c ∈ Rn. It will
be shown that, if Ω is a polytope, a condition for invariance can
be posed as a finite number of convex constraints involving only
its vertices. Recall that the condition for invariance for nonlinear
systems cannot, in general, be restricted to the boundary of the set,
see Blanchini and Miani (2008).

4.1. Control invariance for polytopicΩ

First we consider a sufficient condition for a polytopeΩ ⊆ X to
be λ-contractive for the deterministic nonlinear system

x+ = f (x, u), (7)

where f (·, ·) is the DC dynamical function of (1). Then the result
will be used to provide a sufficient condition for robust control
invariance of a polytope for the uncertain nonlinear system (1). In
what follows, given a polytopeΩ = {x ∈ Rn : Hx ≤ 1} ⊆ X , its nv
vertices are denoted vj ∈ Rn, for j ∈ Nnv , and nh are the rows of H ,
i.e. H ∈ Rnh×n.
Property 6. Let Assumptions 1 and 2 hold. Given λn ∈ [0, 1] and a
polytopeΩ = {x ∈ Rn : Hx ≤ 1} ⊆ X, if there exist control actions
defined at the vertices, uj = u(vj) ∈ U, for all j ∈ Nnv , such that

F(vj, uj,HTi ) ≤ λn, ∀j ∈ Nnv , ∀i ∈ Nnh , (8)

thenΩ is a λ-contractive set for system (7) and constraints x ∈ X and
u ∈ U. Moreover, there exists u(x) ∈ U defined on Ω such that for
any x0 ∈ Ω the trajectory {xk}k∈N generated by (7) with uk = u(xk),
satisfies xk ∈ λknΩ , for all k ∈ N.

Proof. From Property 3, it follows that

F(x, u,HTi ) ≤ λφΩ(H
T
i ) = λ, ∀x ∈ Ω, ∀i ∈ Nnh (9)

implies (5) with W = {0}, and then λ-contractiveness of Ω . In
general the inverse is not true, the condition is only sufficient. We
prove that there exists uj ∈ U defined at vertices vj, for j ∈ Nnv
such that (8) is satisfied if and only if there exists ū(x) ∈ U defined
on Ω such that (9) is fulfilled. Necessity is trivial, since vj ∈ Ω

for all j ∈ Nnv . Sufficiency has to be proved. Since any x ∈ Ω

can be expressed as the convex combination of the vertices then
there exist θ j(x) ≥ 0, j ∈ Nnv , such that x =

∑nv
j=1 θ

j(x) vj and∑nv
j=1 θ

j(x) = 1. Moreover u(x) =
∑nv
j=1 θ

j(x) uj is admissible,
i.e. u(x) ∈ U , from convexity of U . Consider ε ∈ [0, 1]. From the
convexity of F(·, ·,HTi ), for any H

T
i ∈ Rn and (8), we have that

F(εvj, εuj,HTi )− ελn ≤ max
ε∈[0,1]

{
F(εvj, εuj,HTi )− ελn

}
= max

{
F(0, 0,HTi )− 0; F(v

j, uj,HTi )− λn
}
≤ 0,

that means that F(εvj, εuj,HTi ) ≤ ελn, for all j ∈ Nnv and i ∈ Nnh ,
for any ε ∈ [0, 1]. Consider x̄ ∈ εΩ and notice that there exists
x ∈ Ω such that x̄ = εx =

∑nv
j=1 θ

j(x)εvj, by definition. Define
u(x̄) = εu(x) =

∑nv
j=1 θ

j(x)εuj, clearly u(x̄) ∈ U . From Property 3
and convexity of function F(·, ·,HTi ), for any H

T
i ∈ Rn, it follows

that if x̄ ∈ εΩ then

Hif (x̄, u(x̄)) ≤ F

(
nv∑
j=1

θ j(x)εvj,
nv∑
j=1

θ j(x)εuj,HTi

)

≤

nv∑
j=1

θ j(x)F
(
εvj, εuj,HTi

)
≤

nv∑
j=1

θ jελn = ελn.

This with ε = 1 implies (9) and then λ-contractiveness. Moreover,
we have that x̄ ∈ εΩ implies f (x̄, u(x̄)) ∈ ελnΩ , for all ε ∈ [0, 1],
thus x0 ∈ Ω implies xk ∈ λknΩ . �

The following corollary can be employed to enlarge a (robust)
control invariant set.

