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Abstract

Min–max model predictive controllers (MMMPC) suffer from a great computational burden that is often circumvented by using approximate
solutions or upper bounds of the worst possible case of a performance index. This paper proposes a computationally efficient MMMPC control
strategy in which a close approximation of the solution of the min–max problem is computed using a quadratic programming problem. The
overall computational burden is much lower than that of the min–max problem and the resulting control is shown to have a guaranteed stability.
A simulation example is given in the paper.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Min–max model predictive controllers (MMMPC) have been
limited to a narrow field of applications due to their great com-
putational burden. The computation of the control signal to be
applied implies the minimization of the worst case of a perfor-
mance index. Solving this problem can be very time consuming
because it is an NP-hard problem (Lee & Yu, 1997; Scokaert
& Mayne, 1998; Veres & Norton, 1993).

A common solution to the computational burden issue is to
use an upper bound of the worst case cost instead of comput-
ing it explicitly. This upper bound can be efficiently computed
by using linear matrix inequalities (LMI) techniques such as
in Kothare, Balakrishnan, and Morari (1996), Lu and Arkun
(2000) and Wan and Kothare (2003). The LMI problems have a
computational burden that cannot be neglected in certain appli-
cations. In Ramirez, Alamo, Camacho, and de la Peña (2006)
a different approach based on a computationally cheap upper
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bound of the worst case cost is presented. The computational
burden is much lower than that of the exact MMMPC but it is
still much higher than that of a conventional constrained MPC.
Moreover, stability results were not provided.

This paper proposes a different strategy in which the
min–max problem is replaced by a quadratic programming
(QP) problem that provides a close approximation to the so-
lution of the original min–max problem. The computational
burden is much lower than that of the min–max problem and
also lower than that of Ramirez et al. (2006). Moreover, it is
comparable to that of a standard constrained MPC based on a
quadratic cost. Thus, it can be easily implemented in almost
any platform capable to run a constrained MPC. Also, stability
of the proposed approach is guaranteed.

The paper is organized as follows: Section 2 presents the
MMMPC strategy. Section 3 presents the proposed implemen-
tation strategy. Robust stability of the proposed controller is
shown in Section 4. The strategy is illustrated by means of a
simulation example in Section 5. Finally, Section 6 presents
some conclusions.

2. Min–Max MPC with bounded additive uncertainties

Consider the following state-space model with bounded
additive uncertainties (Camacho & Bordóns, 2004):

x(t + 1) = Ax(t) + Bu(t) + D�(t + 1) (1)
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with x(t) ∈ Rdim x the state vector, u(t) ∈ Rdim u the input
vector and �(t) ∈ {� ∈ Rdim � : ‖�‖∞ ��} the uncertainty,
that is supposed to be bounded. The system is subject to p
state and input time invariant constraints Fuu(t) + Fxx(t)�g

where Fu ∈ Rp×dim u and Fx ∈ Rp×dim x . It is assumed a
semi-feedback approach (Rossiter, Kouvaritakis, & Rice, 1998)
which reduces the conservativeness of the open-loop MMMPC
controllers without increasing the computational burden. In this
approach the control input is given by

u(t) = −Kx(t) + v(t), (2)

where the feedback matrix K is chosen to achieve some desired
property such as nominal stability or LQR optimality without
constraints. The MMMPC controller will compute the optimal
sequence of correction control inputs v(t). The state equation
of system (1) can be rewritten as

x(t + 1) = ACLx(t) + Bv(t) + D�(t + 1),

ACL = (A − BK). (3)

The cost function is a quadratic performance index:

V (x, v, �) =
N−1∑
j=0

x(t + j |t)TQx(t + j |t)

+
N−1∑
j=0

u(t + j |t)TRu(t + j |t)

+ x(t + N |t)TPx(t + N |t), (4)

where x(t |t) = x, x(t + j |t) is the prediction of the state for
t +j made at t and u(t +j |t)=−Kx(t +j |t)+v(t +j |t). The
sequence of future values of �(t) over a prediction horizon N
is denoted by � = [�(t + 1)T, . . . , �(t + N)T]T, and � = {� ∈
RN ·dim � : ‖�‖∞ ��} is the set of possible uncertainty trajecto-
ries. On the other hand, v = [v(t |t)T, . . . , v(t + N − 1|t)T]T is
the control correction sequence. Matrices Q, P ∈ Rdim x×dim x

and R ∈ Rdim u×dim u are symmetric positive definite matrices
used as weighting parameters.

