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Abstract

A robust MPC for constrained nonlinear systems with uncertainties is presented. Outer bounds of the reachable sets of the system are used to
predict the evolution of the system under uncertainty. A method that uses zonotopes to represent the approximated reachable sets is proposed.
The closed-loop system is ultimately bounded thanks to a contractive constraint that drives the system to a robust invariant set.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control is a control strategy that has
been widely adopted in industry (Qin & Badwell, 2003) and
academia (Camacho & Bordons, 1999). The reason for this
success is the ability to deal with constraints and multivariable
systems. A survey about model predictive control can be found
in Mayne, Rawlings, Rao, and Scokaert (2000) where sufficient
conditions to guarantee asymptotic stability are given.

The problem of robust nonlinear model predictive control is
addressed in this paper. When uncertainties are present, they
should be taken into account in the computation of the control
law in order to guarantee robust stability. Some authors have
formulated this problem as in Michalska and Mayne (1993)
where a dual-mode receding horizon controller is proposed and
robustness under decaying additive uncertainties is achieved by
a proper choice of the terminal region. In Magni, Nijmeijer,
and van der Shaft (2001) a robust MPC strategy based on an
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H∞ cost function is presented. In Limon, Bravo, Alamo, and
Camacho (2005) a robust nonlinear predictive controller based
on reachable sets is presented. Natural interval extension is used
to bound the uncertain evolution of the system.

A linear difference inclusion of the original nonlinear system
is used by some authors to implement a robust control (Angeli,
Casavola, & Mosca, 2002; Cannon, Deshmukh, & Kouvaritakis,
2002; Casavola, Famularo, & Franze, 2002; Kothare, Balakr-
ishnan, & Morari, 1996). In Langson, Chryssochoos, Rakovic,
and Mayne (2004) a tube predictive controller is proposed for
linear constrained systems with additive uncertainty.

In this paper, a new robust MPC for nonlinear systems
with parametric uncertainty is proposed. To improve the re-
sults obtained in Limon et al. (2005), the new approach relies
on a prediction method that uses zonotopes (Alamo, Bravo,
& Camacho, 2005; Kühn, 1998) to bound the reachable sets.

The paper is organized as follows: In Section 2, the class of
nonlinear uncertain systems under consideration is introduced.
In Section 3, an outer bound of the uncertain trajectory of
the system is presented. The proposed robust nonlinear MPC
controller is introduced in Section 4. The stability of the closed-
loop system is analyzed in Section 5. An illustrative example
is given in Section 6. The paper draws to a close with a section
of conclusions.
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2. Problem statement

Consider an uncertain nonlinear discrete-time system of the
form:

xk+1 = f (xk, uk, wk), (1)

where xk ∈ Rn is the state of the system and uk ∈ Rm is the
control vector at sample time k. The vector wk ∈ Rnw represents
the uncertainty. It is assumed that the uncertainty is bounded
in a compact set that contains the origin: wk ∈ W . The system
is subject to constraints on the state and on the control action:
xk ∈ X and uk ∈ U where X is a closed set and U a compact
set, both containing the origin.

In order to provide some amount of feedback to the predic-
tions (Rossiter, Kouvaritakis, & Rice, 1998), the control action
is given by a stabilizing control law plus a correction term:
uk = Kxk + vk . It will be assumed that uk = Kxk stabilizes the
system around the origin. With this notation, the dynamics of
the system can be rewritten as

xk+1 = f (xk, Kxk + vk, wk) = fK(xk, vk, wk). (2)

At sample time k, the objective of the robust predictive con-
troller is the computation of a sequence of correction con-
trol inputs v(k) = {v(k|k), v(k + 1|k), . . . , v(k + N − 1|k)} in
such a way that the uncertain evolution of system (2) satis-
fies the constraints of the problem and a given cost function is
minimized.

The next section presents the concept of reachable set and
bounding operator. A bounding operator is used to build a guar-
anteed prediction of the system trajectory.

