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On the Stability of Constrained MPC Without
Terminal Constraint

D. Limon, T. Alamo, F. Salas, and E. F. Camacho

Abstract—The usual way to guarantee stability of model predictive
control (MPC) strategies is based on a terminal cost function and a
terminal constraint region. This note analyzes the stability of MPC when
the terminal constraint is removed. This is particularly interesting when
the system is unconstrained on the state. In this case, the computational
burden of the optimization problem does not have to be increased by
introducing terminal state constraints due to stabilizing reasons. A region
in which the terminal constraint can be removed from the optimization
problem is characterized depending on some of the design parameters of
MPC. This region is a domain of attraction of the MPC without terminal
constraint. Based on this result, it is proved that weighting the terminal
cost, this domain of attraction of the MPC controller without terminal
constraint is enlarged reaching (practically) the same domain of attraction
of the MPC with terminal constraint; moreover, a practical procedure to
calculate the stabilizing weighting factor for a given initial state is shown.
Finally, these results are extended to the case of suboptimal solutions
and an asymptotically stabilizing suboptimal controller without terminal
constraint is presented.

Index Terms—Asymptotic stability, predictive control, suboptimal con-
trol.

I. INTRODUCTION AND PROBLEM STATEMENT

Consider a system described by a nonlinear invariant discrete time
model

x
+ = f(x; u) (1)

where x 2 IRn is the system state,u 2 IRm is the current control vector
and x+ is the successor state. The system is subject to constraints on
both states and control actions, and they are given by

x 2 X; u 2 U (2)

where X is a closed set and U a compact set, both of them containing
the origin. In what follows, xk and uk will denote the state and the
control action applied to the system at sampling time k. A sequence of
control actions to be applied to the system at current state x is denoted
as

u(x) = fu(0; x); u(1; x); . . . ; u(N � 1;x)g

where its dependence with xmay be omitted. The predicted state of the
system at time j, when the initial state is x (at time 0) and the control
sequence u is applied, will be denoted as x(j) = �(j;x;u).

It has been proved that this class of systems can be stabilized by
a MPC control law KN(x); this control law is obtained by solving a
constrained optimization problem at each sampling time and applying
it to the system in a receding horizon way. The finite horizon nominal
MPC optimization problem with terminal cost and terminal constraint
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is the standard way of formulating the MPC controller [1], and it will
be denoted as general MPC. This optimization problem, denoted as
PN (x;
), is given by

min
u

VN (x;u) =

N�1

i=0

`(x(i); u(i)) + F (x(N))

s:t: x(i) 2 X;u(i) 2 U; i = 0; . . . ; N � 1 x(N) 2 


where x(i) = �(i;x;u), `(x; u) is the stage cost, which is assumed
to be a positive definite function on x (i.e., there exists a K function1


1(�) such that `(x; u) � 
1(kxk) [2]); F (x) is the terminal cost and

 � X is the terminal region. In what follows, u�(x) denotes the op-
timal solution toPN (x;
) and x�(i) = �(i;x;u�(x)), i = 0; . . . ; N ,
denotes the optimal predicted trajectory. The set of states where the op-
timization problemPN (x;
) is feasible (and henceKN(x) is defined)
is denoted by XN(
).

The terminal cost and the terminal constraint are usually chosen sat-
isfying the following assumption.
Assumption 1: Let F (x) be a control Lyapunov function (CLF) and

let 
 be a set given by 
 = fx 2 IRn : F (x) � �g, with � > 0, such
that 
 � X and for all x 2 
:

�1(kxk) � F (x) ��2(kxk) (3)

min
u2U

fF (f(x; u))� F (x) + `(x; u)g � 0 (4)

where �1(�), �2(�) are K-functions.
In [3], it is proved that if the terminal cost and terminal set satisfy

assumption 1, the optimal cost of PN (x;
) is a Lyapunov function
and the model predictive control (MPC) control law stabilizes asymp-
totically the system in XN(
). If the terminal constraint is removed
from the optimization problem, then the optimal cost may not be a
Lyapunov function for the system and, moreover, the feasibility may
be lost. However, there are some predictive controllers with guaran-
teed stability which do not consider an explicit terminal constraint, as
in [4]–[7]. Notice that the removal of the terminal constraint may be
interesting, for instance, if the system is not constrained on the states.
In this case, the terminal constraint is the only one that depends on the
predicted state of the system. So, the removal of this constraint makes
the problem much easier to solve and the computational burden is re-
duced, but at the expense of a reduction of the domain of attraction.