MMMPC minimizes the cost function for the worst possible
case of the predicted future evolution of the process state or
output signal. This is accomplished through the solution of a
min–max problem:

v∗(x) = arg min
v

max
�∈�

V (x, v, �)

s.t. Fuu(t + j |t) + Fxx(t + j |t)�g,

j = 0, . . . , N, ∀� ∈ �,

x(t + N |t) ∈ �, ∀� ∈ �. (5)

A terminal region constraint x(t + N |t) ∈ �, where � is a
polyhedron, is included to assure stability of the control law
(Mayne, Rawlings, Rao, & Scokaert, 2000).1

1 In this paper we have used standard assumptions in order to prove
stability. There are other frameworks to ensure stability such as in El-Farra,
Mhaskar, and Christofides (2004).

The predictions x(t + j |t) and u(t + j |t) depend linearly
on x, v and �. This means that it is possible to find a vector
d ∈ Rp and matrices Gx , Gv and G�, such that all the robust
linear constraints of problem (5) can be rewritten as

Gi
xx + Gi

vv + Gi
���di, i = 1, . . . , p, ∀� ∈ �,

where Gi
x , Gi

v , Gi
� denote the ith rows of Gx , Gv and G�,

respectively, and di is the ith component of d ∈ Rp. Denote
now ‖Gi

�‖1 the sum of the absolute values of row Gi
�. Taking

into account that max�∈� Gi
�� = max‖�‖∞ � � Gi

�� = �‖Gi
�‖1,

the robust fulfillment of the constraints is satisfied if and only
if Gi

xx +Gi
vv + �‖Gi

�‖1 �di, i =1, . . . , p. Therefore, to guar-
antee robust constraint satisfaction, the following set of linear
constraints must be satisfied:

Gxx + Gvv�d�,

where the ith component of d� is equal to di − �‖Gi
�‖1. Note

that this is a necessary and sufficient condition.
Taking into account (3), (2) and (4), the cost function can be

evaluated as a quadratic function:

V (x, v, �) = vTMvvv + �TM��� + 2�TM�vv + 2xTMT
vf v

+ 2xTMT
�f

� + xTMff x, (6)

where the matrices can be obtained from the system and the
control parameters (Camacho & Bordóns, 2004).

The terminal region � and matrix P are assumed to satisfy
the following conditions:

• C1: If x ∈ � then ACLx + D� ∈ �, for every � ∈ {� ∈
Rdim � : ‖�‖∞ ��}.

• C2: If x ∈ � then u(x) = −Kx ∈ U , where U�{u : Fuu +
Fxx�g}.

• C3: P − AT
CLPACL > Q + KTRK .

The stability of ACL guarantees the existence of a positive
definite matrix P satisfying C3.

The maximum cost for a given x and v is attained at a vertex
of � because of the convexity of V (x, v, �). The maximum
cost can be denoted as

V ∗(x, v) = max
�∈vert(�)

V (x, v, �) = V (x, v, 0)

+ max
�∈vert(�)

�TH� + 2�Tq(x, v), (7)

where vert(�) is the set of vertices of �, H = M��, q(x, v) =
M�vv+M�f x and V (x, v, 0)=vTMvvv+2xTMT

vf v+xTMff x

is the part of the cost that does not depend on the uncertainty.
With this definition, problem (5) can be rewritten as

v∗(x) = arg min
v

V ∗(x, v)

s.t. Gxx + Gvv�d�, (8)
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and the system is controlled by KMPC(x(t))=−Kx(t)+v∗(t |t),
where v∗(x(t)) = [v∗(t |t)T, . . . , v∗(t + N − 1|t)T]T.

In order to evaluate V ∗(x, v) it is necessary to evaluate the
function for all the 2N∗dim � vertices of �. Note that this is a
well known NP-hard problem.