3. Computation of outer bounds of the reachable sets

In what follows, some preliminary notations are introduced.
An interval X = [a, b] is the set {x : a�x�b}. The unitary
interval is B=[−1, 1]. A box is an interval vector. A unitary box,
denoted as Bm, is a box composed by m unitary intervals. Given
a box Q= ([a1, b1], . . . , [an, bn])�: mid (Q) denotes its center
and diam (Q)=(b1−a1, . . . , bn−an)

�. The Minkowski sum of
two sets X and Y is defined by X�Y ={x +y : x ∈ X, y ∈ Y }.
Given a set � and a scalar � > 0, �� represents the set {x : x ·
1/� ∈ �}. Given a vector p ∈ Rn and a matrix H ∈ Rn×m, the
set: p�HBm= {p+Hz : z ∈ Bm} is called a zonotope of order
m. Note that this is the Minkowski sum of the segments defined
by the columns of matrix H. Given a function g : Rn −→ Rm

and a set Y ⊂ Rn, g(Y ) denotes the set {g(y) : y ∈ Y }. With this
notation, it is possible to present a definition of reachable set of a
system.

Definition 1 (Reachable set). Consider a system given by (2),
consider also that the state at sample time k is xk and that a se-
quence of correction control inputs v(k) is given, then the reach-
able sets {X(k|k), X(k + 1|k), . . . , X(k + N |k)} are obtained
from the recursion: X(k + j |k)= fK(X(k + j − 1|k), v(k +
j − 1|k), W) where X(k|k) = xk .

Note that X(k + j |k) is the set of all states that can be
reached by the evolution of the uncertain system at sample
time k + j applying the sequence of control correction inputs
v(k). The exact computation of these sets is a difficult task.
In order to reduce the complexity of the computation of these
sets, approximated approaches can be used. The computation
of the approximated reachable sets are based on the concept of
bounding operator:

Definition 2. �(·, ·, ·) is a bounding operator of f (·, ·, ·) if
f (X, u, W) ⊆ �(X, u, W), for all (X, u, W).

A bounding operator, based on natural interval extension,
was used to calculate the approximated reachable sets in Limon
et al. (2005). Although it is an efficient solution, direct natural
interval extension can produce a large overestimation of the
exact reachable set.

An alternative way of obtaining approximated reachable sets
was presented in Kühn (1998). Kühn’s method is a procedure
to bound the orbits of discrete dynamic systems without un-
certainty by means of zonotopes. The method exhibits sub-
exponential overestimation (Kühn, 1998).

In this paper, a generalization of Kühn’s method for uncertain
nonlinear systems is presented. Based on this generalization,
a bounded operator with improved approximation properties is
obtained. The following theorem (see, Alamo et al., 2005, for
a proof), introduces the zonotope inclusion operator which is
required to present the proposed bounded operator.

Theorem 1 (Zonotope inclusion). Consider a family of zono-
topes represented by Z = p�MBm where p ∈ Rn is a real
vector and M ∈ In×m is an interval matrix. A zonotope inclu-
sion, denoted by �(Z), is defined by

�(Z) = p�[mid (M) G]
[

Bm

Bn

]
= p�JBm+n,

where G ∈ Rn×n is a diagonal matrix that satisfies:

Gii =
m∑

j=1

diam (Mij )

2
, i = 1, . . . , n.

Under these definitions it results that: Z ⊆ �(Z).

The following theorem is a generalization of Kühn’s result
(Kühn, 1998) as it considers uncertainty and non-autonomous
systems. An analogous result for autonomous systems can also
be found in (Alamo et al., 2005).

Theorem 2. Given a function f (x, u, w) where x ∈ Rn and
w ∈ Rnw , a zonotope X = p�HBm, and a zonotope W =
cw�CwBsw , consider the following:

• A zonotope q�SBd such that f (p, u, W) ⊆ q�SBd .
• An interval matrix M ⊇ ∇xf (X, u, W)H .
• A zonotope �(X, u, W) = q�SBd� � (MBm) = q�HqBl

with l = d + n + m
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Under the previous assumptions it results that f (X, u, W)

⊆ �(X, u, W).

