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a b s t r a c t

In the recent paper [Limon, D., Alvarado, I., Alamo, T., & Camacho, E.F. (2008). MPC for tracking of piece-
wise constant references for constrained linear systems. Automatica, 44, 2382–2387], a novel predictive
control technique for tracking changing target operating points has been proposed. Asymptotic stability
of any admissible equilibrium point is achieved by adding an artificial steady state and input as decision
variables, specializing the terminal conditions and adding an offset cost function to the functional.
In this paper, the closed-loop performance of this controller is studied and it is demonstrated that the

offset cost function plays an important role in the performance of the model predictive control (MPC) for
tracking. Firstly, the controller formulation has been enhanced by considering a convex, positive definite
and subdifferential function as the offset cost function. Then it is demonstrated that this formulation
ensures convergence to an equilibrium point which minimizes the offset cost function. Thus, in case of
target operation points which are not reachable steady states or inputs for the constrained system, the
proposed control law steers the system to an admissible steady state (different to the target) which is
optimal with relation to the offset cost function. Therefore, the offset cost function plays the role of a
steady-state target optimizer which is built into the controller. On the other hand, optimal performance
of the MPC for tracking is studied and it is demonstrated that under some conditions on both the offset
and the terminal cost functions optimal closed-loop performance is locally achieved.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Model predictive control (MPC) is one of the most successful
techniques of advanced control in the process industry (Camacho&
Bordons, 2004). Considering a suitable penalization of the terminal
state and an additional terminal constraint, asymptotic stability
and constraint satisfaction of the closed-loop system can be proved
(Mayne, Rawlings, Rao, & Scokaert, 2000).Moreover, if the terminal
cost is the infinite-horizon optimal cost of the unconstrained
system, then the MPC control law results in being optimal in a
neighborhood of the steady state (Hu & Linnemann, 2002).
These stabilizing conditions’ terminal ingredients are suitable

for a given operating point, but if the target operating point
changes then the feasibility of the controller may be lost and
the controller fails to track the reference (Pannocchia & Kerrigan,
2005; Shead & Rossiter, 2007). For such a case, the steady-state
target can be determined by solving an optimization problem that
determines the steady-state and input targets (Rao & Rawlings,
1999). In the literature some strategies have been proposed for
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recovering feasibility such as switching strategies (Chisci & Zappa,
2003; Rossiter, Kouvaritakis, & Gossner, 1996), or the command
governors approach (Angeli, Casavola, & Mosca, 2000; Bemporad,
Casavola, &Mosca, 1997). In Limon, Alvarado, Alamo, and Camacho
(2008) a novel MPC for tracking is proposed, which is able to
lead the system to any admissible set point in an admissible
way. The main characteristics of this controller are: an artificial
steady state considered as a decision variable, a cost that penalizes
the error with the artificial steady state, an additional term that
penalizes the deviation between the artificial steady state and
the target steady state (the so-called offset cost function) and an
extended terminal constraint, the invariant set for tracking. This
controller ensures that under any change of the steady-state target,
the closed-loop system maintains the feasibility of the controller,
converging to the target if admissible. The additional ingredients
of the controller have been demonstrated to affect the closed-
loop performance of the controlled system (Alvarado, 2007). The
objective of this paper is to study this effect and to show that
the offset cost function plays an important role in the closed-loop
performance.
Firstly, the MPC for tracking has been extended to consider

a convex, positive definite and subdifferential function as the
offset cost function. This choice ensures convergence to a set-
point which minimizes the offset cost function and, moreover,
allows the proposed MPC for tracking to deal with targets that are
inconsistent with the prediction model or the constraints. In this
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case this control law steers the system to an admissible steady state
(different to the target) which minimizes the offset cost function.
This property means that the offset cost function plays the role
of a steady-state target optimizer built in the proposed MPC.
Furthermore, under somemild sufficient assumptions on the offset
and the terminal cost function, a local optimality property holds,
letting the controller achieve optimal closed-loop performance.
This paper is organized as follows. In the following section the

constrained tracking problem is stated. In Section 3 the new MPC
for tracking is presented, and in Section 4 the property of local
optimality is introduced and proved. Finally some conclusions are
drawn.

