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Dynamic Output Feedback for Discrete-Time Systems
Under Amplitude and Rate Actuator Constraints

J. M. Gomes da Silva, D. Limon, T. Alamo, and E. F. Camacho

Abstract—This work proposes a technique for the design of stabilizing
dynamic output feedback controllers for discrete-time linear systems with
rate and amplitude saturating actuators. The nonlinear effects introduced
by the saturations in the closed-loop system are taken into account by using
a generalized sector condition, which leads to theoretical conditions for
solving the problem directly in the form of linear matrix inequalities.

Index Terms—Constrained control, control saturation, discrete-time sys-
tems, output feedback, stabilization.

I. INTRODUCTION

The physical impossibility of applying unlimited control signals
makes actuator saturation a ubiquitous problem in control systems.
In particular, it is well known that input saturation is a source of
performance degeneration, limit cycles, different equilibrium points,
and even instability. Hence, there has been a great interest in studying
these negative effects and also in proposing control design procedures,
in global, semiglobal and local contexts of stability, which take directly
into account the control bounds (see for instance [1]–[3] and refer-
ences therein). It should be pointed out that most of these works only
consider amplitude saturation and state feedback control strategies.

Works formally addressing stabilization in the presence of both am-
plitude and rate saturation started to appear in the late 90s. Semi-global
stabilization results have been proposed in [4]. Using a low and high
gain approach, solutions to the global and semi-global stabilization
problems, via both state and output feedback, are given in [5]. In [6],
the global stabilization problem is addressed by means of a scheduled
low-gain state feedback. As global and semi-global stabilization are
concerned, it should be pointed out that these approaches cannot be
applied to exponentially unstable open-loop systems. In the local (re-
gional) stabilizing context, we can cite the results presented in [7], [8]
and [9], where the synthesis of state feedback control laws is proposed.
The synthesis of dynamic output feedback controllers ensuring local
stability is considered in [10] and [11]. In [10], a method for designing
dynamic output controllers using the Positive Real Lemma is proposed;
the main objective is the minimization of an LQG criterion. It should
be pointed out that the size and the shape of the stability region are
not taken into account in the design procedure, and this may lead to
very conservative domains of stability. Moreover, the controller is com-
puted from the solution of strong coupled Riccati equations which, in
general, are not simple to solve. A time-varying dynamic controller is
proposed in [11]. The stabilizing conditions are given, in this case, in
the form of nonlinear matrix inequalities, which implies the use of iter-
ative linear matrix inequality (LMI) relaxation schemes for computing
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the controller. Furthermore, no explicit consideration is made about the
region of attraction associated to the controller. On the other hand, it
should be pointed out that all the works cited above are only concerned
with continuous-time systems and the rate limitation is considered in
the modelling of the actuator. The actuator is considered to present first
order dynamics and, in fact, rate saturation is modelled as a saturation
of the actuator state. This is the so-called position-feedback-type model
[10] for rate saturation. In this case, when the time constant of the actu-
ator dynamics tends to zero, the behavior of the position-feedback-type
model tends to the ”ideal” rate limiter, or, equivalently to the notion of
a rate saturation operator as introduced in [5]. However, as pointed out
in [12] and [13], if, in fact, the actuator dynamics is not represented
by a first order model, the closed-loop stability cannot be ensured by
the proposed methods. Furthermore, the position-feedback-type model
seems to be unsuitable or imprecise for dealing with the rate satura-
tion phenomenon in a discrete-time framework, representing a digital
control system. Note that in this case, due to the saturating state, the
actuator cannot be seen as a linear system. Thus, standard discretiza-
tion methods for linear systems driven by zero-order-holders cannot
be directly applied. In fact, the effective signal sent to the plant during
a sampling period will depend on continuous-time nonlinear actuator
dynamics, which renders a more involved formal analysis.