Corollary 1. Let Assumptions 1 and 2 hold. Consider a polytopic set
Ω = {x ∈ Rn : Hx ≤ 1} ⊆ X, and admissible control actions
defined at the vertices uj = u(vj) ∈ U for all j ∈ Nnv such that the
condition (8) is fulfilled. Given x̄ ∈ X, define Ω̄ = co(Ω ∪ x̄) =
{x ∈ Rn : H̄x ≤ 1}, where H̄ ∈ Rnh̄×n and nh̄ ∈ N. If there exists
ū = ū(x̄) ∈ U such that F(x̄, ū, H̄Ti ) ≤ λn, for every i ∈ Nnh̄ , then Ω̄
is a λ-contractive set for system (7) and constraints x ∈ X and u ∈ U.

Proof. Consider Ω̄ as candidate λ-contractive set in Property 6. If
x̄ ∈ Ω , then Ω̄ = Ω , trivial. Consider x̄ 6∈ Ω . We check condition
(8) for Ω̄ and all its vertices, that are given by x̄ and a subset of the
vertices ofΩ . Point x̄ fulfills it by assumption. Consider any vertex
ofΩ . SinceΩ ⊆ Ω̄ then ai = maxx{H̄ix : x ∈ Ω} ≤ 1, for every i ∈
Nnh̄ . Since strong duality holds, see Boyd andVandenberghe (2004),
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we have that ai = minθ i∈Rnh
{∑nh

k=1 θ
i
k : H̄i =

∑nh
k=1 θ

i
kHk, θ

i
≥ 0

}
,

which means that the dual optimizer, denote it θ̄ i ∈ Rnh , is such
that H̄i =

∑nh
k=1 θ̄

i
kHk and

∑nh
k=1 θ̄

i
k = ai ≤ 1, for all i ∈ Nnh̄ . From

Property 4, for all vj and uj, j ∈ Nnv , and for all i ∈ Nnh̄ , we have that
F(vj, uj, H̄Ti ) ≤

∑nk
k=1 θ̄

i
kF(v

j, uj,HTk ) ≤ aiλn ≤ λn, since vertices
ofΩ satisfy (8). The result is proved. �

Property 6 provides a condition to determine if a polytope
is a control invariant set for system (7), Corollary 1 permits to
determine an enlarged control invariant set. These results are
extended to the uncertain system (1). No proof is given since it is
analogous to those of Property 6 and Corollary 1.

Property 7. Let Assumptions 1 and 2 hold. Consider a polytopeΩ =
{x ∈ Rn : Hx ≤ 1} ⊆ X, and the uncertain DC system (1). If there
exist control actions defined at the vertices uj = u(vj) ∈ U for all
j ∈ Nnv , such that

F(vj, uj,HTi ) ≤ λw − φW (H
T
i ), ∀j ∈ Nnv , ∀i ∈ Nnh , (10)

for a λw ∈ [0, 1], then Ω is a λ-contractive set for system (1) and
constraints x ∈ X, u ∈ U. Moreover, given any x̄ ∈ X and denoting
Ω̄ = co(Ω ∪ x̄) = {x ∈ Rn : H̄x ≤ 1} with H̄ ∈ Rnh̄ , if there exists
ū = u(x̄) ∈ U satisfying F(x̄, ū, H̄Ti ) ≤ λw−φW (H̄

T
i ), for all i ∈ Nnh̄ ,

also the set Ω̄ is a λ-contractive set for the system (1) and constraints
x ∈ X, u ∈ U.

Notice that a λ-contractive set Ω for the deterministic system
(7) with contracting factor λn, is also a λ-contractive set for the
uncertain system (1), with contraction factor λw ifW is such that
maxi∈Nnh

φW (HTi ) ≤ λw − λn.

5. Practical issues on design

The first issue to be tackled in order to apply the results shown
in the previous section is how to define the potential control
invariant setΩ . Once a suitable guess forΩ is given, the sufficient
condition for control invariance canbe applied. Onepossible choice
is to select, as initial guess of Ω , a (robust) invariant set for
the linear system obtained linearizing the nonlinear one, using
for instance results in Blanchini and Miani (2008), Gilbert and
Tan (1991) and Kolmanovsky and Gilbert (1998). An algorithmic
procedure yielding an invariant set for a deterministic autonomous
DC system is provided in Fiacchini, Álamo, and Camacho (2007).
We propose here a procedure to obtain λ-contractive polytopes
for nonlinear systems, based on (10). The approach leads to a
convex optimization problem. Afterward, an enlarging method
which permits one to generate a sequence of nested λ-contractive
polytopes is illustrated. The enlarging method is characterized by
a greater computational burden and then can be applied only to
relatively low dimensional systems. Once a control λ-contractive
set Ω is computed, many approaches can be considered in order
to obtain the control law which makes the set λ-contractive in
closed-loop. From a practical point of view, it is sufficient to define
a control law at the vertices, uj = u(vj), since any proper convex
combination of u(vj), j ∈ Nnv , ensures invariance ofΩ .

