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Abstract

This paper presents a method for enlarging the domain of attraction of nonlinear model predictive control (MPC). The usual way of
guaranteeing stability of nonlinear MPC is to add a terminal constraint and a terminal cost to the optimization problem such that the
terminal region is a positively invariant set for the system and the terminal cost is an associated Lyapunov function. The domain of
attraction of the controller depends on the size of the terminal region and the control horizon. By increasing the control horizon, the
domain of attraction is enlarged but at the expense of a greater computational burden, while increasing the terminal region produces an
enlargement without an extra cost.
In this paper, the MPC formulation with terminal cost and constraint is modified, replacing the terminal constraint by a contractive

terminal constraint. This constraint is given by a sequence of sets computed off-line that is based on the positively invariant set. Each set
of this sequence does not need to be an invariant set and can be computed by a procedure which provides an inner approximation to the
one-step set. This property allows us to use one-step approximations with a trade off between accuracy and computational burden for the
computation of the sequence. This strategy guarantees closed loop-stability ensuring the enlargement of the domain of attraction and the
local optimality of the controller. Moreover, this idea can be directly translated to robust MPC.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the main factors of the success of model predic-
tive control (MPC) both in industry and academia is the ease
with which it incorporates constraints in both the states and
the inputs of the system. Furthermore, a theoretical frame-
work for analyzing such topics as stability, robustness, op-
timality, etc. for nonlinear systems has recently been devel-
oped: see (Mayne, Rawlings, Rao, & Scokaert, 2000) for a
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survey, or (Camacho & Bordons, 2004) for process industry
application issues.
One of the most important results in the stability analysis

of MPC is the addition of a terminal constraint based on an
invariant set (Michalska & Mayne, 1993). This technique
improves previous terminal equality constraint results, but
requires commutation to a local controller when the state
reaches the terminal region. This problem is overcome by
adding a terminal cost to the functional to be optimized
(Chen & Allgöwer, 1998; Mayne et al., 2000).
The domain of attraction of the MPC controller is the set

of states which can be steered to the terminal region inN
steps or less, whereN is the control horizon. The size of
the domain of attraction depends on the size of the terminal
region and the chosen control horizon. Increasing both of
them yields a bigger domain of attraction. The most used
procedure to enlarge the domain of attraction is to increase
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the control horizonN. This leads to a greater number of de-
cision variables and, therefore, to a greater computational
effort. However, enlarging the size of the terminal set pro-
vides a larger domain of attraction with the same computa-
tional cost.
The enlargement of the terminal set has been used for

constrained linear systems inDe Doná, Seron, Mayne, and
Goodwin (2002), Limon, Gomes da Silva, Alamo, and
Camacho (2003), where the saturated local control law has
been considered. InChen, Ballance, and O’Reilly (2001)
the terminal set is enlarged by using a local LDI repre-
sentation for the nonlinear system and by solving off-line
an LMI optimization problem. InCannon, Deshmukh, and
Kouvaritakis (2003), a local LDI representation is also used,
and a polytopic terminal set and an associated terminal
cost are computed. InMagni, De Nicolao, Magnani, and
Scattolini (2001), the enlargement of the domain of attrac-
tion is achieved by considering a prediction horizon larger
than the control horizon.
This paper presents a method to enlarge the domain of

attraction of MPC by increasing the size of the terminal re-
gion. It is achieved by a new idea: replacing the terminal
constraint by a contractive constraint given by a sequence
of reachable sets to a given invariant set. This is a sequence
of sets (not necessarily invariant) where the system can be
admissibly steered from one set to the following, ultimately
reaching the target invariant set. This sequence of sets is
computed off line by recursion based on the positively in-
variant set. It is shown that this sequence can be computed
using an inner approximation of the one step set to relax
the computational burden of exact computation. The pro-
posed controller guarantees the enlargement of the domain
of attraction, asymptotic stability and local optimality of the
closed-loop system. Furthermore, it can be directly trans-
lated to the robust MPC formulation by using a sequence
of robustly reachable sets. It is worth remarking that the
optimization problem, and hence the on line computational
effort, of the proposed MPC is similar to the original one.

2. System description

Consider a system described by a nonlinear invariant
discrete time model

x+ = f (x, u), (1)

wherex ∈ Rn is the system state,u ∈ Rm is the current
control vector andx+ is the successor state. The system is
subject to constraints on both states and control actions, and
they are given by

x ∈ X, (2)

u ∈ U, (3)

whereX is a closed set andU a compact set, both of them
containing the origin.