3. A QP approach to min–max MPC

In this section it is shown how the min–max problem (8)
can be replaced by a tractable QP problem which provides a
close approximation of the solution of the original problem.
The strategy can be summarized in the following steps:

(1) Obtain an initial guess of the solution of (8), denoted ṽ∗. As
seen later, this can be achieved by solving a QP problem.

(2) Using ṽ∗, obtain a quadratic function of v that bounds the
worst case cost.

(3) Compute the control law. This involves the solution of a
QP problem.

3.1. Computing ṽ∗

Given H defined as in Eq. (7), denote Ti = ∑N ·dim �
j=1 |Hij |,

where Hij denotes the (i, j)th component of matrix H. Then,
define the diagonal matrix T as

T = diag(T1, . . . , Tn). (9)

Because of how matrix T is defined, T − H is a symmetric
diagonally dominant real matrix with non-negative diagonal
entries, thus T −H �0 which implies that T �H . Let Ṽ (x, v, �)

be:

Ṽ (x, v, �) = V (x, v, 0) + �TT � + 2qT(x, v)�. (10)

From the inequality T �H it is inferred that Ṽ (x, v, �)�
V (x, v, �). The maximum of Ṽ (x, v, �) can be computed as

Ṽ ∗(x, v) = max
�∈�

Ṽ (x, v, �)

= V (x, v, 0) + trace(T )�2 + 2�‖q(x, v)‖1

= V (x, v, 0) + ‖H‖s�
2 + 2�‖q(x, v)‖1, (11)

where ‖H‖s denotes the sum of the absolute values of the
elements of H. Then an initial guess of the solution of (8) can
be obtained as

ṽ∗(x) = arg min
ṽ

Ṽ ∗(x, ṽ)

s.t. Gxx + Gv ṽ�d�. (12)

It is evident that this problem can be casted as a QP problem.

3.2. Obtaining an upper bound of the worst case cost

The upper bound of the maximum will be obtained in two
steps. In the first one we compute a set of parameters from ṽ∗
that allows us later, in the second step, to compute the bound
as a quadratic function of v.

3.2.1. Computing the parameter vector �(v)

Note that

V ∗(x, v) = max
�∈vert(�)

[
�

1

]T [
H q(x, v)

qT(x, v) V (x, v, 0)

] [
�

1

]
= max‖z‖∞ �1

zTM(v)z (13)

with z=
[

�T

� 1
]T

and M(v)=
[

�2H �q(x, v)

�qT(x, v) V (x, v, 0)

]
∈Rn×n,

where n = N · dim � + 1.
The following procedure, which is based on that presented in

Ramirez et al. (2006), provides an upper bound of the worst case
cost for a given v. It computes �(v) = [�1(v), . . . , �n−1(v)]T

and a diagonal matrix �(v)�M(v) such that its trace is an
upper bound of the worst case cost for v (see Property 1).

Procedure 1. Computation of �(v) = [�1(v), . . . , �n−1(v)]T

and �(v).

(1) Let S(0) = M(v) ∈ Rn×n.
(2) For k = 1 to n − 1
(3) Let M

(k−1)
sub = [S(k−1)

ij ] for i, j = k . . . n.

(4) Obtain the partition M
(k−1)
sub =

[
a bT

b Mr

]
, where a ∈ R,

b ∈ Rn−k and Mr ∈ R(n−k)×(n−k) .
(5) Make �k(v) = √‖b‖1.
(6) If �k(v) = 0 then S(k) = S(k−1), else S(k) = S(k−1) +

[0T
k−1,1 �k(v) −bT

�k(v)
]T[0T

k−1,1 �k(v) −bT

�k(v)
].

(7) end for
(8) Make �(v) = S(n−1).

Note that in the previous procedure, 0m,n denotes a (m × n)

matrix of zeros. The following property shows that the trace of
�(v) constitutes an improved upper bound of V ∗(x, v). That
is, V ∗(x, v)� trace (�(v))� Ṽ ∗(x, v).

