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Abstract

Min–max model predictive control (MPC) is one of the control techniques capable of robustly stabilize uncertain nonlinear systems subject
to constraints. In this paper we extend existing results on robust stability of min–max MPC to the case of systems with uncertainties which
depend on the state and the input and not necessarily decaying, i.e. state and input dependent bounded uncertainties. This allows us to consider
both plant uncertainties and external disturbances in a less conservative way.

It is shown that the input-to-state practical stability (ISpS) notion is suitable to analyze the stability of worst-case based controllers. Thus,
we provide Lyapunov-like sufficient conditions for ISpS. Based on this, it is proved that if the terminal cost is an ISpS-Lyapunov function then
the optimal cost is also an ISpS-Lyapunov function for the system controlled by the min–max MPC and hence, the controlled system is ISpS.
Moreover, we show that if the system controlled by the terminal control law locally admits certain stability margin, then the system controlled
by the min–max MPC retains the stability margin in the feasibility region.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) is an optimal control tech-
nique which deals with constraints on the states and the in-
puts. This strategy is based on the solution of a finite horizon
optimization problem, which can be posed as a mathematical
programming problem. The control law is obtained by means
of the receding horizon strategy that requires the solution of
the optimization problem at each sample time (Camacho &
Bordons, 2004). It is well known that considering a terminal
cost and a terminal constraint in the optimization problem, the
MPC stabilizes asymptotically the constrained system (Mayne,
Rawlings, Rao, & Scokaert, 2000).
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If there are uncertainties in the process model, then the sta-
bilizing properties of the MPC may provide a certain degree of
robustness under some assumptions (Limon, Alamo, & Cama-
cho, 2002b; Grimm, Messina, Tuna, & Teel, 2004). One of the
approaches to the design of MPC controllers incorporating the
uncertainty is the so-called open loop formulations (Michalska
& Mayne, 1993; Limon, Alamo, & Camacho, 2002a; Alamo,
Muñoz de la Peña, Limon, & Camacho, 2005). These con-
trollers guarantee robust stability and constraint satisfaction but,
they may end up being very conservative since they are likely
to have a very small feasible region or a poor performance.

This conservativeness can be overcome thanks to the closed-
loop formulations for nonlinear systems (Mayne, 2001; Magni,
Nijmeijer, & van der Shaft, 2001; Fontes & Magni, 2003;
Magni, De Nicolao, Scattolini, & Allgöwer, 2003), where a
sequence of control laws is computed instead of a sequence
of control actions. In (Mayne, 2001) sufficient conditions to
design an asymptotically stabilizing min–max MPC in case of
uncertainties that decay with the state are given. In the case
of persistent disturbances, the standard min–max MPC
problem is modified using a dual stage cost, which yields to an
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optimization problem difficult to solve and provides a discon-
tinuous control law. An H∞ approach to the robust stabilization
of nonlinear systems is presented in (Magni et al., 2001). In
(Fontes & Magni, 2003), min–max MPC for continuous-time
systems with persistent disturbances is analyzed. Under some
robust stability conditions and sufficiently small sampling time,
asymptotic convergence to a robust invariant set of the uncon-
trolled (zero-input) system is proved. This result has been ap-
plied to design a stabilizing bang-bang controller.

The goal of this paper is to obtain sufficient conditions to de-
sign robust stable MPC for constrained systems with bounded
uncertainties which may depend on both input and state of the
system as well as on a persistent term. This considered class of
uncertainty allows us to represent model mismatches and persis-
tent disturbances, which may reduce the conservativeness in the
uncertainties modelling (Raković, Kerrigan, & Mayne, 2004).
Input to state practical stability (ISpS) (Sontag & Wang, 1996)
provides an appropriate framework to analyze the stability of
this considered class of closed loop systems. Sufficient condi-
tions to ensure ISpS are obtained by means of a Lyapunov-like
function. Based on this result, the main contribution of this pa-
per is presented: sufficient conditions for robust stability (ISpS)
of min–max MPC for systems with bounded uncertainties.