Proof. Given w ∈ W , the application of the mean value exten-
sion yields: f (X, u, w) ⊆ f (p, u, w)�(∇xf (X, u, w))HBm.
Thus: f (X, u, W) ⊆ f (p, u, W)�(∇xf (X, u, W))HBm ⊆
q�SBd�MBm ⊆ q�SBd� � (MBm) = q�HqBl . �

In order to obtain zonotope q�SBd of Theorem 2
interval arithmetic (Moore, 1966; Kühn, 1998) can be
used. If f (x, u, w) is an affine function of w (that is,
f (x, u, w) = g(x, u) + G(x, u)w) then f (p, u, W) =
(g(p, u) + G(p, u)cw)�(G(p, u)Cw)Bsw . In this case,
choosing q = g(p, u) + G(p, u)cw, S = G(p, u)Cw and
d = sw, an exact bound is obtained. Interval matrix M
can also be computed by means of interval arithmetics.
Note that the proposed operator �(·, ·, ·) relies on the use
of the mean value extension (Krawczyk & Nickel, 1982),
which constitutes an interval approximation of second
order.

Remark 1. If a linear system with bounded uncertainty is con-
sidered, zonotopes provide an exact description of the reachable
sets. Consider the linear system f (x, u, w) = Ax + Bu + Ew,
as well as the zonotopes X = p�HBm and W = cw�CwBsw

then f (X, u, W) = (Ap + Bu + Ecw)�[AH ECw]Bm+sw .

4. Robust MPC

This section presents a dual predictive controller (Michalska
& Mayne, 1993). These controllers split the space into two
parts. One of them is a control invariant set around the ori-
gin that constitutes the terminal region �. In the terminal
region, a local control law is used u = Kx. In the rest of
the state space, a predictive controller is applied. In what
follows, the details of the proposed robust predictive con-
troller are given. In order to prove that the closed-loop sys-
tem is ultimately bounded, the following assumption will be
required:

Assumption 1. Consider system (1). There is a convex region
� ⊆ X, containing the origin, with an associated local control
law u = Kx ∈ U such that f (x, Kx, w) = fK(x, 0, w) ∈ � for
all x ∈ �, w ∈ W .

Assumption 1 is not too restrictive as it only requires that
the local controller stabilizes the system in a neighborhood of
the steady state. A linear difference inclusion (Boyd, Ghaoui,
Feron, & Balakrishnan, 1994) can be used to approximate the
nonlinear system and to compute a robust linear controller and
set � (Blanchini, 1999).

In order to check if the evolution of the uncertain system
verifies the constraints of the optimization problem, approxi-
mated reachable sets are considered. These are based on the
existence of a bounding operator �(·, ·, ·). This bounding op-
erator can be obtained, for example, by means of Theorem 2.
Other bounding operators could be used.

Assumption 2. Consider System (2). The operator �(·, ·, ·)
is a bounding operator of function fK(·, ·, ·). That is,
fK(X, v, W) = f (X, Kx + v, W) ⊆ �(X, v, W), for all
(X, v, W).

The following definition introduces the concept of approxi-
mated reachable sets:

Definition 3. Given an initial condition xk , a sequence of cor-
rection control inputs v(k)={v(k|k), v(k+1|k), . . . , v(k+N −
1|k)} and the bounding operator �(·, ·, ·), a sequence of approx-
imated reachable sets {X̂(k|k), X̂(k +1|k), . . . , X̂(k +N |k)} is
obtained from the following recursion:

X̂(k + j |k) =

⎧⎪⎨
⎪⎩

�(X̂(k+j−1|k), v(k+j−1|k), W)

if X̂(k + j − 1|k)��,

0 otherwise,

where j = 1, . . . , N and X̂(k|k) = xk .

Remark 2. The computational burden required to compute the
approximated reachable sets depends on the chosen bounding
operator: bounding operators based on a global Lipschitz con-
stant or on natural interval arithmetics require the same order
of operations as the evaluation of the function f (x, u, w). The
computational burden corresponding to the bounding operator
proposed in Theorem 2 is bounded by the number of floating
point evaluations required to evaluate (∇xf (x, u, w))H mul-
tiplied by a small constant. Although this bounding operator
has an increased computational burden when compared with
mere natural interval evaluation, it has much better convergence
properties.

A cost function JE(·) is introduced in order to assure
convergence to the terminal region. This function penalizes
the uncertain trajectory that is not included in the terminal
region. This penalization is made by means of an opera-
tor that serves as a measure of the distance to the terminal
region:

Definition 4. Given sets Y and � = 1/(1 + �)� (where � is a
scalar greater than zero), ‖Y‖� denotes the maximum between
zero and the smallest scalar ��0 that verifies Y ⊆ (1 + �)�.