2. Problem description

Let a discrete-time linear system be described by

x+ = Ax+ Bu (1)
y = Cx+ Du

where x ∈ Rn is the current state of the system, u ∈ Rm is
the current input, y ∈ Rp is the controlled output and x+ is
the successor state. Note that no assumption is considered on the
dimension of the states, inputs and outputs, and hence non-square
systems (namely p > m or p < m) might be considered.
The controlled output is the variable used to define the target

to be tracked by the controller. Since no assumption is made on
matrices C and D, these variables might be (a linear combination
of) the states, (a linear combination of) the inputs or (a linear
combination of) both.
The state of the system and the control input applied at

sampling time k are denoted as x(k) and u(k), respectively. The
system is subject to hard constraints on state and control:

(x(k), u(k)) ∈ Z (2)

for all k ≥ 0.Z ⊂ Rn+m is a compact convexpolyhedron containing
the origin in its interior.

Assumption 1. The pair (A, B) is stabilizable and the state is
measured at each sampling time.

Under this assumption, the set of steady states and inputs of the
system (1) is an m-dimensional linear subspace of Rn+m Alvarado
(2007) given by

(xs, us) = Mθθ.

Every pair of steady-state and input values (xs, us) ∈ Rn+m is
characterized by a given parameter θ ∈ Rm. The steady controlled
outputs are given by

ys = Nθθ

where Nθ = [C D]Mθ .
The problem we consider is the design of an MPC controller

κON (x, yt) to track a (possibly changing) target steady output yt .
If yt is an admissible steady output (that is, the corresponding
operation point fulfills the constraints), the closed-loop system
evolves to this target without offset. If yt is not consistent with the
linearmodel considered for predictions, namely, it is not a possible
steady output of system (1) or this is not admissible, the closed-
loop systemevolves to an admissible steady statewhichminimizes
a given performance index.

3. Enhanced formulation of the MPC for tracking

In this section, the role of the offset cost function in the MPC for
tracking (Limon et al., 2008) is studied. As will be demonstrated
later on, undermild assumptions, this function provides significant
properties to the controlled system.
The proposed cost function of the MPC is given by

VON (x, yt;u, θ̄ ) =
N−1∑
i=0

‖x(i)− x̄s‖2Q + ‖u(i)− ūs‖
2
R

+‖x(N)− x̄s‖2P + VO(ȳs − yt)
where x(i) denotes the prediction of the state i-samples ahead, the
pair (x̄s, ūs) = Mθ θ̄ is the artificial steady state and input and
ȳs = Nθ θ̄ the artificial output, all of them parameterized by θ̄ ; yt
is the target of the controlled variables. The controller is derived
from the solution of the optimization problem PON (x, yt) given by

VO∗N (x, yt) = min
u,θ̄
VON (x, yt;u, θ̄ )

s.t. x(0) = x,
x(j+ 1) = Ax(j)+ Bu(j),
(x(j), u(j)) ∈ Z, j = 0, . . . ,N − 1
(x̄s, ūs) = Mθ θ̄ ,
ȳs = Nθ θ̄
(x(N), θ̄ ) ∈ Ωw

t,K .

Considering the receding horizon policy, the control law is given
by
κON (x, yt) = u

∗(0; x, yt).

Since the set of constraints of PON (x, yt) does not depend on yt , its
feasibility region does not depend on the target operating point yt .
Then there exists a polyhedral region XN ⊆ X such that for all
x ∈ XN , PON (x, yt) is feasible. This is the set of initial states that can
be admissibly steered to the projection ofΩw

t,K onto x in N steps.
Consider the following assumption on the controller parame-

ters:

Assumption 2. (1) Let R ∈ Rm×m be a positive definite matrix and
Q ∈ Rn×n a positive semi-definite matrix such that the pair
(Q 1/2, A) is observable.

(2) Let the offset cost function VO : Rp → R be a convex, positive
definite and subdifferentiable function such that VO(0) = 0.

(3) Let K ∈ Rm×n be a stabilizing control gain such that (A + BK)
is Hurwitz.

(4) Let P ∈ Rn×n be a positive definite matrix such that
(A+ BK)TP(A+ BK)− P = −(Q + K TRK).