In [5], stability is guaranteed by considering a quadratic terminal cost
function F (x) = a�xT �P �x and it is proved that, for any stabilizable
initial state, there is a triple (a, P , andN ) such that the system is stabi-
lized. Based on these results, stability of MPC with a CLF as terminal
cost for a class of unconstrained nonlinear systems is analyzed in [6].
In [7], using a slightly modified Lypaunov function as terminal cost it is
proved that the MPC without terminal constraint stabilizes the system
asymptotically for any initial state where the terminal constraint is not
active; that is, in X̂N = fx : F (x�(N)) � �g.

This note presents some novel results on this topic. Generalizing pre-
vious results presented in [5] to the general MPC, a region where the
terminal constraint is satisfied in the optimization problem is character-
ized. This region is a domain of attraction of the MPC without terminal
constraint. This characterization allows us to prove that this region can
be enlarged by weighting the terminal cost. Furthermore, it is proved
that a larger weighting factor implies a bigger domain of attraction.
Thus, the proposed MPC, by means of weighting the terminal cost, can
stabilize the system at any initial state such that x0 2 XN(~
), where

1A function 
(�) : IR ! IR is a K function if it is continuous, strictly
increasing and 
(0) = 0
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~
 denotes the interior of 
. Notice that this region is almost the same
that the domain of attraction of the MPC with terminal constraint. The
note also shows how to choose this weighting factor for a given ini-
tial state. The local optimality property can be maintained by means
of a proposed practical procedure to adapt the weighting factor. An-
other contribution of this note is a practical algorithm that allows us to
stabilize asymptotically the system under suboptimal solutions of the
optimization problem.

II. CHARACTERIZATION OF A DOMAIN OF ATTRACTION

In this section, a region where the terminal constraint is not ac-
tive is obtained. This region is a domain of attraction of MPC without
terminal constraint, which is derived from the optimization problem
without terminal constraint: PN(x;X). In what follows, V �

N(x) de-
notes the optimal cost of PN (x;X), u�(x) denotes the optimal solu-
tion of PN (x;X) and x�(i) = �(i; x;u�(x)), i = 0; . . . ; N , denotes
the optimal predicted trajectory.

The characterization of a domain of attraction, as well as further re-
sults, is based on the following lemma which generalizes other similar
ones [5], [7] to the MPC with a CLF as terminal cost.
Lemma 1: Consider the optimization problem PN (x;X) such that

F (x) and 
 satisfy Assumption 1. Let u�(x) be the optimal sequence
of inputs for any x 2 XN(X). If x�(N) =2 
, then x�(j) =2 
, for
any j = 0; . . . ; N � 1.

Proof: Assume that x�(N) =2 
 and that an i 2 [0; N�1] exists
such that x�(i) 2 
. Consider that u�(x) is the optimal solution of
PN (x;X) and û is the solution of PN�i(x�(i);X). Then, in virtue
of the optimality principle, we have that û = fu�(i;x); . . . ; u�(N �
1;x)g and consequently the optimal predicted trajectory is the same,
that is

�(j;x�(i); û) = �(i+ j;x;u�(x)) = x�(i+ j)

for all j = 0; . . . ; N � i.
Since for all x 2 
, V �

N(x) � F (x) [1], we have that

F (x�(i)) � V �

N�i(x
�(i)) � F (x�(N)) > �:

Hence, x�(i) =2 
, which contradicts the assumption, proving the
lemma.