Property 1. Matrices S(0), S(1), . . . , S(n−1), obtained by
means of procedure 1 satisfy:

(i) S(k) is a partially diagonalized matrix. That is, there
is a diagonal matrix T (k) ∈ Rk×k such that S(k) =
diag(T (k), M

(k)
sub).

(ii) S(n−1) = �(v) is a diagonal matrix.
(iii) V ∗(x, v)� trace (�(v)).
(iv) ‖S(k)‖s �‖S(k−1)‖s .
(v) trace (�(v))� Ṽ ∗(x, v), ∀v.

Proof. See Appendix A.

Procedure 1 is the foundation to obtain a QP problem that
provides a solution with a worst case cost that is close to the
optimal worst case cost but with the advantage of the lower
computational burden of a QP problem (see Section 3.2.2).

3.2.2. Obtaining the bound as a quadratic function on v
The diagonalization process shown in 3.2.1 can be used to

obtain a matrix denoted by �̂(v), which allows one to obtain
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a bound of the maximum that can be computed as a quadratic
function of v. This is achieved by means of the following
procedure:

Procedure 2. Obtaining the matrix �̂(v).

(1) Obtain ṽ∗ from the QP problem defined in Eq. (12).
(2) Compute �(ṽ∗) by Procedure 1.
(3) Let Ŝ(0)(v) = M(v) ∈ Rn×n.
(4) For k = 1 to n − 1.
(5) Let M̂sub(v) = [Ŝ(k−1)

ij (v)] for i, j = k · · · n.

(6) Obtain the partition M̂sub(v) =
[
a(v) bT(v)

b(v) Mr(v)

]
, where

a(v) ∈ R.
(7) If �k(ṽ∗) = 0 then Ŝ(k)(v) = Ŝ(k−1)(v), else Ŝ(k)(v) =

Ŝ(k−1)(v)+
[
0T
k−1,1�k(ṽ∗) −b(v)T

�k(ṽ∗)

]T [
0T
k−1,1�k(ṽ∗)−b(v)T

�k(ṽ∗)

]
.

(8) end for
(9) Make �̂(v) = Ŝ(n−1)(v).

Theorem 1. Denote V̂ ∗(x, v) = ‖�̂(v)‖s . Then

(1) �̂(ṽ∗) = �(ṽ∗).
(2) V̂ ∗(x, v) can be obtained by means of the solution of a QP

problem.
(3) V ∗(x, v)� V̂ ∗(x, v).

Proof. See Appendix A.

3.3. Computing the control law

The value of the control signal is obtained by solving the
following QP optimization problem:

v̂∗(x) = arg min
v̂

V̂ ∗(x, v̂)

s.t. Gxx + Gv v̂�d�, (14)

and the system is controlled by K̂MPC(x(t))=−Kx(t)+v̂∗(t |t),
where v̂∗(t |t) is the first element of v̂∗(x).

Remark 1. Note that, in order to reduce the difference between
the solution of the exact min–max problem and v̂∗(x) the whole
procedure can be applied twice or more times using at each
subsequent step the solution obtained in the previous step as
the initial guess used in Procedure 1.

Table 1
Average computational burden (measured in flops) required to compute the
control law for different values of the controller horizons and dimension of x

dim, x Prediction and control horizon

6 10 14 18

4 5.97 × 105 2.76 × 106 4.34 × 106 6.64 × 106

12 3.94 × 106 1.65 × 107 4.37 × 107 8.77 × 107

20 1.57 × 107 6.9 × 107 1.69 × 108 3.67 × 108

For each entry, 10 simulations (each of 100 samples) with random systems
have been computed.

The computational burden of the proposed strategy is clearly
much lower than that of the exact MMMPC. This computational
burden is mostly due to the two QP problems that must be
solved. Each of these has the same complexity of a standard
constrained MPC using a quadratic cost function. As illustrated
in Table 1, the complexity is strongly related to the size of v
and x.

4. Stability of the proposed control law

In this section the stability properties of the control
K̂MPC(x(t)) are shown. First some properties are presented
and then stability is proved. Recall that v∗, ṽ∗ and v̂∗ are
the solutions of (8), (12) and (14), respectively. Denote also
J (x) = V ∗(x, v∗), J̃ (x) = Ṽ ∗(x, ṽ∗) and Ĵ (x) = V̂ ∗(x, v̂∗).
Note that problems (8), (12) and (14) have the same feasibility
region as the constraints are the same.