An alternative approach for dealing with the rate saturation problem
without resorting to the position-feedback-type model, has been pro-
posed in [12], [13] (considering continuous-time systems) and in [14]
(considering discrete-time systems). The basic idea consists of intro-
ducing a rate limiter inside the controller in order to prevent the con-
trol signal (to be sent to the actuator) violating the rate bounds. This
is accomplished by introducing a nonlinear integrator in the controller
structure. In particular, in [12] and [14], stabilizing synthesis conditions
for this kind of controller structure have been proposed in the form of
nonlinear matrix inequalities, both for state and dynamic output feed-
back cases. The saturation nonlinear effects are taken into account by
the application of classical sector bound conditions. The nonlinearities
in the matrix inequalities are due, in this case, to the product of some
variables and the multipliers associated to the classical sector condi-
tions. Following the same ideas, but using a Riccati equation approach,
in [13] a method for computing fixed-order dynamic output feedback
controllers is proposed. The multipliers associated to the sector con-
ditions are seen as tuning parameters and are supposed to be a priori
fixed. As in [10], in [12] and [14] the size and the shape of the domain
of ensured stability is not taken directly into account in the design pro-
cedure. This domain is computed a posteriori, which can lead to small
regions of stability for the closed-loop system.

This note proposes a technique for designing stabilizing dynamic
output feedback controllers for discrete-time linear systems with rate
and amplitude constrained actuators. In order to deal with the rate lim-
itation, similar ideas to the ones proposed in [14] are used. We pro-
pose the synthesis of a nonlinear dynamic controller which is com-
posed of a classical linear dynamic controller in cascade with input
saturating integrators and two static anti-windup loops. It should be
pointed out that, contrary to the anti-windup approaches (see for in-
stance [15], [16], [17], [18], [19], [20], and references therein), where
the controller is considered to be given, the idea here consists of com-
puting the controller and the anti-windup gains simultaneously. The
anti-windup gains appear, therefore, as extra degrees of freedom in the
synthesis problem. In particular, they are also useful to obtain condi-
tions in LMI form. The theoretical conditions for solving the synthesis
problem are based on the application of a generalized sector condition
proposed in [20], which is applicable for deadzone nonlinearities. This
condition encompasses the classical sector condition used, for instance,
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Fig. 1. closed-loop system.

in [10], [13], [21], [14] and allows (contrary to the classical one) the
formulation of regional stabilization conditions directly in LMI form.
Then, using classical variable transformations, as proposed in [22], it
is possible to formulate LMI conditions that allow dynamic nonlinear
controllers to be computed in order to ensure the regional asymptotic
stability of the closed-loop system. Convex optimization problems for
determining the controller in order to enlarge the basin of attraction
of the closed-loop as well as enhance the time-domain performance of
the closed-loop system are, therefore, proposed. A numerical example
is provided to illustrate the application of the proposed method.

Notations: The elements of a matrix � � ���� are denoted by
������, � � �� � � � ��, � � �� � � � � � and���� denotes the �th row of ma-
trix�. For two symmetric matrices,� and�,� � �means that���
is positive definite.�� denotes the transpose of�. 	�
��
�������� is

the block-diagonal matrix
� �

� �
. �� denotes the�-order identity

matrix. ���� is a componentwise saturation map�� � �� defined as
follows: ������������ � ���� ������ � ������������	������ �������,
� � � �� � � � ��, where ����, denotes the �th bound of the saturation
function.

II. PROBLEM STATEMENT

Consider the discrete-time linear system

���
 �� ������ 
�����

���� ������ (1)

where ���� � ��, ���� � ��, ���� � �� are the state, the input
and the measured output vectors, respectively, and � � � . Matrices�,
� and � are real constant matrices of appropriate dimensions. Pairs
����� and ����� are assumed to be controllable and observable re-
spectively.

The input vector� is subject to amplitude and rate limitations defined
as follows.