(5) LetΩw
t,K ⊆ Rn+m be an admissible polyhedral invariant set for

tracking for system (1) subject to (2), for a given gain K . That is,
for all (x, θ) ∈ Ωw

t,K , then ((A + BK)x + BLθ, θ) ∈ Ω
w
t,K where

L = [−K Im]Mθ . See Limon et al. (2008) for more details.
The set of admissible steady outputs consistent with the invariant
set for trackingΩw

t,K is given by

Ys = {ys = Nθθ : (xt , ut) = Mθθ, and (xt , θ) ∈ Ωw
t,K }.

This set is potentially the set of all admissible outputs for system
(1) subject to (2), (Limon et al., 2008).
Taking into account the proposed conditions on the controller

parameters, the following theorem proves the asymptotic stability
and constraint satisfaction of the controlled system.

Theorem 1 (Stability). Consider that Assumptions 1 and 2 hold and
consider a given target operation point yt . Then for any feasible
initial state x0 ∈ XN , the system controlled by the proposed MPC
controller κON (x, yt) is stable, fulfills the constraints throughout the
time and, if yt ∈ Ys, converges to an equilibrium point yt such
that limk→∞ ‖y(k) − yt‖ = 0. If yt 6∈ Ys, the closed-loop system
asymptotically converges to a steady state and input (x∗s , u

∗
s ) and

y∗s = Cx
∗
s + Du

∗
s , where

y∗s = arg minys∈Ys
VO(ys − yt).

Proof. Feasibility and convergence can be proved by following a
similar procedure to Limon et al. (2008).
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The proof will be finished by demonstrating that (x̄∗s , ū
∗
s ) is the

minimizer of the offset cost functionVO(ȳs−yt), proving the second
assertion of the theorem. The first assertion is a direct consequence
of the latter.
This result is obtained by contradiction. Consider the following

set of the optimal solutions:

Γ = {ȳs : ȳs = arg min
ȳs∈Ys

VO(ȳs − yt)}.

Consider that ȳ∗s 6∈ Γ . Then there exists a ỹs ∈ Γ , such that
VO(ỹs − yt) < VO(ȳ∗s − yt). Define θ̃ as a parameter (contained
in the projection ofΩw

t,K onto θ ) such that ỹs = Nθ θ̃ .
In can be proved (Alvarado, 2007) that there exists a λ̂ ∈ [0, 1)

such that for every λ ∈ [λ̂, 1), the parameter θ̂ = λθ̄∗ + (1− λ)θ̃
is such that the control law u = Kx + Lθ̂ (with L = [−K , Im]Mθ )
steers the system from x̄∗s to x̂s fulfilling the constraints.
Defining as u the sequence of control actions derived from the

control law u = K(x − x̂s) + ûs, it is inferred that (u, x̄∗s , θ̂ )
is a feasible solution for PON (x̄

∗
s , yt) (Limon et al., 2008). From

Assumption 2,

VO∗N (x̄
∗

s , yt) ≤ V
O
N (x̄
∗

s , yt;u, ŷs)
= ‖x̄∗s − x̂s‖

2
P + VO(ŷs − yt).

Then, defining H = MTx PMx and considering the previous
statements,

VON (x̄
∗

s , yt;u, ŷs) = ‖x̄
∗

s − x̂s‖
2
P + VO(ŷs − yt)

= ‖θ̄∗s − θ̂s‖
2
H + VO(ŷs − yt)

= (1− λ)2‖θ̄∗s − θ̃s‖
2
H + VO(ŷs − yt).

The partial of VON about λ is

∂VON
∂λ
= −2(1− λ)‖θ̄∗s − θ̃s‖

2
H + g

T(ȳ∗s − ỹs)

where gT ∈ ∂VO(ŷs−yt), defining ∂VO(ŷs−yt) as the subdifferential
of VO(ŷs−yt), (Boyd &Vandenberghe, 2006). Evaluating this partial
for λ = 1 we obtain that

∂VON
∂λ

∣∣∣∣
λ=1
= g∗T (ȳ∗s − ỹs)

where g∗T ∈ ∂VO(ȳ∗s − yt), defining ∂VO(ȳ
∗
s − yt) as the

subdifferential of VO(ȳ∗s − yt). Taking into account that VO is a
subdifferentiable function, we can state that

∂VON
∂λ

∣∣∣∣
λ=1
= g∗T (ȳ∗s − ỹs) ≥ VO(ȳ

∗

s − yt)− VO(ỹs − yt).