Property 2.

Ĵ (x)� J̃ (x).

Proof. As v̂∗ is the minimizer of V̂ ∗(x, v) it follows that

Ĵ (x) = V̂ ∗(x, v̂∗)� V̂ ∗(x, ṽ∗). (15)

Thus, in order to prove that Ĵ (x)� J̃ (x) it suffices to show that
V̂ ∗(x, ṽ∗)� Ṽ ∗(x, ṽ∗)= J̃ (x). As it was shown in the proof of
Theorem 1, V̂ ∗(x, ṽ∗) = trace (�̂(ṽ∗)) = trace (�(ṽ∗)). More-
over, from Property 1, trace (�(ṽ∗))� Ṽ ∗(x, ṽ∗). Thus,

V̂ ∗(x, ṽ∗) = trace (�̂(ṽ∗)) = trace (�(ṽ∗))� Ṽ ∗(x, ṽ∗) = J̃ (x).

Thus V̂ ∗(x, ṽ∗)� J̃ (x). This completes the proof. �

It is clear that the optimal solution v̂∗ of problem (14) is a
suboptimal feasible solution of the original min–max problem
(8). As it is claimed in the following property, the difference
between the optimal value of the original objective function and
the value obtained with v̂∗ is bounded by ‖H‖s�2. Note that this
result gives an implicit measure of how well v̂∗ approximates
the solution of the original min–max problem (8).

Property 3. It holds that

V ∗(x, v̂∗) − ��2 �J (x),

where � = ‖H‖s .

Proof. See Appendix A.

The following property, which is proved in Alamo, Muñoz
de la Peña, Limón Marruedo, and Camacho (2005) will be
used in the proof of the stability of the proposed approach (see
Theorem 2).

Property 4. Assume that C1–C3 are satisfied. Let v =
[v(t |t)T, . . . , v(t + N − 1|t)T]T and vs a shifted version of
v computed as vs = [v(t + 1|t)T, . . . , v(t + N − 1|t)T, 0]T.
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If v is feasible for problem (8) at x(t) then vs is also feasible
at x(t + 1) and ∃ � > 0 such that:

V ∗(x(t + 1), vs)�V ∗(x(t), v) − x(t)TQx(t) + ��2.

The following theorem states the stabilizing properties of the
proposed control law:

Theorem 2. Under assumptions C1–C3, the control law
u(x(t)) = −Kx(t) + v̂∗(t |t) stabilizes system (1).

Proof. Let v̂∗
s be the shifted version (as in Property 4) of v̂∗.

Due to the non-optimality of v̂∗
s for problem (8), it holds that

J (x(t + 1))�V ∗(x(t + 1), v̂∗
s ). (16)

Note that v̂∗
s is feasible for both (14) and (8), thus by Property 4:

V ∗(x(t + 1), v̂∗
s )�V ∗(x(t), v̂∗) − x(t)TQx(t) + ��2. (17)

Furthermore, by Property (3) V ∗(x(t), v̂∗)�J (x(t)) + ��2.
Substituting this inequality in (17) and using (16)

J (x(t + 1))�J (x(t)) − x(t)TQx(t) + (� + �)�2

which can be rewritten as

J (x(t + 1)) − J (x(t))� − x(t)TQx(t) + (� + �)�2. (18)

Note that (�+�)�2 > 0 and that −x(t)TQx(t)�0, thus it is en-
sured that the optimal worst case cost will decrease, i.e. J (x(t+
1)) − J (x(t)) < 0, as long as x(t)TQx(t) > (� + �)�2. Define

	� = {x ∈ Rdim x : (8) is feasible and xTQx�(� + �)�2}.
It is clear that the system state is steered into set 	� (which
contains the origin) from any arbitrary x(t). But, whenever it
enters into 	� it may evolve out of it or remain inside, because
it is not ensured that the optimal worst case cost decreases.