Since `(x; u) is positive definite and the origin is in the interior of

, the following assumption can be established.
Assumption 2: Let d be a positive constant such that `(x; u) > d,

8x =2 
 and 8u 2 U .
This definition for d and Lemma 1 lead us to the following theorem,

where a domain of attraction of the MPC without terminal constraint is
characterized. The main advantage of this region is its explicit depen-
dence on some of the design parameters of the MPC as the prediction
horizon, the stage cost and the terminal region. This feature allows us
to analyze the effect of these parameters on the size of the region.
Theorem 1: Consider F (x) and 
 = fx 2 IRn : F (x) � �g such

that satisfy Assumption 1; let d be a constant such that Assumption 2
holds; then the MPC controller with N � 1 derived from PN (x;X)
stabilizes asymptotically the system (1) subject to (2) for any initial
state in

�N = fx 2 IRn : V �

N(x) � `(x;KN (x)) + (N � 1)�d+ �g:

Proof: First, it is proved by contradiction that for any x 2 �N ,
the optimal solution satisfies the terminal constraint. From Lemma 1,
it can be inferred that if the optimal sequence is such that the terminal

region is not reached, then all the trajectory of the system is out of 

and hence

V �

N(x) > `(x;KN(x)) + (N � 1)�d+ �

for allN � 1 and, hence, x =2 �N . Therefore, for all x 2 �N , we have
that

V �

N(x) � `(x;KN(x)) + (N � 1)�d+ �

and consequently the optimal solution of theMPC satisfies the terminal
constraint.

Second, it is proved that�N is a positively invariant set for the closed
loop system. Consider that x 2 �N , then x�(N) 2 
. The terminal
constraint satisfaction, as well as the assumption considered for the ter-
minal cost and the terminal region, make that the monotonicity prop-
erty of the optimal cost [1] holds, that is, V �

N(x) � V �

N�1(x) for all
x 2 XN�1(
). By virtue of this property, we have that

V �

N(x�(1)) �V �

N�1(x
�(1)) = V �

N(x)� `(x;KN (x))

� (N � 1)�d+ � (5)

and, consequently, x�(1) 2 �N .
From standard arguments in MPC (see, for instance, [1]), we have

that V �

N(x) � `(x;KN (x)) � `(x; 0) � 
1(kxk) and for all x 2 
,
V �

N(x) � F (x) � �2(kxk). From (5), we derive that V �

N(x�(1)) �
V �

N(x) � `(x;KN(x)). Therefore, the optimal cost is a strictly de-
creasing Lyapunov function, which proves the asymptotic stability of
the closed loop system [2].

It is easy to show that the set �N contains the terminal region. Using
similar arguments, it can be shown that the set

�N = fx 2 IRn : V �

N(x) � N �d+ �g

is also a domain of attraction of the system controlled by the proposed
controller and it is contained in �N . Notice that to use this result an
explicit expression of the optimal cost is not required, but only the so-
lution of the optimization problem at a given state.

III. ENLARGING THE DOMAIN OF ATTRACTION BY WEIGHTING THE

TERMINAL COST

It is well known that increasing the prediction horizon, the domain
of attraction of the MPC (with or without terminal constraint [7]) is
enlarged. It is easy to prove that �N is also enlarged in this case. How-
ever, a drawback of this procedure is that the computational burden is
increased.

In this section, it is proved that the domain of attraction of the MPC
without terminal constraint is enlarged by weighting the terminal cost
and a practical procedure to obtain the stabilizing weighting factor for
a given state is presented. Finally it is shown a decaying sequence of
weighting factors to enhance the optimality of the obtained MPC con-
troller.

Consider F (x) and 
 = fx 2 IRn : F (x) � �g which verify
Assumption 1 and consider a weighted terminal cost given by F�(x) =
��F (x), where � � 1. It is easy to show that F�(x) also satisfies
Assumption 1 in 
 = fx 2 IRn : F�(x) � ���g.

In what follows, VN;�(x;u) denotes the functional cost considering
F�(x) as terminal cost function. Analogously, to emphasize its depen-
dence with �, the region�N is denoted as�N (�). This set is given by

�N (�) = fx 2 IRn : V �

N;�(x) � N �d+ ���g:
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Notice that this set is a domain of attraction of the MPC without ter-
minal constraint. In the following theorem, it is proved that the set
�N(�) is enlarged if � is increased.
Theorem 2: Consider F (x) and 
 = fx 2 IRn : F (x) � �g such

that satisfy Assumption 1. Consider the MPC controller with N � 1
derived from PN (x;X) using a weighted terminal cost F�(x), with
� � 1. Then for all �0 � �1, �N(�0) � �N (�1).