5.1. Computation of robust λ-contractive polytope

Consider a polytope Ω = {x ∈ Rn : Hx ≤ 1}, as the initial
guess determining the geometric shape of the λ-contractive set.
The objective is to determine the maximal α ≥ 0, such that the
set αΩ is a λ-contractive set for the nonlinear system (1). Recall
that, for every α ≥ 0, we have that αΩ = {x ∈ Rn : Hx ≤ α}
and its vertices are αvj, for j ∈ Nnv . The maximal value of α can
be obtained by solving nv convex optimization problems in 1+ m
variables. Notice that the complexity grows with the number of
vertices of the polytopeΩ .

Algorithm 1 Computing a λ-contractive set for system (1).
Given the system (1) and the polytopeΩ:

for j = 1, . . . , nv solve
αj = max

γ j>0, uj∈U
γ j,

s.t. F(γ jvj, uj,HTi ) ≤ λwγ
j
− φW (HTi ), i ∈ Nnh ,

end
α = min{αj : j ∈ Nnv },
return αΩ .

5.2. Enlarging method

Once a control invariant or λ-contractive set Ω has been
obtained, a first enlarging method, based on Corollary 1, can be
designed. Random points x̄ in the state space are generated: if
for x̄ ∈ X there exists a ū ∈ U fulfilling the hypothesis of
Corollary 1, then the new control invariant set is obtained as the
convex hull of the current control invariant set and point x̄. It
has to be pointed out that the enlargement step often requires a
considerable computational effort. Notice in fact that simply the
selection of points x̄ ∈ X such that x̄ 6∈ Ω can be non-trivial for
high dimensional problems. We propose an alternative procedure
based on the following corollary.

Corollary 2. Let Assumptions 1 and 2 hold. Consider a polytopeΩ =
{x ∈ Rn : Hx ≤ 1} ⊆ X, with H ∈ Rnh×n, and λ ∈ [0, 1], such
that hypothesis of Property 7 holds for Ω , and, given x̂ ∈ X, define
the set Ω̂ = co(Ω ∪ x̂). If there exists a û = û(x̂) ∈ U such that
F(x̂, û,HTi ) ≤ λw − φW (H

T
i ), for every i ∈ Nnh , then Ω̂ is a robust

λ-contractive set for system (1) and constraints x ∈ X and u ∈ U.

Proof. Consider the non-trivial case of x 6∈ Ω . We prove that Ω̂
satisfies the hypothesis of Property 7. Denote Ĥ ∈ Rnĥ×n thematrix
such that Ω̂ = {x ∈ Rn : Ĥx ≤ 1}. The set of nv̂ vertices of
Ω̂ is composed by x̂ and a subset of vertices of Ω and then every
vertex of Ω̂ satisfies (10). We prove that satisfaction of condition
(10) with HTi , for every i ∈ Nnh , also implies fulfillment with Ĥ

T
j ,

for all j ∈ Nnĥ . As proved for Corollary 1, Ω ⊆ Ω̂ implies the

existence of θ j ≥ 0 such that ĤTj =
∑nh
k=1 θ

j
kH
T
k ,
∑nh
k=1 θ

j
k ≤ 1 for

all j ∈ Nnĥ . From this and Property 4we have that for vertex v̂
i of Ω̂

there exists ûi ∈ U such that F(v̂i, ûi, ĤTj ) ≤ λw−
∑nh
k=1 θ

j
kφW (H

T
k ),

for all j ∈ Nnĥ , and every k ∈ Nnv̂ . From φW (αη) = αφW (η) for all
α ≥ 0 and φW (η + γ ) ≤ φW (η) + φW (γ ) for all η, γ ∈ Rn, see
Schneider (1993), we have that φW (ĤTj ) ≤