Taking into account that −x(t)TQx(t)�0 it follows that

J (x(t + 1)) − J (x(t))� − x(t)TQx(t) + (� + �)�2

�(� + �)�2

which yields

J (x(t + 1))�J (x(t)) + (� + �)�2. (19)

Suppose that x(t)∈	�, then J (x(t))+(�+�)�2 �maxx∈	�J (x)

+(�+�)�2, thus, taking into account (19) it follows that ∀x(t) ∈
	� it holds that J (x(t +1))�
 where 
=maxx∈	�J (x)+ (�+
�)�2. Thus, whenever the system state enters into 	� it evolves
into the set �
={x ∈ Rdim x : J (x)�
}. Once the state is in 	�
it can evolve outside of 	�, but it will remain inside �
. From
�
 it will be steered again into 	� and so on. The system state
is always confined into �
 from the moment it enters for the
first time in 	�. Thus, the state system is ultimately bounded.
This means that the system is stabilized by the control law
K̂MPC(x(t)) = −Kx(t) + v̂∗(t |t). �

Note that the region of ultimate boundedness �
 is not nec-
essarily contained in � (although this is the most common sit-
uation as � is the maximal robust positively invariant set for
the system). If �
��, the closed loop trajectories of the state
under the proposed control law can escape from �. Robust sta-
bility, however, is guaranteed in spite of this.

5. Example

To illustrate the results presented in this paper, consider the
two-tank network example given in Ogunnaike and Ray (1994,
Chapter 20). Using the parameters given in Alamo, Ramirez,
and Camacho (2005) the following continuous time two inputs,
two outputs, state-space model can be obtained:

ẋ =
[− 0.5

3
0.2
3

0.5
2 − 0.5

2

]
x +

[ 1
3 0
0 1

2

]
u, y =

[
1 0
0 1

]
x. (20)

Constraints are imposed on both states and control actions such
that ‖x(k)‖∞ �1.5 and ‖u(k)‖∞ �0.4. A discrete time model
has been obtained from (20) sampling at 0.2 min using a zero-
order holder. Fig. 1 shows the results of the proposed controller
applied to the two-tank model. The set-point for the liquid
level of each tank was 1 and 0.7 m, respectively. The prediction
horizon was N = 7. Identity matrices were chosen as Q and R.
An uncertainty of ±0.025 m is considered to affect both liquid
levels. In the simulation a random noise of ±0.01 m has been
added to both levels and an unexpected loss of liquid in tank 1
is introduced at sampling time t = 60.

The absolute deviation of the solution of (14) from that of
(8) (computed as v̂∗(x)− v∗(x)) is also shown in Fig. 1. It can
be seen that it is very small throughout the simulation.

Finally, the lower computational burden of the proposed strat-
egy is illustrated in Table 2. The computational burden is much
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Fig. 1. Liquid levels (system state), inlet flows (control signal values) and
absolute deviations (from the exact MMMPC) of the solution obtained by
the proposed strategy (tank 1 solid plot, tank 2 dotted plot).
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Table 2
Mean flops for the original min–max MPC and the proposed strategy for
different values of the prediction and control horizon (N ) in the simulation
example of Section 5

N Avg. flops (min–max) Avg. flops (proposed)

5 3.73 × 107 7.6 × 104

6 3.43 × 108 1.28 × 105

7 1.84 × 109 1.42 × 105

lower in the proposed strategy and the gap broadens exponen-
tially as prediction horizon grows.

6. Conclusions

An MMMPC based on an tractable QP problem has been
presented in this paper. The solution of this QP problem is
close to that of the min–max problem whereas it has a much
lower computational burden. As it is based on a QP problem, it
can be implemented in almost any industrial hardware capable
to run a constrained MPC controller. Thus it extends broadly
the fields of application of MMMPC controllers. The proposed
controller is shown to be stable, which together with the ex-
plicit consideration of the uncertainty in the computation of the
control law guarantees performance.
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Appendix A. Technical or auxiliary proofs

A.1. Proof of Property 1

(i) S(k) is a partially diagonalized matrix: let us suppose that
S(k−1) is a partially diagonalized matrix. That is,