The paper is organized as follows: in Section 2, the system to
be controlled is presented. In Section 3 sufficient conditions for
ISpS are given. The closed-loop min–max MPC is presented
in Section 4 together with the proposed sufficient conditions of
robust stability of min–max MPC under bounded uncertainties,
which is the main contribution of the paper. The paper finishes
with some conclusions.

Notation. ‖x‖ denotes a norm of a given vector x; for a given
sequence of N bounded signals w = {w0, w1, . . . , wN−1}, we
denote the norm ‖w‖∞=sup{ ‖wk‖, k=0, 1, . . . , N−1}, where
the cardinality of the sequence is inferred from the context. A
continuous function � : R+ → R+ is a K-function if �(0)=0,
�(s) > 0 for all s > 0 and it is strictly increasing. A function
�(·) is a K∞-function if it is a K-function and �(s) → ∞
when s → ∞. A continuous function � : R+ × Z+ → R+ is a
KL-function if �(s, t) is a K-function in s for every t �0, it
is strictly decreasing in t for every s > 0 and �(s, t) → 0 when
t → ∞. For a given pair of functions �1(·) and �2(·), �1 ◦�2(s)

denotes the function �1(�2(s)) and �k
1(s) = �1 ◦ �k−1

1 (s), with
�0

1(s) = s whereas [�1(s)]k denotes �1(s) to the power of k.

2. System description

Consider a system described by an uncertain nonlinear time-
invariant discrete time model

x+ = f (x, u, w), (1)

where x ∈ Rn is the system state, u ∈ Rm is the current control
vector, the disturbance input w ∈ Rq models the uncertainty
and x+ is the successor state (Mayne et al., 2000). The system
is subject to constraints on both the state and the control action

given by

u ∈ U and x ∈ X, (2)

where X and U are compact sets containing the origin.
It is assumed that the uncertainty is contained in set W(x, u)

that may depend on the state and input of the system and it
is compact for every (x, u). However, for the design of robust
controllers, the uncertainties are modelled as confined in a given
compact set

Wm(x, u) = {w ∈ Rq : ‖w‖��(‖(x, u)‖) + �(�)}, (3)

where �(·) and �(·) are K-functions and for all x ∈ X and
u ∈ U , W(x, u) ⊆ Wm(x, u).

Constant ��0 describes the fact that W(x, u) at x = 0 and
u=0 may be not zero, which usually happens for instance when
persistent disturbances are present. Therefore, this description
is suitable for modelling both plant uncertainties and persistent
external disturbances. For notational convenience, the depen-
dence on (x, u) of set Wm(x, u) and W(x, u) may be omitted,
denoting them as Wm and W, respectively.

Effective control in the presence of uncertainties requires a
feedback structure. So, a sequence of control laws �(x) to be
applied to the system at current state x must be considered. This
control policy for a prediction horizon N is given by �(x) =
{�0(x), �1(·), . . . , �N−1(·)}, where �i (x) : Rn → Rm. Note
that, for a given state x, the first term is a control action, so
it may be denoted as u(0). The solution to (1) at time j when
the initial state is x at time 0, the uncertainty realization is
w = {w0, . . . , wj−1} and the control policy � is applied will
be denoted as x(j) = �(j ; x, �, w). Thus, sequence w is said
to be possible if wi ∈ Wm(x(i), �i (x(i))). This will be shortly
denoted as w ∈ W

j
m. In the sequel, xk and uk will denote the

state and the control action applied to the system at sampling
time k.

In what follows, some well established definitions and re-
sults on invariant sets used in the paper are recalled (Blanchini,
1999).

Definition 1. Consider the uncertain system x+ = F(x, w),
where w ∈ Wm ⊂ Rq models the uncertainty. Then the set
� ⊂ Rn is a robust positively invariant set if F(x, w) ∈ �, for
all x ∈ � and for all w ∈ Wm.