Considering that VO(ȳ∗s − yt) − VO(ỹs − yt) > 0, it can be derived
that there exists a λ ∈ [λ̂, 1) such that VON (x̄

∗
s , yt;u, ŷs) is smaller

than the value of VON (x̄
∗
s , yt;u, ŷs) for λ = 1, which is equal to

VO∗N (x̄
∗
s , yt).

This contradicts the optimality of the solution and hence the
result is proved, finishing the proof. �

Remark 1 (Steady-State Optimization). It is not unusual that the
output target yt is not contained in Ys. This may happen when
there does not exist an admissible operating point whose steady
output is equal to the target or when the target is not a possible
steady output of the system (that is, this is not in the subspace
spanned by the columns of matrix Nθ ). To deal with this situation
in predictive controllers, the standard solution is to add an upper
level steady-state optimizer to decide the best reachable target of
the controller (Rao & Rawlings, 1999; Tatjewski, 2008).
From the latter theorem it can be clearly seen that, in this

case, the proposed controller steers the system to the optimal
operating point according to the offset cost function VO(·). Then it
can be considered that the proposed controller has a steady-state
optimizer built in andVO(·)defines the function to optimize. Notice
that the only mild assumptions on this function are to be convex,
positive definite, subdifferentiable and zero when the entry is null
(to ensure offset-free control if yt ∈ Ys).

Remark 2 (Offset Cost Function and Stability). Taking into account
Theorem1, stability is proved for any offset cost function satisfying
Assumption 2. Therefore, if this cost function varies with the time,
the results of the theorem still hold.
This property allows us to tune the cost function along the

time maintaining the stabilizing properties of the controller.
Besides, this property can be exploited to consider an offset
cost function which depends on the target, namely VO(yt; ȳs −
yt) defining different optimal criterion for the operating point
selection depending on the chosen target.

Remark 3 (QP Formulation). The optimization problem PON (x, yt) is
a convex mathematical programming problem that can be effi-
ciently solved. In the case that the offset cost functionVO(yt; ȳs−yt)
is such that the region {ȳs : VO(yt; ȳs−yt) ≤ 0} is polyhedral, then
PON (x, yt) can be posed as a quadratic programming by means of an
epigraph formulation.

Remark 4 (Robustness). Taking into account that the control law
is derived from a parametric convex problem, the closed-loop
system is input-to-state stable for small uncertainties (Limon et al.,
2008). In Alvarado, Limon, Alamo, Fiacchini, and Camacho (2007)
a robust formulation of this controller has been proposed. In this
case, offset free control can be achieved by means of disturbances
models (Pannocchia & Kerrigan, 2005) or adding an external
loop (Alvarado, 2007).

Remark 5 (Terminal Equality Constraint). Following the same argu-
ments, it can be proved that the results of Theorem 1 still hold
when posing the terminal constraint as an equality constraint, by
considering (x̄s, ūs) ∈ Z, x(N) = x̄s and P = 0.

4. Local optimal control

Assume that the standard MPC control law to regulate the
system to the target yt , κ rN(x, yt) is derived from the solution of
PON (x, yt) subject to ȳs = yt . The resulting optimization problem,
denoted as P rN(x, yt), is feasible for any x in a polyhedral region
denoted as Xr

N(yt). Under certain assumptions (Mayne et al.,
2000), for any feasible initial state x ∈ Xr

N(yt), the control law
κ rN(x, yt) steers the system to the target fulfilling the constraints.
However, this control law is suboptimal since the cost function
of the MPC is only minimized for a finite prediction horizon, and
hence the MPC does not ensure the best closed-loop performance.
Fortunately, as stated in the following lemma, if the terminal cost
function is the optimal cost of the unconstrained LQR, then the
resulting finite horizon MPC is equal to the constrained LQR in a
neighborhood of the terminal region (Bemporad, Morari, Dua, &
Pistikopoulos, 2002; Hu & Linnemann, 2002).

Lemma 6. Consider that Assumptions 1 and 2 hold. Consider that
the terminal control gain K is the one of the unconstrained linear
quadratic regulator. Let θt be the parameter such that yt = Nθθt .
Define the set ΥN(yt) ⊂ Rn as ΥN(yt) = {x̄ ∈ Rn : φ(N; x̄,
κ∞(·, yt), θt) ∈ Ωw

t,K }. Then for all x ∈ ΥN(yt), V
r,∗
N (x, yt) = V ∗∞

(x, yt) and κ rN(x, yt) = κ∞(x, yt).