Note that ‖Y‖� is equal to zero if and only if Y ⊆ �. If
� is a polyhedron defined by a set of linear constraints � =
{x : d�

i x�ei, i = 1, . . . , p} that contains the origin (ei > 0,
i = 1, . . . , p) and Y = p�HBm is a zonotope, then ‖Y‖� can
be obtained from the equality:

‖Y‖� = max

{
0, max

i=1,...,p

d�
i p − ei + ‖H�di‖1

ei

}
,

where ‖H�di‖1 denotes the sum of the absolute values of vec-
tor H�di . Set � is equal to 1/(1 + �)� where � > 0. It is not
difficult to see that x /∈ � implies that ‖x‖� > �.
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The cost function JE(k) is defined by JE(−1) = ∞ and
JE(k) = ∑N−1

i=0 ‖X̆(k + i|k)‖�, where � = 1/(1 + �)� and

X̆(k + l|k) =
{

X̂(k + l|k) if P(xk) is feasible,
X̆(k + l|k − 1) otherwise,

where l = 0, . . . , N − 1, X̆(k + N |k) = 0 and P(xk) denotes
the proposed optimization problem which is detailed below.

Given an initial condition xk and a sequence of correction
control inputs v(k)={v(k|k), v(k +1|k), . . . , v(k +N −1|k)},
x̂(i|k) denotes the nominal evolution of the system. That is,
x̂(k|k)=xk and x̂(k + j +1|k)=fK(x̂(k + j |k), v(k + j |k), 0)

with j = 0, . . . , N − 1.
The proposed predictive controller solves at sample time k

the following optimization problem P(xk):

P(xk) = min
v(k)

J (xk, v(k))

=
N−1∑
j=0

L(x̂(k + j |k), v(k + j |k)) + V (x̂(k + N)|k)

subject to:

x̂(k|k) = xk , (3)

x̂(k + j + 1|k) = fK(x̂(k + j |k), v(k + j |k), 0), (4)

v(k + j |k)�KX̂(k + j |k) ⊆ U , (5)

X̂(k + j |k) ⊆ X, j = 0, 1, . . . , N − 1, (6)

X̂(k + N |k) ⊆ �, (7)

N−1∑
j=0

‖X̂(k + j |k)‖� − JE(k − 1) < − �, (8)

where L(·, ·) is a positive definite state cost and V (·) is a pos-
itive definite terminal cost. The optimization problem is sub-
ject to the system dynamics, that is, given v(k), the sequence
{X̂(k|k), X̂(k + 1|k), . . . , X̂(k + N |k)} is obtained as in Defi-
nition 3.

Note that the robust satisfaction of the input constraints are
considered in (5). The predictive controller has finite horizon
N. As it will be shown in the following section, if P(x0) is
feasible then there is a sequence of control signals that drives
the system to the terminal region in a finite number of sam-
ple instants. The contractive constraint (8) assures convergence
to the terminal region. It will be shown that the closed-loop
system reaches the terminal region in a finite number of sam-
ple instants. The constraints are applied to the approximated
reachable sets so, given an initial state and a sequence of
control signals, it is assured that the state satisfies the con-
straints for every possible realization of the uncertainty. The
dual controller applies the control signal uk =KMPC(xk) at time

k, which is obtained by means of the following algorithm:

Algorithm[Controller Algorithm (xk)]
If xk ∈ � then uk = Kxk

Else
Compute JE(k − 1)

If P(xk) is feasible then v̄(k) = v∗(k),
where v∗(k) is an optimal (or suboptimal)
feasible solution of the optimization
problem P(xk)

Else v̄(k) = {v̄(k|k − 1), v̄(k + 1|k − 1)

, . . . , v̄(k + N − 2|k − 1), 0}
Endif
uk = v̄(k|k) + Kxk

Endif
End Algorithm

5. Robust properties of the proposed controller

The origin is not a steady state of the uncertain system be-
cause the uncertainties may not be decaying. Hence, the aim of
a stabilizing controller is to steer the state to a neighborhood of
the origin and keep the state evolution in it. This section proves
that for any feasible initial state, the proposed predictive con-
troller steers the uncertain system to the terminal region where
it remains for all the time.