Definition 2. A set � ⊂ Rn is a robust control invariant set for
the system (1) subject to constraint (2) if for all x ∈ �, there
exists an admissible input u=u(x) ∈ U such that f (x, u, w) ∈
� for all w ∈ Wm.

Definition 3. Let � ⊂ Rn be a robust positively (or control)
invariant set for system (1) subject to constraints (2), then the i-
step robust stabilizable set Xi(�) is the set of admissible states
which can be steered to the target set � in i steps or less by a
sequence of admissible control laws �(x) for all w ∈ Wi

m.

This set satisfies that Xi(�) ⊇ Xi−1(�) and hence Xi(�) is
a robust control invariant set, for i�0.
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3. A sufficient condition for ISpS

In this section a suitable framework to analyze stability of
system (1) controlled by a min–max MPC is presented. Since
the calculation of this control law is based on the worst possible
case of the modelled uncertainties, the obtained control law
implicitly depends on the considered model of the uncertainties.
To emphasize this point, the closed-loop system is expressed by

x+ = F�(x, w), (4)

where subscript � denotes this dependence.
In this case, the uncertainties of the closed loop system are

such that w ∈ W(x), while the modelled uncertainties are

w ∈ Wm(x) = {w ∈ Rq : ‖w‖��(‖x‖) + �(�)}, (5)

where �(·) and �(·) are K-functions and W(x) ⊆ Wm(x) for
all x ∈ X.

In order to analyze the stability of this class of systems,
ISpS provides an adequate framework. This concept is stated
by means of comparison functions, in the following definition.

Definition 4 (Sontag & Wang, 1996). The system (4) is input-
to-state practically stable if there is a KL-function �(·, ·) and
a pair of K-functions 	1(·), 	2(·) such that

‖xk‖��(‖x0‖, k) + 	1(‖w‖∞) + 	2(�),

where xj =F�(xj−1, wj−1), for all wj−1 ∈ W(xj−1), for all
j = 1, . . . , k and w = {w0, . . . , wk−1}.

Notice that 	1(‖w‖∞) depends on the actual realization of
the uncertainties whereas 	2(�) depends on the modelled un-
certainty Wm(x).

The definition of ISpS is closely related to the notion of In-
put to state stability (ISS) (Jiang & Wang, 2001). Indeed, ISS
implies ISpS, since taking � = 0, the given definition corre-
sponds to the standard ISS notion; however the converse is not
true, since an ISS system satisfies that 0-input, i.e. wk = 0, for
all k�0 (that means no model mismatches), implies asymp-
totic stability to the origin, while for an ISpS system, 0-input
implies asymptotic stability to a compact set containing the ori-
gin. In (Sontag & Wang, 1996), it has been proved that ISpS
is equivalent to ISS extended to point-to-set distance from the
state to a proper compact invariant set for the system; however
Definition 4 is used in this paper because it is more adequate
for the analysis of min–max MPC.

In the ISS framework, when the uncertainty is state depen-
dent, the notion of stability margin is introduced to establish
an upper bound of the uncertainties that provides asymptotic
stability to the origin. In the case of ISpS for systems with
state dependent plus a persistent term uncertainties, this notion
cannot be used since the system is not asymptotically stable
even when the uncertainty is null; however this can be extended
considering an upper bound on the state-dependent part of the
uncertainty that ensures asymptotic stability when no persis-
tent term is present. This is rigourously stated in the following
definition:

Definition 5. Consider system (4) where uncertainties are mod-
elled by set Wm(x) given by (5). We say that �(·) is a stability
margin of system (4) if there exists a KL-function �(·, ·) and
a K-function 	(·) such that

‖xk‖��(‖x0‖, k) + 	(�),

where xj = F�(xj−1, wj−1) and wj−1 ∈ Wm(xj−1) j =
1, . . . , k.