∑nh
k=1 θ

j
kφW (H

T
k ) for all

j ∈ Nnĥ , then F(v̂
i, ûi, ĤTj ) ≤ λw − φW (Ĥ

T
j ). Hence the hypothesis

of Property 7 holds for Ω̂ . �

The following convex optimization problem can be solved to
determine a point x̂ ∈ X to enlarge the λ-contractive setΩ = {x ∈
Rn : Hx ≤ 1}. Given c ∈ Rn, the optimizer of

max
x̂∈X,û∈U

cT x̂

s.t. F(x̂, û,HTi ) ≤ λw − φW (H
T
i ), i ∈ Nnh ,

(11)

is such that Ω̂ = co(Ω ∪ x̂) is a λ-contractive set for the system
(1) and such thatΩ ⊆ Ω̂ . Thus, the iterative resolution of problem
(11) provides a sequence of nested control λ-contractive polytopes
Ωk. Although a random component is still present, in the choice
c ∈ Rn, with this enlarging method point x̂ lies in the complement
ofΩ or on its boundary.
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Fig. 1. Comparison: invariant ellipsoid, invariant parallelogramandΩ60 and robust
control invariant set (dashed).

6. Numerical example

To illustrate the presented method, we apply it to an example
proposed in a continuous-time version in Chen, Ballance, and
O’Reilly (2001),where ellipsoidal invariant sets are considered. The
same system, discretized, has been used by Cannon, Deshmukh,
and Kouvaritakis (2003) to test their results on computation of
control invariant parallelogram. The example allows us to compare
the results illustrated in this paper with different methods.
Consider the system

xk+1 =
[
1 T
T 1

]
xk + T

{
µ

[
1
1

]
+ (1− µ)

[
1 0
0 −4

]
xk

}
uk

with T = 0.01, µ = 0.9 and the constraints on input and state are
U = {u ∈ R : |u| ≤ 2}, X = {x ∈ R2 : ‖x‖∞ ≤ 4}. The system
considered is deterministic. We set λn = 1 to obtain a control
invariant set. Algorithm 1 has been applied to obtain Ω0 = αΩ ,
then the enlargingmethodhas been applied to generate a sequence
Ωk of nested control invariant sets, with k ∈ N60. Fig. 1 presents a
comparison between the ellipsoidal invariant set proposed in Chen
et al. (2001), the parallelogramprovided inCannonet al. (2003) and
the control invariant setΩ60. Finally, a robust control invariant set
is also computed. If additive uncertainty for the continuous-time
system is bounded by W = {w ∈ Rn : ‖w‖∞ ≤ 0.4}, the set
depicted in dashed line in Fig. 1 is a robust control invariant set.

7. Conclusions

In this paper a condition for a convex set to be a control
invariant set for a nonlinear uncertain system is provided. Such
a condition is employed to design an algorithm for computing
a contractive polytopic invariant set for nonlinear systems. The
method overcomes the main problem, often computationally
unmanageable, of the computation of control invariant sets for
nonlinear systems, although improvements in the numerical
implementation deserve further analysis.

References

Adjiman, C. S., & Floudas, C. A. (1996). Rigorous convex underestimators for general
twice-differentiable problems. Journal of Global Optimization, 9, 23–40.

Alamo, T., Cepeda, A., Fiacchini, M., & Camacho, E. F. (2009). Convex invariant sets
for discrete-time Lur’e systems. Automatica, 45(4), 1066–1071.

Blanchini, F., & Miani, S. (2008). Set-theoretic methods in control. Birkhäuser.
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University
Press.

Bravo, J. M., Limon, D., Alamo, T., & Camacho, E. F. (2005). On the computation
of invariant sets for constrained nonlinear systems: an interval arithmetic
approach. Automatica, 41, 1583–1589.
Camacho, E. F., & Bordons, C. (2004).Model predictive control. Springer-Verlag.
Cannon, M., Deshmukh, V., & Kouvaritakis, B. (2003). Nonlinear model predictive
control with polytopic invariant sets. Automatica, 39, 1487–1494.

Chen, W. H., Ballance, D. J., & O’Reilly, J. (2001). Optimisation of attraction domains
of nonlinear MPC via LMI methods. In Proceedings of the American control
conference, Arlington, VA, USA.

Chesi, G., Garulli, A., Tesi, A., & Vicino, A. (2009). Homogeneous polynomial forms for
robustness analysis of uncertain systems. Springer.

da Silva, J. M. G., & Tarbouriech, S. (1999). Polyhedral regions of local stability
for linear discrete-time systems with saturating controls. IEEE Transactions on
Automatic Control, 44, 2081–2085.