Denote v̄(k)={v̄(k|k), . . . , v̄(k +N − 1|k)} the sequence of
control correction inputs obtained at sample time k by means of
the controller algorithm. Denoting X(k|k) = xk , the sequence
of exact reachable sets {X(k|k), . . . , X(k + N |k)} is obtained
from the following recursion: X(k + j |k) = fK(X(k + j −
1|k), v̄(k + j −1|k), W), j =1, . . . , N . The following theorem
states that the proposed controller satisfies robustly both the
state and the control constraints.

Theorem 3. If P(x0) is feasible then the controller uk =
KMPC(xk) guarantees that the closed loop trajectories of the
system satisfy robustly the constraints of the problem. That is,
xk ∈ X and uk ∈ U ∀k�0.

Proof. Suppose that xk /∈ X. As � ⊆ X, it is inferred that xk =
X(k|k)��. Taking now into account Property 1 (see Appendix
A): X(k|k) ⊆ X̆(k|k) ⊆ X. This is a contradiction.

In order to prove that uk ∈ U , two cases must be taken
into account. If xk ∈ � then uk = Kxk . In this case, As-
sumption 1 guarantees that uk = Kxk ∈ U . Suppose now that
xk = X(k|k) /∈ �. It is inferred from Property 1 (see Appendix
A) that uk = v̄(k|k) + Kxk = v̄(k|k)�KX(k|k) ⊆ U . �

Remark 3. Denote l the smallest integer such that P(xk−l ) is
feasible. In case of unfeasibility at xk , the proposed controller
algorithm makes v̄(k|k) equal to v̄(k|k − l). As the control
correction sequence {v̄(k−l|k−l), v̄(k−l+1|k−l), . . . , v̄(k−
l + N − 1|k − l)} if feasible at xk−l the application of the
sequence of control actions

uk−l+j = v̄(k − l + j |k − l) + Kxk−l+j , j = 0, . . . , N − 1
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drives the initial condition xk−l to � for every possible real-
ization of the uncertainty. As this is precisely the control input
that the algorithm applies in case of unfeasibility the admissi-
ble robust convergence to set � is guaranteed.

Next, a lemma used to prove that the state of the system is
ultimately bounded is enunciated.

Lemma 1. If P(x0) is feasible and xk /∈ � then JE(k) −
JE(k − 1) < − �.

Proof. Suppose first that P(xk) is feasible. In this case, X̆(k +
j |k) = X̂(k + j |k), j = 0, . . . , N − 1. Therefore:

JE(k) − JE(k − 1) =
N−1∑
i=0

‖X̆(k + i|k)‖� − JE(k − 1)

=
N−1∑
i=0

‖X̂(k + i|k)‖� − JE(k − 1) < − �.

Note that the last inequality is due to the feasibility of P(xk)

(see constraint 8).
Suppose now that P(xk) is unfeasible. In this case, X̆(k +

j |k) = X̆(k + j |k − 1), j = 0, . . . , N − 1. Thus:

JE(k) − JE(k − 1)

=
N−1∑
i=0

‖X̆(k + i|k)‖� − JE(k − 1)

=
N−1∑
i=0

‖X̆(k + i|k − 1)‖� −
N−1∑
i=0

‖X̆(k − 1 + i|k − 1)‖�

= ‖X̆(k + N − 1|k − 1)‖� − ‖X̆(k − 1|k − 1)‖�.

By definition, X̆(k − 1 + N |k − 1) = 0. It is then concluded
that JE(k)− JE(k − 1)=−‖X̆(k − 1|k − 1)‖�. From xk /∈ � it
is inferred that xk−1 ∈ X̆(k − 1|k − 1)�� which implies that
‖X̆(k−1|k−1)‖� > �. Therefore, JE(k)−JE(k−1) <−�. �

The controller proposed in this paper steers the uncertain sys-
tem to the terminal region, which is a robust invariant set. The
next theorem proves that the closed loop system is ultimately
bounded for all x0 such that the optimization problem P(x0) is
feasible.

Theorem 4. The system controlled by uk = KMPC(xk) is ul-
timately bounded in � for all x0 such that the optimization
problem P(x0) is feasible.