Proof: For all x 2 �N (�0), we have that

V
�

N;� (x) =

N�1

i=0

`(x�(i); u�(i)) + �0�F (x
�(N))

=

N�1

i=0

`(x�(i); u�(i)) + �1�F (x
�(N))

� (�1 � �0)�F (x
�(N))

�V
�

N;� (x)� (�1 � �0)�F (x
�(N)):

Considering that x 2 �N (�0), then F (x�(N)) � � and hence
V �

N;� (x) � V �

N;� (x)� (�1 � �0)��. Thus, given any x 2 �N (�0),
i.e., V �

N;� (x) � N �d + �0��, we have that

V
�

N;� (x) � V
�

N;� (x) + (�1 � �0)�� � N �d+ �1��

and then x 2 �N (�1), which completes the proof.
Analogously, the enlargement of �N(�) can be proved. This prop-

erty allows us to state the following theorem.
Theorem 3: Let ~
 denote the interior of 
. For any x0 2 XN(~
),

there exists a finite constant � such that x0 2 �N (�), and hence, the
system can be stabilized using the MPC without terminal constraint.

Proof: Assume that the initial state x0 2 XN(~
). Thus, there
exists a sequence of feasible control inputs u such that the terminal
state is in the interior of 
, that is, F (x(N)) < �, where x(N) =
�(N ; x0;u). Then, there exists a constant � 2 [0; 1) such that x0 2
XN(
�), where 
� = fx : F (x) � ���g. Let u be a (suboptimal)
solution of PN (x;
�), then the associated cost VN;1(x0;u) is given
by

VN (x0;u)=

N�1

i=0

`(x(i); u(i))+F(x(N))=LN+F (x(N))

where x(i) = �(i;x0;u) and the sum of the stage cost along the tra-
jectory is denoted as LN . If VN (x0;u) � N �d+ �, then the theorem
is proved with � = 1. In other case, if we consider

� =
LN �N �d

(1� �)��
(6)

then we have that

V
�

N;�(x0) � VN;�(x0;u) � LN + ����� = N �d+ ���:

Therefore, the initial state x0 2 �N (�) � �N(�), and hence it is
stabilized by the MPC controller.
Remark 1 (Weighting Factor Calculation): Theorem 3 allows us to

obtain a practical method to calculate a (probably conservative) stabi-
lizing weighting factor. Given an initial state, this can be derived from
(6). Furthermore, definingD as a constant such that for all x 2 X and
u 2 U , `(x; u) � D, it is easy to see that LN � N �D, and hence the
weighting factor

� =
N �(D � d)

(1� �)��
(7)

is a (conservative) stabilizing weighting factor for all initial state con-
tained XN(
�). Conversely, a given weighting factor � is stabilizing
for any initial state contained in XN(
�) where

� = max 1�
N(D � d)

��
; 0 :

From this statement one can derive that for any x 2 XN(
�),
V �

N;�(x) � Nd+ ��� and hence XN(
�) � �N (�).
Remark 2 (Local Optimality): If the terminal cost is the uncon-

strained optimal cost, then the obtained MPC controller is optimal in
the region X̂N [7]. Therefore, the usage of a weighted terminal cost
enlarges the domain of attraction at expense of a loss of the optimality
(i.e., a worse closed loop performance); moreover the greater �, the
worse is F�(x) an as approximation to the optimal cost in 
 and, thus,
the greater is the difference with the optimal controller.

In order to reduce this effect and maintain the optimality property
locally, the weighting factor can be reduced at each sample time as it
is proposed as follows:

�k+1 =
�k �

`(x ;K (x ))
�

; if VN;1(xk;u�(k))>N �d+�
1; if VN;1(xk;u�(k)) � N �d+�

where u�(k) is the optimizer of the optimization problem at sample
time k.