• Amplitude constraints: ��������� � �����, � � �� � � � ��, where
����� � � denote the �th control amplitude bound.

• Rate constraints: ���������� � �������� � ������ � ��� � �	���,
� � �� � � � � �, where �	��� � � denote the �th rate control bound.

We suppose that only the output ���� is available for measurement.
Hence, our aim is to compute a stabilizing dynamic output feedback
controller. In particular, we consider a controller composed by an�
�
order dynamic compensator in cascade with� input saturating integra-
tors and two anti-windup loops, described by the following equations:

���
 �� � ������ 
 ���� ��
���� (2)

�
��
 �� ��
�
��� 
�
�����
�
�����
�


 �
����� ������� �����


 �
����� ��
����� �
���� (3)

�
��� ��
�
��� 
�
�����
�
�����
� (4)

where �
��� � ���� and �
��� � �� are, respectively, the state and
the output of the dynamic compensator and ���� � �� corresponds
to the state of a sub-system composed by � decoupled integrators.
Matrices �
, �
, �
, �
, �
 and �
 have appropriate dimensions.
�
 and �
 are anti-windup gains. As a consequence of the amplitude
control bounds, the effective control signal applied to system (1) is a
saturated one:

���� � ���� ������� (5)

Under this connection the whole closed-loop system is depicted in
Fig. 1.

The set of � input saturating integrators (2) introduced in the con-
troller aims at generating a rate limited control signal. Since the Lip-
schitz constant of the ����	� function is equal to 1, it follows, � � �
�� � � � ��, that

��������
 ��� � ����� �������� 
 ���� ��
��������

� ���� ����������

� ����� ��
�������� � �	��� (6)

Hence, it follows that the signal ���� to be delivered to the plant will
respect the rate constraints.

The problem addressed in the sequel regards therefore the computa-
tion of matrices�
,�
,�
,�
,�
 and �
 of the linear dynamic com-
pensator, in such a way that the domain of attraction of the closed-loop
system is maximized under some performance constraints.

III. PRELIMINARIES

In this section we present some ideas which form the basis of the
statement of the main result in Section IV. With this aim, consider a
generic linear system driven by a saturating control law as follows:

���
 �� � ����� 
 � ����� ����� (7)

with � � ��,  � � �� and matrices � and � with appropriate
dimensions.

Based on the definition of a vector valued deadzone nonlinearity
!�� �����  ���������� �����, i.e., �!�� ���������  �����
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���� ����������, � � � �� � � � � �, system (7) can be equivalently
re-written as follows:

���� �� � �	 � 
 ������� 
 ���������� (8)

Now, consider a diagonal matrix � � � 
 ��. Provided � belongs
to a set

�� � � � ��	 ������� �
����

�� ������

� � � �� � � � �� (9)

it follows that each component of the nonlinearity ������ belongs to
the sector ����������, i.e., � � ������������������ � �������������

�,
and it follows that a classical sector condition

������
�
� 
������� ���� � �� (10)

is verified, � � � ���� diagonal and positive definite.
Given a Lyapunov candidate function 
 ������, and following

an absolute stability approach (generalized circle criterion),
the regional (local) asymptotic stability of system in a region
� � 	� � ��	
 ��� � �
 is ensured if:

a) �
 ������� ������
�� 
������� ���� 
 �,

b) � � ��
This approach has been used in many works dealing with the analysis

and the synthesis of systems presenting saturations, as is the case in [10],
[14] and [21] among others. However, some drawbacks concerning the
use of the classical sector condition (10) should be pointed out. First, sta-
bility is ensured not just for deadzone nonlinearities but for all nonlinear-
ities belonging to the sector defined by�. Second, considering quadratic
Lyapunov functions, it leads to stability conditions in the form of non-
linear matrix inequalities (basically due to the product of � , � and�).
Then, in order to deal with these conditions in an LMI framework, either
the matrix�or the multiplier matrix� , should be fixed a priori, which is
another source of conservatism (see a discussion in [20]).