Proof. Lemma 1 assures that if the optimization problem P(x0)

is feasible and xk /∈ �, then the proposed predictive controller
satisfies the contractive constraint JE(k) − JE(k − 1) < − �.
If P(x0) is feasible and the evolution of the system does not
reach � then JE(k) < JE(0)−k�, ∀k > 0. Therefore, there exists
k̂ such that JE(k̂) < JE(0) − k̂� < 0. This is a contradiction
because JE(k), k�0, is a positive definite function, so it is
inferred that x

k̂
∈ �. The system reaches the terminal region

in a finite number of sample times and the close loop system
is ultimately bounded. Note that Assumption 1 guarantees that
once the state vector reaches � it remains in it. �

Remark 4. If the bounding operator � is monotonic, that is,
Xa ⊆ Xb implies �(Xa, v, W) ⊆ �(Xb, v, W), ∀v, ∀W , then
it is possible to assure that feasibility for the initial state im-
plies feasibility of the subsequent optimization problems (this
can be proved following the ideas presented in Limon et al.
(2005), where a monotonic operator based on interval arith-
metic was used to bound the evolution of the system). How-
ever, the monotonic assumption can overrestrict the class of
bounding operator that can be used (for example, the bounding
operator proposed in Theorem 2 is not monotonic). Therefore,
no assumption on the fulfilment of the monotonic property is
considered in this paper.

6. Example

The proposed MPC controller is applied to a highly nonlin-
ear system: a continuous stirred tank reactor (CSTR) simulation
model. The continuous time model of a CSTR for an exother-
mic, irreversible reaction A −→ B with constant liquid volume
is given by Magni, De Nicolao, Magnani, and Scattolini (2001):

dCA

dt
= q

V
(CAf − CA) − k0 exp

(
− E

RT

)
· CA,

dT

dt
= q

V
(Tf − T ) − �H · k0

�Cp

exp

(
− E

RT

)
CA

+ U · A

V · � · Cp

(Tc − T ),

where CA is the concentration of A in the reactor, T is the reactor
temperature and Tc is the temperature of the coolant stream. The
parameters of the model are: � = 1000 g/l, Cp = 0.239 J/g K,
�H =−5 × 104 J/mol, E/R = 8750 K, k0 = 7.2 × 1010 min−1,
U ·A=5×104 J/ min K. The nominal operating conditions are
given by: q=100 l/ min, Tf =350 K, V =100 l, CAf =1.0 mol/l.
The steady state is Co

A=0.5 mol/l, T o=350 K, T o
c =300 K. The

temperature of the coolant is constrained to 280K �Tc �370.
The state of the system is defined as x=[(CA−Co

A), (T −T o)]T,
and the input as u = Tc − T o

c .
The model is discretized with a sampling period Ts = 0.03

min. An additive uncertainty is considered in the continuous-
time model of the system. The uncertainty is bounded by w1 ∈
0.1B1 and w2 ∈ 2B1, where w = [w1 w2]T.

In Fig. 1 the solution of P(x0) with x0 = [−0.15, −45]�
is shown. In the figure, and in order to visualize the exact
reachable sets, a sufficient dense cloud of trajectories corre-
sponding to random realizations of the uncertainty has been
shown. The sequence of approximated reachable sets obtained
using the bounding operator proposed in Theorem 2 are repre-
sented with thin solid lines. The terminal set � corresponding
to the local control law u = Kx = [−3, −6.9]x has been ob-
tained using a linear difference inclusion (Boyd et al., 1994)
obtained by means of the application of the interval extension
of the mean value theorem. The resulting optimization prob-
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Fig. 1. Approximated reachable sets.

lem P(x0) is feasible when this bounding operator is used.
However, if a bounding operator based only on natural inter-
val arithmetic is used, the feasibility of P(x0) is lost (in this
case, the obtained approximated set X̂(11|0) represented as a
dotted line box in the figure is too large to be included in re-
gion �). As was to be expected, the use of zonotopes provides
tighter outer bounds that enlarge the domain of attraction of the
controller.