In the following definition, an ISpS-Lyapunov function,
which provides a sufficient condition for Input-to-State practi-
cal Stability, is presented.

Definition 6. Consider system (4) and suppose that the un-
certainty vector is bounded by w ∈ W(x). A function V (·) :
Rn → R+ is called an ISpS-Lyapunov function if there are
some K∞-functions �1(·), �2(·), �3(·) and 
(·), and some K-
functions �1(·) and �2(·) such that

�1(‖x‖)�V (x)��2(‖x‖) + 
(�)

V (F�(x, w)) − V (x)� − �3(‖x‖) + �1(‖w‖) + �2(�). (6)

Note that the ISpS-Lyapunov function may not be bounded
above by a K∞-function of the state. This allows us to consider
candidate Lyapunov functions such that the value of V (x) at the
origin x=0 depends on the modelled bound of the uncertainties.

Based on the previous definition, a sufficient condition for
ISpS is presented in the following theorem.

Theorem 1. If system (4) admits an ISpS-Lyapunov function
(6), then it is input-to-state practically stable.

Proof. Consider the K∞-function �̄2(s) = �2(s) + 
(s). With
this choice of �̄2(·) it results that1 �2(‖x‖)+ 
(�)� �̄2(‖x‖+
�). Therefore, V (x)� �̄2(‖x‖ + �) and hence, ‖x‖ +
�� �̄−1

2 (V (x)).
Let �(·) be a given K∞-function, and consider the K∞-

function given by �3(s) = min(�3(s/2), �(s/2)) then

�3(‖x‖) + �(�)��3(‖x‖ + �)��3 ◦ �̄−1
2 (V (x)),

where �4(s) = �3 ◦ �̄−1
2 (s) is a K∞-function. Then, from this

V (F�(x, w))�V (x) − �3(‖x‖) + �1(‖w‖) + �2(�)

�V (x) − �4(V (x)) + �1(‖w‖) + �̂2(�)

with �̂2(�) = �(�) + �2(�). In virtue of Property 1, there exists
a K∞-function �5(s) such that �5(s)��4(s) for all s�0 and
�(s) = s − �5(s) is a K-function and then

V (F�(x, w))��(V (x)) + �1(‖w‖) + �̂2(�). (7)

Consider the K-function given by �(s) = s − 1/2 · �5(s), and
consider that the initial state of the system is x0, then we are
going to prove that

V (xk+1)��k+1(V (x0)) + �(a), (8)

1 A collection of properties of the comparison functions used in the
proof can be found in Property 1 in the appendix.
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where a is defined as a=�1(‖w‖∞)+ �̂2(�), w={w0, . . . , wk}
and �(a) = �−1

5 (2 · a). This is proved by induction: since
�(a) > 2a, we derive that

V (x1)��(V (x0)) + a��(V (x0)) + �(a).

Assume that V (xk)��k(V (x0)) + �(a). Taking into account
Lemma 2 and the property

� ◦ �(a) + a = �(a) − 0.5�5 ◦ �(a) + a = �(a)

it is concluded

V (xk+1)��(V (xk)) + a��(�k(V (x0)) + �(a)) + a

��(�k(V (x0))) + �(�(a)) + a

= �k+1(V (x0)) + �(a).

Properties of the K-functions and Lemma 3 yields

�1(‖xk‖)��k(�2(‖x0‖) + 
(�)) + �(a)

��k(2 · �2(‖x0‖)) + �k(2 · 
(�)) + �(a)

��k(2 · �2(‖x0‖)) + 2 · 
(�) + �(a).