S(k−1) = diag(T (k−1), M
(k−1)
sub ), (A.1)

where T (k−1) ∈ R(k−1)×(k−1) is a diagonal matrix. Two
cases must be taken into account: if �k(v) is equal to zero
then b = 0n−k,1 and trivially, S(k) = S(k−1) is a partially
diagonalized matrix. If �k(v) 	= 0 then

S(k) = S(k−1) +
⎡
⎢⎣

0k−1,1
�k(v)
−b

�k(v)

⎤
⎥⎦

⎡
⎢⎣

0k−1,1
�k(v)
−b

�k(v)

⎤
⎥⎦

T

=
[
T (k) 0

0 M
(k)
sub

]
, (A.2)

where T (k) = diag(T (k−1), a + �2
k(v)) and M

(k)
sub = Mr +

bbT/�2
k(v).

(ii) �(v) is a diagonal matrix: Note that �(v) = S(n−1). From
the previous claim, S(n−1) = diag(T (n−1), M

(n−1)
sub ) ∈

Rn×n, where T (n−1) ∈ R(n−1)×(n−1). Thus, M
(n−1)
sub ∈ R.

It follows that �(v) is a diagonal matrix.
(iii) V ∗(x, v)� trace (�(v)): By construction, M(v)=S(0) �

S(1) � · · · �S(n−1) = �(v). Thus, �(v) is a diagonal
matrix that satisfies �(v)�M(v). From this and (13)

V ∗(x, v) = max‖z‖∞ �1
zTM(v)z� max‖z‖∞ �1

zT�(v)z

= trace (�(v)).

(iv) ‖S(k)‖s �‖S(k−1)‖s : If �k(v) = √‖b‖1 = 0 then S(k) =
S(k−1) and the claim is satisfied. Suppose now that �k(v) 	=
0 then, using Eqs. (A.1) and (A.2)

‖S(k)‖s = ‖T (k−1)‖s + a + �2
k(v) +

∥∥∥∥∥Mr + bbT

�2
k(v)

∥∥∥∥∥
s

= ‖T (k−1)‖s + a + ‖b‖1 +
∥∥∥∥Mr + bbT

‖b‖1

∥∥∥∥
s

�‖T (k−1)‖s + a + ‖b‖1 + ‖Mr‖s +
∥∥∥∥ bbT

‖b‖1

∥∥∥∥
s

�‖T (k−1)‖s + a + ‖b‖1 + ‖Mr‖s + ‖b‖1

= ‖S(k−1)‖s .

Note that in order to obtain the inequality ‖S(k)‖s �
‖S(k−1)‖s , the equality ‖bbT‖s = ‖b‖2

1 has been used.
Also, note that in the previous equation a is non-negative
as it is one of the entries of the diagonal of a positive
semidefinite matrix.

(v) trace (�(v))� Ṽ ∗(x, v), ∀v: Note that V (x, v, 0)�0, thus,
it results that (see Eq. (11)):

Ṽ ∗(x, v) = ‖M(v)‖s =
∥∥∥∥
[

�2H �q(x, v)

�qT(x, v) V (x, v, 0)

]∥∥∥∥
s

= ‖S(0)‖s .

Moreover, (�(v)) = S(n−1) is a diagonal matrix posi-
tive semidefinite, thus trace (�(v)) = ‖S(n−1)‖s . On the
other hand, as it has been shown, ‖S(k)‖s �‖S(k−1)‖s .
This implies that ‖S(n−1)‖s �‖S(0)‖s , that is, trace
(�(v))� Ṽ ∗(x, v), ∀v. �

A.2. Proof of Theorem 1

(i) �̂(ṽ∗) = �(ṽ∗). Note that the computation of �̂(ṽ∗) relies
on �(ṽ∗). It is clear from Procedures 1 and 2 that if v = ṽ∗
then Ŝ(k)(ṽ∗) = S(k)(ṽ∗). This implies that Ŝ(n−1)(ṽ∗) =
S(n−1)(ṽ∗), thus �̂(ṽ∗) = �(ṽ∗).