In effect, consider that V �N;� (xk) � N �d + �k�� and assume that
VN;1(xk;u

�(k)) > N �d + �, then

V
�

N;� (xk+1) �V
�

N;� (xk+1)

�V
�

N;� (xk)� `(xk;KN(xk))

�N �d+ �k�� � `(xk;KN (xk))

=N �d+ �k+1��:

If VN;1(xk;u�(k)) � N �d + � then

V
�

N;1(xk+1) � V
�

N;1(xk) � VN;1(xk;u
�(k)) � N �d+ �:

Therefore, the chosen �k+1 ensures that for any xk , xk+1 2
�N (�k+1).

IV. SUBOPTIMAL CONTROLLER

The previously presented results are based on Theorem 1, which re-
quires the optimality of the solution. However, as it is pointed out in
[8], the computation of the optimal solution may be difficult or too de-
manding due to the nonlinear nature of the optimization problem; hence
stability under suboptimality of the obtained solutions should be ad-
dressed. In this section the presented results are extended to the case of
suboptimal solutions of the optimization problem; asymptotic stability
under suboptimality is proved and a constructive way of implementing
the controller is presented. This is a novel result on this topic that has
not been addressed in [5] and [7]. In [6], the optimality is relaxed as-
suming that it is possible to obtain a feasible better solution satisfying
the terminal constraint.

First, an extension of Lemma 1 to the case of feasible solutions is
presented. Based on this, a suboptimal controller is proposed in such a
way that asymptotic stability is proved and no additional assumptions
have to be made.
Lemma 2: Let PN (x;X) be an optimization problem such that

F (x) and 
 = fx 2 IRn : F (x) � �g satisfy Assumption
1. Let u = u(x) be a feasible solution to PN (x;X) such that
VN (x;u) � N �d + �. Then the terminal region is reached along
the system evolution, that is, there exists an i 2 [0; N ] such that
x(i) = �(i;x;u) 2 
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Proof: It is proved by contradiction. Consider that x(i) =2 

for all i 2 [0; N ]. Then, we have that `(x(i); u(i)) > d and, hence,
VN(x;u) > N �d+�, which contradicts the fact VN (x;u) � N �d+�.

From this result, the following lemma is derived.
Lemma 3: Let PN (x;X) be an optimization problem such that

F (x) and
 = fx 2 IRn : F (x) � �g satisfy Assumption 1. Let u be
a feasible solution to PN (x;X) such that VN (x;u) � N �d + � and
let x+ be the successor state, that is x+ = f(x; u(0; x)). Then there
exists a feasible solution û to the optimization problem PN (x+; X)
such that

• VN (x+; û) < VN (x;u), for all x 6= 0;
• If x+ 2 
 then VN (x+; û) � F (x+).

Proof: Let i 2 [0; N ] be the maximum i such that x(i) =
�(i;x;u) 2 
, which exists in virtue of Lemma 2. Hence, we have
that x(i) 2 
 and, if i < N , x(j) =2 
 for all j 2 [i+ 1; N ].

Calculate a sequence of control inputs û given by

û = fu(1;x); . . . ; u(i� 1;x); h(x̂(i� 1)); . . . ; h(x̂(N � 1))g (8)

where x̂(j) = �(j;x+; û) and

h(x) = argmin
u2U

fF (f(x; u))� F (x) + `(x; u)g:

Note that the computational burden of this solution is quite reduced
compared with the cost required for the computation of PN (x;X).
Moreover, we only need a feasible solution such that F (f(x; u)) �
F (x) + `(x; u) � 0.

It is easy to see that x̂(j�1) = x(j), for all j 2 [1; i]; then x̂(i�1) 2

. Thus, in virtue of the invariance of 
 in (4), x̂(j) 2 
 � X for all
j 2 [i; N ]. Consequently, û is a feasible solution to PN (x+; X).