It has been shown in [20] that, for the particular case of deadzone
nonlinearities, these drawbacks can be overcome. In this case, provided
� belongs to a set

�� � 	� � ��	 ������ �������� � ����� � � �� � � � ��
� (11)

the following generalized sector condition hold

������
�
� 
���������� � �� (12)

� � � ���� diagonal and positive definite. In this case, the set inclu-
sion condition b) above will be replaced by� � ��. Note that relation
(10) can be seen as a particular case of (12) if we set� � ��. Hence,
(12) will produce stability conditions which encompass the ones gener-
ated from (10). Furthermore, direct information about the nonlinearity
type is present in (12), which is not the case when the relation (10) is
considered, therefore reducing the conservatism of the conditions. On
the other hand, as will be made clear in the sequel, since � appears
as a free variable, conditions in LMI form can be directly obtained,
avoiding iterative schemes as proposed, for instance, in [14].

IV. MAIN RESULTS

First, note that the problem of computing the linear compensator
matrices ��, ��, ��, ��, �� and �� can be seen as the synthesis of a
dynamic linear output feedback compensator (3)–(4) for an augmented
system (composed by the plant plus the controller integrators), given
as follows:


���� �� ��
��������� ��
����� �������

���� �������


���� ��
���� (13)
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 � �� � �

�� ��
�� � �
� � ���� ��
�� and �� ���� � ������ ���� ����.
Thus, the closed-loop system, obtained from the interconnection of

the plant (1) and the controller (2)–(4) through (5), can be represented
by the following nonlinear system:

���� �� � ������ 
��� �������� 
�� ������� (14)
with

� �

�
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�
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� � � 
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��� �� � �

We are now ready to state the main result of the paper. This result
will follow the ideas discussed in Section III. Since the equivalent rep-
resentation of the closed-loop system (14) presents two deadzone non-
linearities, two generalized sector conditions (12) and respective set
inclusion conditions are considered in order to take into account the
nonlinear behavior of the system. In order to compute the matrices of
the dynamic compensator, the ideas proposed in [22], where appropri-
ated change of variables allows the formulation of synthesis conditions
in LMI form, are here adapted to also include the anti-windup gains
(�� and ��) and the variables associated to the sector conditions.

Theorem 1: If there exist symmetric positive definite ma-
trices ��� � ������������, positive definite diagonal ma-
trices �	� �
 � ����, and matrices �� � ������������,
�� � ��������, �� � ������������, �� � ��������,  	�,
 	�,  
�,  
� � ��������, !	� !
 � �������� such that the
inequalities1(15)–(17) below are verified

� " " " " "

���� � " " " "

 	�  	� ��	 " " "

 
�  
� � ��
 " "

�� �� �� ��� ��� ��	 ���
 � "
�� ��� ��� !	 !
 ���� �

# � (15)

� " "

���� � "
����� �  	���� �������  	���� $�	���

� � (16)

� " "

���� � "

������ �  
���� 
� ������ �  
���� $�
���

� � (17)

� � � �� � � � ��, then the dynamic compensator (2)–(4) with

�� ��

�� ��

�
% ��

� ����
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�
��� ��� ��

�� ��
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& � �

�� ����
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�� �%
���!	�
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	 � ���

�� �%
���!
�

��

 � ���� (18)

where matrices& and% verify%& � � ������ � , guarantees that

the region ��' � 	� � �������	 ��'� � �
, with '
� %

% � �

1
� stands for symmetric blocks; � stands for an element that has no influence

on the development
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and ���
� �

� � �
, is a region of asymptotic stability for the

closed-loop system (14).
Proof: Consider matrices ��� �� � ����������� and define

the following sets:

����� � � �������� ������ ��������

� ������ � � �� � � � �	

����� � � �������� ������ ��������

� ������ � � �� � � � � 	

Consider now the closed-loop system (14) and the candidate
Lyapunov function 
 ������ � ����������, � � � � � �. Define
	