Therefore,

‖xk‖��−1
1 (�k(2 · �2(‖x0‖)) + 2 · 
(�)

+ �(�1(‖w‖∞) + �̂2(�)))

��−1
1 (�k(2 · �2(‖x0‖)) + 2 · 
(�)

+ �(2 · �1(‖w‖∞)) + �(2 · �̂2(�)))

��−1
1 (2 · �k(2 · �2(‖x0‖)))
+ �−1

1 (4 · �(2 · �1(‖w‖∞)))

+ �−1
1 (8 · 
(�) + 4 · �(2 · �̂2(�)))

= �(‖x0‖, k) + 1(‖w‖∞) + 2(�). (9)

From the properties of the K-functions, it is easy to see that
�(·, ·) is a KL-function and 1(·) and 2(·) are K-functions.

�

Corollary 1. Assume that system (4) admits an ISpS-Lyapunov
function (6), then

(i) If any of the functions 
(·), �1(·) or �2(·) is zero, then the
system is ISpS.

(ii) If there exists a K∞-function �̃3(·) and a K-function �̃2(·)
such that

V (F�(x, w)) − V (x)� − �̃3(‖x‖) + �̃2(�)

for every w ∈ Wm(x) given in (5), then �(·) is a stability
margin for the system.

Proof. (i) It is immediate from the proof of Theorem 1.
(ii) In this case, V (x) can be posed as an ISpS-Lyapunov

function with �̃1(·) equals to zero. From (9) in the proof of

Theorem 1, we infer that 1(s) = �−1
1 (4 · �(2 · �̃1(s))) is also

zero, and hence ‖xk‖��(‖x0‖, k) + 2(�), proving the claim.
�

Remark 1. Notice that the obtained results do not rely on the
continuity of system (4) or continuity of ISpS-Lyapunov func-
tion (6); therefore these can be used for discontinuous systems
such as system (1) controlled by a discontinuous feedback con-
troller.

Based on these results, we derive sufficient conditions to
guarantee ISpS of a system with bounded uncertainties con-
trolled by a closed-loop min–max MPC controller.

4. Stability analysis of min–max MPC

MPC control law is obtained by minimizing a cost function
of the predicted evolution of the system. In the case of min–max
MPC, the cost associated to the future evolution of the system
depends on the control policy and the future realization of the
uncertainties

JN(x, �, w) =
N−1∑
i=0

�(x(i), �i (x(i))) + F(x(N)),

where x(i)=�(i; x, �, w), �={�i (·)}, and the stage cost �(·, ·)
is a positive definite function. The control policy is derived
from the solution of the following optimization problem PN(x)

J ∗
N(x) = min

�
max

w∈Wm

JN(x, �, w)

s.t.

�i (x(i)) ∈ U, x(i) ∈ X, i = 0, . . . , N − 1, ∀w ∈ WN
m

x(N) ∈ �, ∀w ∈ WN
m .

Due to the receding horizon policy, the min–max MPC con-
troller is given by KN(x) = �0(x). This problem is feasible in
the region of initial states that can be robustly steered to the ter-
minal set � in N steps. The proposed min–max MPC controller
satisfies the following assumptions:

Assumption 1. Consider system (1) and assume that the un-
certainties vector w is contained in the compact set W(x, u).
Assume that the modelled set of uncertainties Wm(x, u) given
by (3) is used to design the local control law u=h(x). Assume
that � is an admissible robust invariant set for the system con-
trolled by the control law u=h(x) such that the origin is in its
interior. Consider that F(x) is an associated ISpS-Lyapunov
function such that for all x ∈ � and for all w ∈ Wm(x, h(x))

we have that

�1(‖x‖)�F(x)��2(‖x‖) + 
(�)

F (f (x, h(x), w)) − F(x)� − �(x, h(x)) + �(�),

where �1(·), �2(·), 
(·) and �(·) are K∞-functions and the stage
cost satisfies �(x, u)��3(‖(x, u)‖), being �3(·) a K∞-function.
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Notice that this assumption states that the control law u=h(x)

is designed in such a way that �(·) is a stability margin of the
closed loop system in � (see Corollary 1). Suitable terminal
cost and set that satisfy this assumption can be computed using
the method proposed in (Magni et al., 2003) in the context of
the H∞ paradigm for a class of nonlinear systems.