By definition we have that û(j�1; x+) = u(j;x) for all j 2 [1; i�
1] and hence x̂(j � 1) = x(j) for all j 2 [1; i]. Denoting �VN =
VN (x;u)� VN (x+; û), we have that if i < N then

�VN = `(x; u(0;x)) +

N�1

j=i

`(x(j); u(j;x)) + F (x(N))

�

N�1

j=i�1

`(x̂(j); û(j;x+)) + F (x̂(N)) :

Since x(j) 62 
 for j 2 [i+ 1; N ], we have that `(x(j); u(j;x)) > d
and F (x(N)) > �. However, x̂(j) 2 
 and û(j;x+) = h(x̂(j)) for
j 2 [i � 1; N ] and, thus

N�1

j=i�1

`(x̂(j); h(x̂(j))) + F (x̂(N)) � F (x̂(i� 1)) � �:

Hence

VN (x;u)� VN (x+; û) > (N � i� 1)�d+ � � � � 0:

If i = N , then

�VN = `(x; u(0;x)) + F (x(N))

� `(x̂(N � 1); h(x̂(N � 1))) + F (x̂(N)) :

Since x̂(N�1) = x(N) 2 
, in virtue of Assumption 1, we have that

�VN = VN (x;u)� VN (x+; û) � `(x; u(0;x)) > 0

for all x 6= 0. Consequently, the first statement is proved.

If x+ 2 
, then two candidate feasible solutions are considered: û
derived from (8) and ûh given by

ûh = fh(x̂(0)); . . . ; h(x̂(N � 1))g: (9)

It is clear that VN (x;u) > VN (x+; û). Moreover, in virtue of (4),
VN (x+; ûh) � F (x+).

Then considering the candidate with the minimum cost, both condi-
tions are simultaneously satisfied. Thus, the second statement is proved.

Remark 3: From this lemma, a practical implementation of the sub-
optimal controller is derived. Assume that at k = 0, a feasible solution
u(x0) toPN (x0; X) such that VN (x0;u(x0)) � N �d+� is available.
For k > 1, the following hold.

1) Compute the maximum such that .
2) Calculate

û(xk) = fu(1;xk�1); . . . ; u(i� 1;xk�1)

h(x̂(i� 1)); . . . ; h(x̂(N � 1))g:

3) If
a) Calculate

ûh(xk) = fh(xk); . . . ; h(x̂(N � 1))g

with .
b) If , make

.
4) Try to obtain a feasible solution to such
that

VN (xk;u(xk)) < VN (xk; û(xk)):

If this is not achieved, make .
5) Apply , make and go to step 1)

In the following theorem, it is proved that the proposed suboptimal
receding horizon controller guarantees asymptotic stability of the
closed-loop system.
Theorem 4: Let F (x) and 
 = fx 2 IRn : F (x) � �g satisfy

Assumption 1 and let d be a positive constant such that Assumption 2
holds; consider the proposed MPC controller derived from the subop-
timal solution of PN (x;X). Then this controller stabilizes the system
asymptotically for all feasible initial state such that VN (x0;u(x0)) �
N �d + �.

Proof: Before the beginning of the proof some definitions are
given [2]: a function 
(�) : IR+ ! IR+ is a K function if it is con-
tinuous, strictly increasing and 
(0) = 0. The function 
�1(�) denotes
a function such that 
�1(
(a)) = a for all a � 0. If 
(�) is a K func-
tion, then 
�1(�) is also a K function.

First we prove that the suboptimal controller is well defined, that
is, for any xk and a feasible solution u(xk) to PN (xk; X) such that
VN (xk;u(xk)) � N �d + �, there exists a feasible solution u(xk+1)
associated to its successor state xk+1 such that VN (xk+1;u(xk+1)) �
N �d + �. This fact is derived from lemma 3: since VN (x0;u(x0)) �
N �d+ �, then by induction we have that VN (xk;u(xk)) � N �d+ �
for all k � 0.

Now, we prove that the closed loop system is stable at the origin,
that is, for any given � > 0, there is a �(�) > 0 such that for all x0
satisfying kx0k � �, then kxkk � � for all k � 0.
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For all x 2 
we have that `(x; 0) � VN (x;u(x)) � F (x) in virtue
of lemma 3. Then, the suboptimal cost is a positive definite function lo-
cally bounded above by a (control) Lyapunov function. Consequently,
there exists a couple of K functions 
1(�) and 
2(�) such that


1(kxk) � `(x; 0) � VN (x;u(x)) � F (x) � 
2(kxk):