Consider a sequence of control actionsu to be applied
to the system at current statex. Then, the predicted state
of the system at timej, if the initial state isx (at time 0)
and the control sequenceu is applied, will be denoted as
x(j) = �(j ; x,u).

3. Computation of a sequence of reachable sets

In the following some well-established definitions and
results on set invariance theory (seeBlanchini, 1999) are
presented:
Consider an autonomous systemx+ = f (x), then the set

� ⊂ Rn is apositively invariant setif f (x) ∈ �, for all x ∈
�. A set� ⊂ Rn is a control invariant setfor the system
(1) subject to constraint (3) if for allx ∈ �, there exists
an admissible inputu = u(x) ∈ U such thatf (x, u) ∈ �.
Let � ⊂ Rn be a positively (or control) invariant set for a
system (1) subject to constraint (2) and (3), then thei-step
stabilizable setXi(�) is the set of admissible states which
can be steered to the target set� in i steps or less by a
sequence of admissible control actions.
An interesting definition in invariant set theory is the so-

called one-step set: let� ⊂ Rn, then theone-step setof
�, Q(�), for system (1) subject to (3), is the set of states
which can be steered in one step to the target set� by an
admissible control action, i.e.Q(�) = {x ∈ Rn : ∃u(x) ∈
U such thatf (x, u) ∈ �}. If the system is controlled byu=
h(x), the closed-loop system is constrained to the admissible
setXh = {x ∈ X : h(x) ∈ U} and the closed-loop one-step
set is given byQh(�) = {x ∈ Xh : f (x, h(x)) ∈ �}. It is
easy to see thatQh(�) ⊆ Q(�).
This set operation allows us to claim that a given set� is

a control invariant set if and only if� ⊆ Q(�). Moreover,
the one-step set has the following properties: (a) if�1 ⊆ �2,
thenQ(�1) ⊆ Q(�2) and (b)Q(�1∪�2)=Q(�1)∪Q(�2).
In the following lemma, some interesting properties of the
i-step stabilizable set are given (Bertsekas, 1971; Blanchini,
1999).

Lemma 1. ConsiderX0(�) = � ⊆ X, then

(i) Xi(�) = Q(Xi−1(�)) ∩ X, for i�1.
(ii) Xi(�) ⊇ Xi−1(�) andXi(�) is a control invariant set.
(iii) Xi(Xj (�)) = Xi+j (�).
(iv) Xi(�1 ∪ �2) = Xi(�1) ∪ Xi(�2).

3.1. Obtaining a sequence of reachable sets

The objective of this section is to present a general and
practical procedure to compute a contractive sequence of
reachable sets,{�i}, based on the terminal set�. We denote
assequence of reachable setsa sequence of sets where the
system state can be steered from one set�i to the follow-
ing, �i−1, in an admissible way, finally reaching the target
invariant set�. This problem has been studied inBertsekas
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(1971)where it is demonstrated that the maximal sequence
that can be obtained is the stabilizable setXi(�). The com-
putation of this sequence is based on the calculation of the
one-step set.
The computation of invariant sets, and hence of the one-

step set, is an open field (seeBlanchini (1999)for a com-
pilation of the existing results). Efficient procedures exist
to compute it for linear systems subject to polytopic con-
straints, for systems with polytopic constraints described by
linear difference inclusions (Blanchini, 1999). However, for
nonlinear systems there is not a general procedure for this.
In order to relax the complexity of computation, the one-

step set can be replaced by an inner approximation to it,
i.e. Qap(�) ⊆ Q(�). This relaxation makes sense for the
sake of the tractability of the procedure used to compute it.
UsingQap(·), and based on the invariant set�, a contractive
sequence of reachable sets can be computed by the following
recursion:

�i = Qap(�i−1) ∩ X with �0 = �. (4)

This sequence of sets has the following properties:

Lemma 2. Let {�i} be a sequence of sets obtained by(4),
then

(i) �i ⊆ Xi(�). In fact, if Qap(·)=Q(·), then�i =Xi(�).
(ii) If �i−1 ⊆ �i then�i and�i−1 are control invariant

sets.
(iii) XN−1(�i ) ⊆ XN(�i−1), for all N �1 and i�1.

Proof.

(i) �1 = Qap(�) ∩ X ⊆ Q(�) ∩ X = X1(�). Consider
that �i−1 ⊆ Xi−1(�), then�i = Qap(�i−1) ∩ X ⊆
Q(�i−1) ∩ X ⊆ Q(Xi−1(�)) ∩ X = Xi(�).