Fiacchini, M., Alamo, T., & Camacho, E. F. (2007). On the computation of local
invariant sets for nonlinear systems. In Proceedings of 46th IEEE conference on
decision and control, CDC 2007, New Orleans, LA, USA.

Gilbert, E. G., & Tan, K. T. (1991). Linear systems with state and control constrains:
the theory and application of maximal output admissible sets. IEEE Transactions
on Automatic Control, 36, 1008–1020.

Horst, R., & Thoai, N. V. (1999). DC programming: overview. Journal of Optimization
Theory and Applications, 103, 1–43.

Kolmanovsky, I., & Gilbert, E. G. (1998). Theory and computation of disturbance
invariant sets for discrete time linear systems. Mathematical Problems in
Engineering: Theory, Methods and Applications, 4, 317–367.

Raković, S. V., Kerrigan, E. C., Kouramas, K. I., & Mayne, D. Q. (2005). Invariant
approximations of the minimal robustly positively invariant sets. IEEE
Transactions on Automatic Control, 50(3), 406–410.

Rockafellar, R. T. (1970). Convex analysis. USA: Princeton University Press.
Schneider, R. (1993).Convex bodies: the Brunn–Minkowski theory:Vol. 44. Cambridge,
England: Cambridge University Press.

M. Fiacchini was born in Italy in 1977. He received
the Laurea degree in Computer Science Engineering in
2004 from the University of Florence and the Ph.D. in
Control Engineering from University of Seville in 2010. He
was working as visiting Ph.D. student at ETH of Zurich
(Switzerland). He is currently post-doctoral researcher
at LAAS–CNRS, Toulouse, France. He has participated in
several Spanish and European Projects, and his current
research interests are in Model Predictive Control, robust
control, set-theory in control and invariant sets.

T. Alamo was born in Spain in 1968. He received his
M.Eng. degree in Telecommunications Engineering from
the Polytechnic University of Madrid (Spain) in 1993
and his Ph.D. in Telecommunications Engineering from
the University of Seville in 1998. From 1993 to 2000
he was assistant professor of the Department of System
Engineering and Automatic Control of the University of
Seville. Since 2001, he has been associate professor and
since 2010 he is full professor in the same department.
He was a Researcher in the Ecole Nationale Supérieure
des Télécommunications (Telecom Paris) from 1991 to

1993 and he has participated in several European Projects. He is the author or
coauthor of more than 120 publications including book chapters, journal papers,
conference proceedings and educational books. He has carried out reviews for
various conferences and technical journals. His current research interests are in
model predictive control, randomized algorithms, robust control, identification,
control of constrained systems, invariant sets and convex optimization.

E.F. Camacho received his doctorate in Electrical engi-
neering from the University of Seville where he is now
a full professor of the Department of System Engineering
and Automatic Control. He has written the books: ‘‘Model
Predictive Control in the Process industry’’ (1995), ‘‘Ad-
vanced Control of Solar Plants’’ (1997) and ‘‘Model Predic-
tive Control’’ (1999), (2004 second edition) published by
Springer-Verlag, ‘‘Control e Instrumentación de Procesos
Quimicos’’ published by Ed. Sintesis and ‘‘Control of Dead-
timeProcesses’’ to be published by Springer-Verlag (2007).
He has authored and co-authoredmore than 200 papers in

journals and international conferences.
He has served on various IFAC technical committees and chaired the IFAC publi-

cation Committee from 2002–2005. He is an electedmember of the Board of Gover-
nors of the IEEE/CSS. He is the President of the European Union Control Association
(EUCA) for the period 2006–2007 and chairs the IFAC Policy Committee.
He has carried out review and editorial work for various technical journals and

many conferences. At present he is one of the editors of the IFAC journal, Con-
trol Engineering Practice, and has been associate editor of the European Journal of
Control until 2006 when he was promoted to editor at large. He chaired the IEEE
CSS International Affais Committee 2003–2006. He was Publication Chair for the
IFAC World Congress b’02 and General Chair of the joint 44th IEEE Control and De-
cision Conference (CDC) and European Control Conference (ECC) held in 2005 in
Sevilla.


	On the computation of convex robust control invariant sets for  nonlinear systems
	Introduction
	Problem statement
	Brief overview on DC functions
	Control invariance condition for nonlinear systems
	Control invariance for polytopic  Ω

	Practical issues on design
	Computation of robust  λ-contractive polytope
	Enlarging method

	Numerical example
	Conclusions
	References