(ii) Consider matrix Ŝ(0)(v) = M(v) defined in (13) and par-
titioned as

Ŝ(0)(v) =
[ �2H11 �2HT

1r �q1(x, v)

�2H1r �2Hrr �qr(x, v)

�q1(x, v) �qT
r (x, v) V (x, v, 0)

]
,



T. Alamo et al. / Automatica 43 (2007) 693–700 699

where H11, q1(x, v) and V (x, v, 0) ∈ R, H1r , qr (x, v) ∈
R(N ·dim �)−1 and Hrr ∈ R{(N ·dim �)−1}×{(N ·dim �)−1}. Note
that q1(x, v) and qr(x, v) have an affine dependence on v
whereas V (x, v, 0) is a quadratic function on v. Suppose
that �1(ṽ∗) 	= 0 (the case of �1(ṽ∗) = 0 is similar). Using
�1 = �1(ṽ∗), matrix Ŝ(0)(v) is partially diagonalized by
adding the term c1(v)cT

1 (v) where

c1(v) =
[
�1 − �2HT

1r

�1
− �q1(x, v)

�1

]T

which yields

Ŝ(1)(v) = diag(�2H11 + �2
1, Mr(x, v)),

where the sub-matrix

Mr(x, v) =

⎡
⎢⎢⎢⎣

�2Hrr + �4H1rH
T
1r

�2
1

�qr(x, v) + �3H1rq1(x, v)

�2
1

�qT
r (x, v) + �3HT

1rq1(x, v)

�2
1

V (x, v, 0) + �2q2
1 (x, v)

�2
1

⎤
⎥⎥⎥⎦

has the same structure as M(v). That is, the last element
is a quadratic function of v, the remaining elements of
the last row and column are affine functions of v and all
the other elements are constants. That is, as the structure
is preserved, a new iteration of Procedure 2 supposes a
further diagonalization in which only the last element has
a quadratic dependence on v. At the end of Procedure 2
the diagonal matrix Ŝ(n−1)(v) = �̂(v) is obtained with all
its elements constant (i.e., they do not depend on v) except
the last one which has the form

�̂nn(v) = V (x, v, 0) + �2q2
1 (x, v)

�2
1

+ · · · . (A.3)

Once �̂(v) has been obtained, the bound of the maxi-
mum can be computed as V̂ ∗(x, v) = ‖�̂(v)‖s which is a
quadratic function of v.

(iii) V ∗(x, v)� V̂ ∗(x, v). This follows from the fact that
by construction �̂(v) = M(v) + c1(v)cT

1 (v) + · · · +
cn−1(v)cT

n−1(v). Thus, M(v)��̂(v) and, together with the

fact that by construction �̂(v) is diagonal, this implies that

V ∗(x, v) = max‖z‖∞ �1
zTM(v)z� max‖z‖∞ �1

zT�̂(v)z

= ‖�̂(v)‖s .

As ‖�̂(v)‖s = V̂ ∗(x, v), then V ∗(x, v)� V̂ ∗(x, v). �

A.3. Proof of Property 3

Note that J (x)=V ∗(x, v∗). From Eqs. (7) and (10) it results
that

Ṽ (x, v, �) = V (x, v, �) + �T(T − H)�,

where T is a diagonal matrix defined as in (9). Taking into
account that T �H �0, ‖�‖∞ �� and that T is diagonal

Ṽ (x, v, �)�V (x, v, �) + �TT ��V (x, v, �) + trace(T )�2.

As trace(T ) = ‖H‖s it can be inferred that V ∗(x, v∗)�
Ṽ ∗(x, v∗) − ��2 with � = ‖H‖s . As ṽ∗ is the minimizer of
Ṽ ∗(x, ṽ), V ∗(x, v∗)� Ṽ ∗(x, ṽ∗) − ��2 which in turn can be
rewritten as J (x)� J̃ (x) − ��2. Recall that from Property 2
Ĵ (x)� J̃ (x); thus J (x)� Ĵ (x) − ��2 = V̂ ∗(x, v̂∗) − ��2. From
Theorem 1V̂ ∗(x, v)�V ∗(x, v) thus

J (x)�V ∗(x, v̂∗) − ��2.

This completes the proof. �
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