(ii) �i−1 ⊆ �i = Qap(�i−1) ∩ X ⊆ Q(�i−1) ⊆ Q(�i ),
and the proof is derived from the geometric condition
for invariance.

(iii) The computed sequence satisfies that�i ⊆ Q(�i−1)∩
X=X1(�i−1). ThenXN−1(�i ) ⊆ XN−1(X1(�i−1))=
XN(�i−1). �

Note that the obtained sequence inherits some properties
from the stabilizable sets, but, it is not guaranteed that�i

includes either the set�i−1 or �, given the approximate
character ofQap(·). Consequently, the obtained sequence is
a sequence of reachable sets (not necessarily invariant sets)
to the target set�. This result allows us to design algorithms
less computationally demanding for determining a sequence
of invariants sets or merely reachable sets. Similar ideas have
been used for the computation of positively invariant sets
of nonlinear systems based on an LDI approximation of the
system by solving an LMI (Chen et al., 2001). In Cannon
et al. (2003), using an LDI representation of the nonlin-
ear systems, a sequence of polytopic invariant sets is com-
puted and an interpolation based controller is proposed. An

algorithm for computing a polytopic setQap(�) for non-
linear systems based on interval arithmetics is presented in
Bravo, Limon, Alamo, and Camacho (2003). The approx-
imation can be obtained with a given bound on the error,
which allows us a trade off between the accuracy of the ap-
proximation and the computational burden to be found.

4. The MPC technique

MPC is a well-established control strategy capable of ob-
taining an optimal control law that takes into account con-
straints on the state and on the control actions. Moreover,
under mild assumptions, it is possible to guarantee closed-
loop asymptotic stability (Mayne et al., 2000). The control
lawKN(x) is obtained by solving the following constrained
optimization problem:

min
u

VN(x,u) =
N−1∑
i=0

�(x(i), u(i)) + F(x(N))

s.t. x(i) ∈ X, u(i) ∈ U, i = 0, . . . , N − 1

x(N) ∈ �,

wherex(i) = �(i; x,u), and applying the optimal solution
to the system in a receding horizon way. This finite horizon
nominal MPC optimization problem with terminal cost and
terminal constraint is the most general way of formulating
the MPC controller, and in the following this formulation
will be denoted asstandard MPC. Taking into account that
the optimal minimizeru∗(x) only depends on the actual state
x and the receding horizon policy, the control law is given
byu=KN(x)=u∗(0). This control law stabilizes the system
asymptotically under the following assumptions:

Theorem 3 (Mayne et al., 2000). Letu=h(x) be a control
law such that� ⊆ Xh = {x ∈ X : h(x) ∈ U} is a positively
invariant set for the closed-loop system. LetF(x) be a Lya-
punov function associated to the system in�, such that for
all x ∈ �, F(f (x, h(x))) − F(x)� − �(x, h(x)) then, the
MPC control law stabilizes the system asymptotically for all
initial states such that the optimization problem is feasible.

Under these assumptions, the optimal cost function
V ∗

N(x) is a Lyapunov function for the closed loop-system
and its domain of attraction is the N-step stabilizable
set to the terminal region�, XN(�). The domain of at-
traction XN(�) can be enlarged by two methods: either
increasing the prediction horizonN (since a greater pre-
diction horizonN1> N2 yields XN2(�) ⊆ XN1(�)) or
considering a bigger terminal set (since�1 ⊆ �2 leads to
XN(�1) ⊆ XN(�2)). The first way increases the number
of decision variables, and hence, the computational burden
of the optimization problem to be solved on-line, whilst in
the second the optimization problem is similar. This second
method is more convenient and it has been used in several
papers such asMagni et al. (2001); Chen et al. (2001);
Limon et al. (2003).
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5. MPC based on a contractive terminal constraint

Let us consider a system given by (1), subject to con-
straints on states (2) and on control actions (3). Under the
assumption that a sequence ofNr reachable sets{�i} is
available, the following optimization problem is established
at sample instantk,

min
u

VN(xk,u)

s.t. x(i) ∈ X, u(i) ∈ U, i = 0, . . . , N − 1

x(N) ∈ �j , j =max(Nr − k,0), (5)

wherex(i)=�(i; xk,u). This problem is similar to the stan-
dard formulation, but substituting the terminal constraint by
the contractive constraint (5). The terminal set at time 0 is
�Nr , and for the firstNr sample times, the indexj in �j is
reduced untilk =Nr , when the terminal set is�. Therefore,
the control law derived from this problem is time-varying
for the firstNr sample times. Fork�Nr the control law is
the same as that of the (time-invariant) MPC with terminal
set�.
Note that the optimization problem can be solved on line

with similar computational cost and that the main computa-
tion required is the calculation of the contractive sequence
{�i}, which is done off line. In the following theorem it is
proved that the proposed MPC controller stabilizes the sys-
tem asymptotically inXN(�Nr ).