Before presenting the main result, an upper bound of the
optimal cost is obtained in the following lemma.

Lemma 1. Consider system (1) and suppose that the uncer-
tainty vector w is modelled by (3). Let � and F(x) satisfy As-
sumption 1, then there exists a couple of K∞-functions �J

s (·)
and 
J (·) such that

J ∗
N(x)��J

2 (‖x‖) + 
J (�)

for all x ∈ XN(�) and for all w ∈ Wm(x, KN(x)).

Proof. The compactness of X and U implies that the predicted
evolution of the system, x(k), and the feasible control action,
u(k), are bounded. This fact and Assumption 1 guarantee that
the optimal cost is upper bounded, that is, there exists a finite
real number J̄N such that J ∗

N(x)� J̄N for all x ∈ XN(�).2

Let Br ⊂ Rn be a ball Br={x ∈ Rn : ‖x‖�r} such that Br ⊆
�. Note that this ball exists since the origin is in the interior of
�. Let � be a positive constant �=max(1, J̄N/�2(r)). Consider
the K∞-functions given by �J

2 (s)=� ·�2(s) and 
J (s)=
(s)+
N · �(s). Two cases must be taken into account:

• x ∈ �: from Assumption 1 we have that F(x(k + 1)) −
F(x(k))� − �(x(k), h(x(k))) + �(�), where x(k) =
�(k; x, �h, w) and �hi

(x) = h(x). Summing this inequality
from k = 0 to N − 1 we have

F(x)�
N−1∑
i=0

�(x(k), h(x(k))) + F(x(N)) − N · �(�).

In virtue of Assumption 1, the control policy �h is feasible.
By optimality, it is derived that F(x)�J ∗

N(x) − N · �(�).
Hence we have that

J ∗
N(x)�F(x) + N · �(�)��2(‖x‖) + 
(�) + N · �(�)

��J
2 (‖x‖) + 
J (�).

• If x /∈ �, then x /∈ Br and hence �2(‖x‖) > �2(r). Hence

J ∗
N(x)� J̄N � J̄N · �2(‖x‖)

�2(r)
��J

2 (‖x‖) + 
J (�). �

In the following theorem, we present the main result of the
paper.

Theorem 2. Consider system (1) and suppose that the uncer-
tainty vector w is contained in the compact set W(x, u) and
that the modelled bound of the uncertainties is Wm(x, u) de-
fined in (3). Let terminal set � and terminal cost F(x) satisfy

2 In virtue of Theorem 2, the compactness assumption on X and U can
be relaxed assuming a bounded set of initial states.

Assumption 1 and let u = KN(x) the obtained min–max MPC
controller. Then

(i) The optimal cost is an ISpS-Lyapunov function.
(ii) The closed-loop system is ISpS for all initial state x0 ∈

XN(�) and for every uncertainty wk ∈ W(xk, KN(xk)).
(iii) Function �(·) is a stability margin of the closed-loop sys-

tem for all x0 ∈ XN(�).

Proof. (i) Thanks to the invariance of the terminal set, the
feasible region of the controller XN(�) is a robust invariant set
for the closed loop system and the controller is well defined all
the time (Mayne, 2001).

In virtue of the previous lemmas we have that

�3(‖x‖)��(x, KN(x))�J ∗
N(x)��J

2 (‖x‖) + 
J (�),

which is the first requirement to be an ISpS-Lyapunov function.
The decreasing property of the optimal cost is proved in what
follows by means of the dynamic programming approach to the
min–max problem (in an analogous way to the proof presented
in Mayne, 2001). Define the optimal cost in i-steps:

J ∗
i (x) = min

u∈U

{
max
w∈Wm

{�(x, u) + J ∗
i−1(f (x, u, w))}

such that f (x, u, w) ∈ Xi−1(�), ∀w ∈ Wm

}
,

where J ∗
0 (x)=F(x) defined in X0(�)=�. Define u=Ki(x) as

the argument of the optimal solution to Pi(x). Denote J ∗
i (x)−

J ∗
i−1(x) as �J ∗

i (x).
For all x ∈ �, u = h(x) is feasible and hence

�J ∗
1 (x)� max

w∈Wm

{�(x, h(x)) + F(f (x, h(x), w))} − F(x)

��(�).