7. Conclusion

A robust dual-mode MPC controller for constrained discrete-
time nonlinear systems with uncertainties has been presented.
Approximated reachable sets have been added to the MPC op-
timization problem. These sets are computed using a technique
based on zonotopes. The closed-loop system is shown to be
robustly ultimately bounded.
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Appendix A

Property 1. If P(x0) is feasible and X(k + j |k)��, j =
0, 1, . . . , i then:

X(k + j |k) ⊆ X̆(k + j |k) ⊆ X, j = 0, 1, . . . , i,

v̄(k + j |k)�KX(k + j |k) ⊆ U, j = 0, 1, . . . , i.

Proof. Given a sample time k > 0, two cases must be consid-
ered:

(1) P(xk) is feasible: It will be shown first that X(k+j |k) ⊆
X̂(k+j |k), j =0, . . . , i. This claim is proved by induction. By
definition, X(k|k) = X̂(k|k) = xk . Assume now that X(k + j −
1|k) ⊆ X̂(k+j −1|k) with 1�j � i. As X(k+j −1|k)�� it is
inferred that X̂(k + j − 1|k)��. From this and the fact that �
is a bounding operator: X(k+j |k)=fK(X(k+j −1|k), v̄(k+
j − 1|k), W) ⊆ fK(X̂(k + j − 1|k), v̄(k + j − 1|k), W) ⊆
�(X̂(k + j − 1|k), v̄(k + j − 1|k), W) = X̂(k + j |k).

Therefore, it has been proved by induction that:

X(k + j |k) ⊆ X̂(k + j |k), j = 0, . . . , i. (A.1)

Taking into account that P(xk) is feasible and the definition
of X̆(k + j |k): X̆(k + j |k) = X̂(k + j |k) ⊆ X. Therefore,
it is concluded from Eq. (A.1) that: X(k + j |k) ⊆ X̂(k +
j |k)= X̆(k + j |k) ⊆ X. From this inclusion and the feasibility
of P(xk): v̄(k + j |k)�KX(k + j |k) ⊆ v̄(k + j |k)�KX̂

(k + j |k) ⊆ U, j = 0, 1, . . . , i.
(2) P(xk) is not feasible: Denote l the smallest integer such

that P(xk−l ) is feasible. It is easy to see from the proposed
controller algorithm that:

v̄(k) = {v̄(k|k − 1), . . . , v̄(k + N − 2|k − 1), 0}
= {v̄(k|k − 2), . . . , v̄(k + N − 3|k − 2), 0, 0}
...

= {v̄(k|k − l), . . . , v̄(k + N − l − 1|k − l), 0, . . . , 0}.

As v̄(k) is composed of the control signals used to compute
the reachable sets at instant k − l: X(k + j |k) ⊆ X(k + j |k −
l), j = 0, . . . , i.

From the last equation and the assumption X(k + j |k)��,
j =0, 1, . . . , i, it is inferred that X(k+j |k−l)��, j =0, . . . , i.
Note also that X(k + j |k − l)�� for j = −l, . . . ,−1. This
affirmation can be proved by contradiction: if there is j∗ ∈
[−l, . . . ,−1] such that X(k + j∗|k − l) ⊆ � then xk+j∗ ∈ �
implies (because of the dual controller) that xk+j ∈ �, ∀j �j∗.
This is a contradiction as xk /∈ �. From the above considerations
it is concluded that: X(k − l + j |k − l)��, j = 0, . . . , i + l.

Taking into account the feasibility of P(xk−l ) and consider-
ing the previous item of the proof, it is inferred that X(k+j |k−
l) ⊆ X̆(k + j |k − l) for j =0, . . . , i. Applying the definition of
X̆(k + j |k) and from the feasibility of P(xk−l ): X̆(k + j |k)=
X̆(k + j |k − 1) = · · · = X̆(k + j |k − l)= X̂(k + j |k − l) ⊆ X.

It is therefore concluded that: X(k+j |k) ⊆ X(k+j |k−l) ⊆
X̆(k + j |k − l) = X̆(k + j |k) ⊆ X, j = 0, . . . , i. From the
already proved inclusion: X(k+j |k) ⊆ X̆(k+j |k− l)=X̂(k+
j |k− l), j =0, . . . , i. This and the feasibility of P(xk−l ) yield:
v̄(k + j |k)�KX(k + j |k) ⊆ v̄(k + j |k)�KX̂(k + j |k − l)

⊆ U, j = 0, 1, . . . , i. �
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