Theorem 4. Let a system given by(1) be subject to con-
straints on state(2) and on control actions(3). Let � be
a positively invariant set of the system and letF(x) be an
associated Lyapunov function such that the assumptions of
theorem3 are satisfied. Let{�i} be a sequence ofNr reach-
able sets with�0 = �. Then the system controlled by the
proposed MPC is asymptotically stable, with a domain of
attractionXN(�Nr ).

Proof. First, the feasibility of the controller is proved by in-
duction. Letxk anduk denote the state and the control action
applied to the system at sampling timek. Let us consider that
the problem is feasible atk=i, that is,xi ∈ XN(�Nr−i ); then
there is a sequence ofN control actions which steers the state
to�Nr−i . Thus, given that no mismatches exist between the
nominal and the real system,xi+1 ∈ XN−1(�Nr−i ). Tak-
ing into account Lemma 2, it yieldsxi+1 ∈ XN(�Nr−i−1).
Then, the optimization problem is feasible atk=i+1. Thus,
if x0 ∈ XN(�Nr ) then by induction it is inferred that the
controller is feasible for allk < Nr . SincexNr ∈ XN(�),
and because the terminal set is� for k�Nr , then the op-
timization problem will be feasible all the time in virtue of
Theorem 3.
The stability is derived from the fact that the system

evolves toXN(�) afterNr samples. Fork�Nr , the opti-
mization problem is the same as the standard MPC and,
given that the assumptions of Theorem 3 are satisfied, the
system evolves asymptotically to the origin.�

Note that, if the assumptions proposed inScokaert,
Mayne, and Rawlings (1999)hold for k�Nr , then the op-
timality of the solution is not necessary to guarantee the
asymptotic stability.

Remark 5 (Enlargement of the domain of attraction).

(i) If � ⊂ �Nr then the proposed controller enlarges the
domain of attraction of the controller, i.e.XN(�) ⊆
XN(�Nr ).

(ii) If the set�Nr does not include�, then the enlargement
can be guaranteed by a simple procedure: consider any
initial statex0 ∈ XN(

⋃Nr

i=0�i ), then aj such thatx ∈
XN(�j ) can be found and the contraction can be begun
from it.

(iii) If the one-step set is computed accurately for obtaining
the sequence{�i}, thenXN(�Nr )=XN+Nr (�). Hence,
the domain of attraction of the proposed controller is the
same as that obtained by standard MPC with prediction
horizonN +Nr , but considering onlyN control actions
as decision variables.

Remark 6 (Local optimality). Since fork�Nr the opti-
mization problem of the proposed controller is the same as
that of MPC with terminal region�, its solution is the same
and retains the local optimality of standard MPC. Further-
more, it has been proved that under the stabilizing condi-
tions of Theorem 3, there is a neighborhood of the origin
(which contains the terminal region�) where the terminal
constraint is no longer active and can be removed from the
optimization problem (Limon, Alamo, & Camacho, 2003).
Consequently, in this region the optimality of the solution
depends on the chosen terminal cost, but not on the (con-
tractive) terminal region.

Remark 7 (Robustness). Thanks to its asymptotic stability,
the proposed MPC controller retains a certain degree of
robustness for those uncertainties that are small enough, as
in the case of the standard formulation of MPC (Limon,
Alamo, & Camacho, 2002; Scokaert, Rawlings, &
Meadows, 1997). If a robust design of the MPC is carried
out, for instance by means of a closed-loop formulation
(Mayne et al., 2000), then the proposed idea can still be ap-
plied. The only requirement that should be added is that the
sequence of terminal sets must be a sequence of robustly
reachable sets to the robust invariant terminal region. Thus,
the computation of the approximate one step set must be
robust; that is, for all possible uncertainties.