Assume that �J ∗
i (x)��(�) for all x ∈ Xi−1(�). Consider

any x ∈ Xi(�), then the control action u = Ki(x) is well
defined and it is feasible for the optimization problem since
x+
i =f (x, Ki(x), w) ∈ Xi−1(�) ⊆ Xi(�). Then it follows that

J ∗
i+1(x)� max

w∈Wm

{�(x, Ki(x)) + J ∗
i (x+

i )}

and we have that

�J ∗
i+1(x)� max

w∈Wm

{�(x, Ki(x)) + J ∗
i (x+

i )}

− max
w∈Wm

{�(x, Ki(x)) + J ∗
i−1(x

+
i )}

� max
w∈Wm

{[�(x, Ki(x)) + J ∗
i (x+

i )]

− [�(x, Ki(x)) + J ∗
i−1(x

+
i )]}

= max
w∈Wm

{�J ∗
i (x+

i )}��(�).

Hence, by induction it is inferred that J ∗
i+1(x) − J ∗

i (x)��(�)

for all i�0 and x ∈ Xi(�).
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Consider that the state of the system is xk and that the
min–max MPC control law uk=KN(xk) is applied, then the sys-
tem evolves to xk+1 = f (xk, KN(xk), wk). Since xk ∈ XN(�)

and wk ∈ W(xk, KN(xk)) ⊆ Wm(xk, KN(xk)), it is clear that
xk+1 ∈ XN(�).

Based on the monotonicity result, it follows that

J ∗
N(xk+1) − J ∗

N(xk) = J ∗
N(xk+1) − max

w∈Wm

{�(xk, KN(xk))

+ J ∗
N−1(f (xk, KN(xk), w))}

�J ∗
N(xk+1) − �(xk, KN(xk))

− J ∗
N−1(f (xk, KN(xk), wk))

= �J ∗
N(xk+1) − �(xk, KN(xk))

� − �(xk, KN(xk)) + �(�). (10)

(ii) Since the optimal cost is an ISpS-Lyapunov function, in
virtue of Theorem 1 the closed loop system is ISpS.

(iii) It is inferred from (10) and Corollary 1. �

Remark 2. Notice that the obtained sufficient conditions
generalize the ones presented in (Mayne, 2001). In fact, if we
consider the uncertainty model analyzed in (Mayne, 2001), that
is w ∈ W(x) with w → 0 when x → 0, this model is included
in (3) making � = 0. In this case, the conditions proposed in
this paper coincides with the ones presented in (Mayne, 2001).

Remark 3. An interesting consequence of this result is that the
robustness of the design of the terminal controller is translated
to the MPC; that is, if the local controller u = h(x) is robust
enough to ensure Assumption 1 and to guarantee that the bound
of the uncertainty is a stability margin locally in �, then the
min–max MPC controller KN(x) inherits these properties ex-
tended to XN(�). Moreover, the effect of the persistent part of
the uncertainties on the decreasing of the terminal cost remains
in the optimal cost.

5. Conclusions

Sufficient conditions for stability of uncertain systems con-
trolled by min–max MPC for a general class of bounded un-
certainties are presented in this paper. Since this controller is
a worst-case based controller, it is shown that the ISpS notion
is suitable for this aim; an ISpS-Lyapunov function which pro-
vides sufficient condition for ISpS is presented. Based on this
result, it is proved that if the terminal region is a robust invari-
ant set and the terminal cost is chosen as an ISpS-Lyapunov
function such that �(·) is a stability margin, then the system
controlled by the derived min–max MPC controller is ISpS.
Moreover the stability margin holds for the obtained predictive
controller.
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Appendix A. Some properties of comparison functions

In what follows, a collection of some well-known properties
of comparison functions used in this paper are presented (see
for instance, Khalil, 1996; Jiang & Wang, 2001).