Notice that the set 	 = fx 2 IRn : VN (x;u(x)) � 
1(

�1

2
(�))g

is contained in 
, since for all x 2 	 we have that 
1(kxk) �
VN (x;u(x)) � 
1(


�1

2
(�)) which yields kxk � 
�1

2
(�) and hence

F (x) � 
2(kxk) � �.
Consider a given constant � > 0 such that � � 
�1

2
(�). Let us take

� = 
�1
2
(
1(�)) then for all kx0k � �, we have that

VN (x0;u(x0)) � F (x0) � 
2(kx0k) � 
1(�) � 
1(

�1

2 (�))

and hence x0 2 	 � 
. Therefore, from lemma 3, we have that
VN (xk;u(xk)) � VN (x0;u(x0)) � 
1(


�1

2
(�)) and the system evo-

lution remains in 
. Then


1(kxkk) � VN (xk;u(xk)) � VN (x0;u(x0)) � 
1(�)

which leads to kxkk � � for all k � 0. Therefore, the origin is a stable
steady state of the closed loop system.

Finally, we prove that the closed loop system asymptotically con-
verges to the origin. Since VN (x0;u(x0)) � N �d+ �, from lemma 3
we derive that the suboptimal cost VN (xk;u(xk)) is strictly decreasing
along the system evolution. Since the suboptimal cost is a positive def-
inite function, asymptotic convergence to the origin is inferred [2],
which completes the proof.

Notice that the potential domain of attraction of the suboptimal con-
troller is the same that the one of the optimal controller and this can be
enlarged by weighting the terminal cost.
Remark 4: In [8], the stability of predictive controllers under sub-

optimality is analyzed and it is proved that any feasible solution which
provides a decreasing cost stabilizes the system. However, in [8], an
additional condition for stability is required: for all x in a neighbor-
hood of the origin, the suboptimal solution is such that kuk � �(kxk),
where �() is a K function. We show in this work that the condition
VN (x;u(x)) � F (x) for all x 2 
 is a practical and sufficient condi-
tion for stability.

V. CONCLUSION

In this note, a domain of attraction of the MPC without terminal
constraint is characterized and asymptotic stability of the optimal and
suboptimal controller is proved. Based on this, it is proved that by
weighting the terminal cost, the domain of attraction is enlarged. Since
this region depends explicitly on the ingredients of the MPC, practical
methods for designing a stabilizing MPC controller without terminal
constraint are presented. The new results presented are relevant from a
practical point of view, since they allows us to obtain almost the same
domain of attraction that the one of the general MPC. Moreover, a sub-
optimal procedure is proposed to guarantee asymptotic stability in case
of suboptimality of the controller without terminal constraint.
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Robust Stability and Stabilization of Uncertain
Discrete-Time Markovian Jump Linear Systems

Carlos E. de Souza

Abstract—This note deals with robust stability and control of uncertain
discrete-time linear systems withMarkovian jumping parameters. Systems
with polytopic-type parameter uncertainty in either the state-space model
matrices, or in the transition probability matrix of the Markov process,
are considered. This note develops methods of robust stability analysis and
robust stabilization in the mean square sense which are dependent on the
system uncertainty. The design of both mode-dependent and mode-inde-
pendent control laws is addressed. The proposedmethods are given in terms
of linear matrix inequalities. Numerical examples are provided to demon-
strate the effectiveness of the derived results.

Index Terms—Discrete-time systems, Markovian jump linear systems,
robust stability, robust stabilization.

I. INTRODUCTION

The study of linear systems with Markovian jumping parameters has
been attracting an increasing attention over the past decade. This class
of systems, referred to as Markov jump linear (MJL) systems, is very
appropriate to model plants whose structure is subject to random abrupt
changes due to, for instance, random component failures, abrupt en-
vironment disturbance, changes of the operating point of a linearized
model of a nonlinear system, etc. A number of control problems re-
lated to discrete-time MJL systems has been analyzed by several au-
thors; see, e.g., [1]–[6], [8]–[14], [16]–[21], and the references therein.
In particular, with regard to uncertain discrete-time MJL systems, ro-
bust stability and control of systems with norm-bounded uncertainty
has been studied in [3], [6], [12], and [20], whereas polytopic uncer-
tain systems have been treated in, e.g., [4]. A common feature of the
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