The proposed MPC is related to that presented inMagni
et al. (2001), as both of them enlarge the domain of attraction
of the MPC by considering a larger terminal set. However,
both approaches are different, and in some way, complemen-
tary. In Magni’s MPC a prediction horizon,Np, larger than
the control horizon,Nc, is considered and the local control
law is used to predict the evolution fromNc to Np. This is
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equivalent to considering a terminal cost given by

FNc,Np(x(Nc)) =
Np−1∑
i=Nc

�(x(i), h(x(i))) + F(x(Np)), (6)

where

x(i) = f (x(i − 1), h(x(i − 1))) for i = Nc + 1, . . . , Np

and the terminal region given by�Np−Nc derived from (4)
usingQap(·)=Qh(·). The main novelty is that this set is not
computed explicitly, but implicitly described by the defining
equations and added as terminal constraint in the optimiza-
tion problem.
The MPC proposed in this paper exploits the notion of

control invariance: the terminal set is replaced by a sequence
of reachable sets computed off-line from (4) using an ap-
proximate tractable approachQap(·) to the one step setQ(·).
SinceQh(�) ⊆ Q(�) for any�, our approach can poten-
tially provide a larger domain of attraction than Magni’s one
(as can be seen in the examples); this depends on how good
the approximationQap(·) is with relation toQh(·). Note also
that if the terminal cost (6) is considered, both approaches
provide the same solution in a neighborhood of the origin.
It is worth noting that the extension to the robust case of the
proposed approach is achieved in a less involved way than
Magni’s extension.

6. Examples

Example 1. Consider a second-order unstable linear system
given byx+ = A · x + B · u where

A =
[
1.2775 −1.3499
1.0 0.0

]
, B =

[
1.0
0.0

]

the constraints are‖x‖∞ �5, |u| <1. The cost is given by
�(x, u) = ‖x‖22 + ‖u‖22.

The system is controlled by an LQR control law and the
associated maximal positively invariant set is� (seeFig.
1). Based on�, the contractive sequence ofNr = 5 control
invariant sets has been calculated accurately, and then�i =
Xi(�). The prediction and control horizon are considered to
beN =3. In Fig. 1 the domain of attraction of the proposed
MPC,X3(�5), and the one of the original MPC (even with a
larger prediction horizon)X3(�) are depicted by a solid line.
In this caseX3(�5) = X8(�), and therefore, the proposed
controller is able to stabilize withN=3 any state stabilizable
by the original MPCwithN=8. In this figure the trajectories
of the states of the system are plotted. As it can be seen, the
state evolves asymptotically to the origin.
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Fig. 1. Evolution of the system of example 1.

Example 2. Consider the system used in (Chen &Allgöwer,
1998) described by

ẋ1 = x2 + u · (� + (1− �) · x1),

ẋ2 = x1 + u · (� − 4 · (1− �) · x2),

where the parameter� is 0.5. The input is constrained to
|u|�2. The system has been discretized using a fourth order
Runge–Kutta method with a sampling time of 0.1 time-units.
The stage cost is given by�(x, u) = 0.5‖x‖22 + ‖u‖22.

The system is locally asymptotically stabilized by a lo-
cal linear controlleru = h(x) with an associated Lyapunov
function F(x) = 16.5926(x21 + x22) + 23.1852x1x2 in the
positively invariant set� = {x ∈ R2 : F(x)�0.7}. Both of
them satisfy the assumptions of Theorem 3. A sequence of
10 reachable sets has been computed off line using as ap-
proximation of the one-step set the one proposed inBravo
et al. (2003). Based on this sequence, the proposed MPC
technique has been applied to the system with a control hori-
zon ofNc = 3. The considered terminal cost is given by (6)
considering a prediction horizon of 33. The sequence of sets
and the closed loop state portrait are shown inFig. 2.
It is worth remarking that none of the depicted initial

states are feasible for a standard MPC with prediction and
control horizon of 3. If Magni’s MPC is used withNp = 33
andNc=3, then the initial states A, B, E and F are feasible,
while C and D are only feasible for the proposed MPC.

7. Conclusions

In this paper a formulation of MPC to enlarge the domain
of attraction without increasing the prediction horizon is pre-
sented. It is based on substituting the standard invariant ter-
minal region by a sequence of reachable sets, and hence, the
terminal constraint by a contractive terminal constraint. This
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Fig. 2. The sequence of reachable sets and state portrait of the system of
example 2.

sequence of sets can be computed by a proposed method
based on the calculation of an inner approximation of the
one-step set. The proposed controller stabilizes the system
under the same assumptions as the MPC with terminal con-
straint, guaranteeing the enlargement of the domain of at-
traction as well as the local optimality. The obtained results
can be straightforwardly translated to the robust case.
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