Property 1. Let �1 : [0, a1] → R+ and �2 : [0, a2] → R+
be K-functions, let �3(·) and �4(·) be K∞-functions and let
�(·, ·) be a KL-function, then:

(1) �−1
1 (·) is a K-function defined in [0, �1(a1)].

(2) �1 ◦ �2(·) is a K-function defined in [0, b], with b =
min(a2, �

−1
2 (a1)).

(3) �1 ◦ �(·) is a KL-function.
(4) max(�1(s), �2(s)) is a K-function defined in [0, b] with

b = min(a1, a2).
(5) min(�1(s), �2(s)) is a K-function defined in [0, b] with

b = min(a1, a2).
(6) �1(s1 + s2)��1(2 · s1)+ �1(2 · s2) for all s1, s2 ∈ [0, a1/2]
(7) �1(s1)+�2(s2)��5(s1 + s2), where �5(s) = �1(s)+�2(s),

for all s1 + s2 � min(a1, a2).
(8) �1(s1) + �2(s2)��6(s1 + s2), where �6(s) = min(�1(s/2),

�2(s/2)), for all s1 ∈ [0, a1] and s2 ∈ [0, a2] such that
s1 + s2 �2 · min(a1, a2).

(9) There exists a K∞-function �7(s) such that �7(s)��3(s)

for all s�0 and �8(s) = s − �7(s) is a K-function.

Notice that K∞-functions are a class of K-functions; hence
all the properties of K-functions can be extended to K∞-
functions.

Lemma 2. Consider a K-function �(s)= s − �(s) where �(·)
is a K∞-function. Consider the K-function given by �(s) =
s − 1/2 · �(s), then �(s1 + s2)��(s1) + �(s2).

Proof. First, we have that �(s1 + s2) = 1/2 · �(s1 + s2) + 1/2 ·
�(s1 + s2)�1/2 · �(s1) + 1/2 · �(s2). Based on this result, we
derive that �(s1 + s2) = s1 + s2 − �(s1 + s2)�s1 + s2 − 1/2 ·
�(s1) − 1/2 · �(s2) = �(s1) + �(s2). �

Lemma 3. Let �(·) be a K-function such that �(s) < s for all
s > 0, then the function 	(s, k) = �k(s) is a KL-function.

Proof. It is immediate that �k(s) is a K-function in s. The
fact that �k(s) is decreasing in k for all s > 0 is proved by
induction: by assumption, �1(s) = �(s) < s = �0(s). Assume
that �i (s) < �i−1(s), then �i+1(s)=�◦�i (s) < �◦�i−1(s)=
�i (s).

To finish it suffices to prove that �k(s) → 0 when k → ∞.
To this aim, define �(s)= max{�(z)/z, ∀z ∈ (0, s]}. It is clear
that �(s) ∈ (0, 1) for all s and for every s1 �s2, �(s1)��(s2).
It is going to be proved by induction that �k(s)�[�(s)]k · s.
For k = 0 is immediate; assume that �k(s)�[�(s)]k · s, then
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�k+1(s)=�(�k(s))��([�(s)]k ·s). Given that [�(s)]k ·s < s we
have that �([�(s)]k · s)��(s) and hence �k+1(s)��([�(s)]k ·
s) · [�(s)]k · s��(s) · [�(s)]k · s =[�(s)]k+1 · s. Since for every s
�(s) ∈ (0, 1), we derive that [�(s)]k · s → 0 when k → ∞ and
hence �k(s) → 0 when k → ∞,which completes the proof.

�
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