The proposed MPC for tracking might not ensure this local
optimality property under the assumptions of Lemma 6 due to
the artificial steady state and input and the functional cost to
minimize (Alvarado, 2007). However, as is demonstrated in the
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following property, under some conditions on the offset cost
function VO(·), this property holds.

Assumption 3. Let the offset cost function VO(·) fulfill Assump-
tion 2.2 and be such that

α1‖y‖ ≤ VO(y) ≤ α2‖y‖, ∀y ∈ Ys

where α1 and α2 are positive real constants.

Property 1 (Local Optimality). Consider that Assumptions 1–3 hold.
Then, for all x ∈ Xr

N(yt) there exists an α
∗ > 0 such that, for all

α1 ≥ α
∗:

• The proposed MPC for tracking is equal to the MPC for regulation;
that is, κON (x, yt) = κ

r
N(x, yt) and V

O∗
N (x, yt) = V

r∗
N (x, yt) for all

x ∈ Xr
N(yt).

• If the terminal control gain K is the one of the unconstrained
linear quadratic regulator, then the MPC for tracking control law
κON (x, yt) is equal to the optimal control law κ∞(x, yt) for all x ∈
Υ (yt).

Proof. In virtue of the well-known result on the exact penalty
functions (Luenberger, 1984), the constant α∗ can be chosen as the
Lagrangemultiplier of the equality constraint ‖ȳs−yt‖1 = 0 of the
optimization problem P rN(x, yt). Since the optimization problem
depends on the parameters (x, yt), the value of this Lagrange
multiplier also depends on (x, yt).
Define the optimization problem PmN,α(x, yt) as a particular

case of PON (x, yt) with VO(ȳs − yt) , α‖ȳs − yt‖1. This opti-
mization problem PmN,α(x, yt) results from the optimization prob-
lem P rN(x, yt) with the last constraint posed as an exact penalty
function. Therefore, there exists a finite constant α∗ > 0 such that
for all α ≥ α∗, Vm∗N,α(x, yt) = V

r∗
N (x, yt) for all x ∈ Xr

N(yt) (Boyd &
Vandenberghe, 2006; Luenberger, 1984).
Consider that VO(y) ≤ α2‖y‖. Then

Vm∗N,α1(x, yt) ≤ V
O∗
N (x, yt) ≤ V

m∗
N,α2(x, yt).

Since α2 ≥ α1 ≥ α∗, we have that for all x ∈ Xr
N(yt)

V r∗N (x, yt) ≤ V
O∗
N (x, yt) ≤ V

r∗
N (x, yt)

and hence VO∗N (x, yt) = V
r∗
N (x, yt).

The second claim is derived from Lemma 6, observing that
ΥN(yt) ⊆ Xr

N(yt). �

In order to ensure the local optimality property, the constant
α∗ should be chosen as themaximum of the Lagrangemultiplier in
the set of the parameters (x, yt) ∈ XN × Zs. In Rao and Rawlings
(1999), the authors state that, in theory, a conservative state-
dependent bound for the Lagrange multipliers may be obtained by
the use of the Lipschitz continuity of the quadratic programming.
In Kerrigan and Maciejowski (2000) the authors propose a way
to solve this problem, based on the multi-parametric quadratic
programming proposed in Bemporad et al. (2002).
The authors are currently studying the problem of calculating

α∗ and characterizing the region in which the property of local
optimality holds. In Ferramosca, Limon, Alvarado, Alamo, and
Camacho (2008) it is proposed a method for calculating a value of
α∗ by means of a single LP, for which the local optimality region is
the invariant set for tracking.
5. Conclusions

In this paper, the role of the offset cost function has been
studied. In particular a convex, positive definite and subdifferential
function is considered.
Under some assumptions, it is proved that the proposed

controller steers the system to a point which minimizes the offset
cost function. This point is the target if it is admissible. If not,
the controller converges to an admissible steady-state optimum
according to the offset cost function. Besides, the closed-loop
evolution is also optimal in the sense that provides the best
possible performance index.
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