 ������ � 
 ���� 
 ��� � 
 ������. From [20, Lemma 1], if
���� � ����� 	 �����, it follows that2 	
 ������ � 	
 ������ �
�
� �������
� ��� � ������
��
� �������
� ��� � ������
, for
any diagonal matrices ��� �� � �, which can be re-writtten as
	
 ������ � ����������� with

� �

� � �

����� ��� �

����� � ���

�

�
�

��

���

� ��
 � �� 


and ���� � ������ 
� ���� 
� ����
�. Hence, from Schur’s complement,
it follows that 	
 ������ � � if ���� � ����� 	 ����� and

�� �

� � � �

����� ��� � �

����� � ��� �

�
 � �� ���

� �� (19)

Define now a matrix � �
� ����

� � �
[22]. Note that, from

(15), it follows that � � � �� � �. Therefore, ���� � � � is non-
singular. Thus, it is always possible to compute square and nonsin-
gular matrices � and � verifying the equation �� � � ���� �
� � . From the nonsingularity of � it is inferred that � is nonsin-
gular. Consider now �� � ���

� and �� � ���
� , and define � �

��������� ���� ��� ��� ���. From the definition of �, and consid-
ering the following change of variables:

��� ��� � 
�! �"

�
� ��

� ����
�

��  �

!� "�

�
� � �

�� ����

#� ����� 
�$����

#� ������ 
�%���

��� � �&�� &��
�

��� � �&�� &��


it follows that ����� � � corresponds to (15). Thus, since � , � , � ,
� , �, �� and �� are nonsingular, it follows that if (15) is verified, (19)
holds with the matrices ���  �� !�,"�, %� and $� defined as in (18).

On the other hand, it follows that �� � � �! "�� 
 and �� �
� � � �� 
 � 
� � � �� �� 
, where �� and �� correspond respectively
to the matrices composed by the last	 lines of matrices� and ����.
Hence, left and right-multiplying inequalities (16) and (17) respectively
by ������������������� and its transpose, it is easy to see that the set
of LMIs (16) and (17) ensures that 
�� � � ����� and 
�� � � �����
respectively [7].

2For ease of notation in the sequel we denote � ��� � � ������� and
� ��� � � �������.

Thus, if (15)–(17) are satisfied, one obtains 	
 ������ � �,
� ���� � 
�� �, which means that 
�� � is a contractive region for
system (14), i.e., if ���� � 
�� �, then the corresponding trajectory
converges asymptotically to the origin. �

Remark 1: Since a quadratic Lyapunov function is considered, the
result of Theorem 1 guarantees regional exponential asymptotic sta-
bility. Note also that, due to the presence of integrators in the controller
structure, our problem is equivalent to the synthesis of a linear satu-
rating compensator for an open-loop system which will always present
some eigenvalues equal to 1. From these facts, even if the open-loop
system is asymptotic stable, it follows that it is not possible to achieve
global asymptotic stabilization with the proposed approach.

Remark 2: As stated in Theorem 1, the use of the generalized sector
condition, to take into account saturation effects, leads directly to LMI
conditions for the synthesis of the controller. On the other hand, con-
sidering polytopic differential inclusions to model saturation (such as
in [23] and [24]), it is worth noticing that it is not possible to achieve
convex conditions for the synthesis of time-invariant controllers of type
(2)–(4)

V. OPTIMIZATION PROBLEMS

According to Theorem 1, any feasible solution of the set of LMIs
(15)–(17) provides a stabilizing, and probably different, dynamic con-
troller. Among all these solutions, it is of interest to choose one that
optimizes some particular objective. In this paper, the objective to be
maximized will be the size of the domain of attraction of the closed-
loop system, that is, the size of the projection of 
�� � onto the states
of the plant (i.e., '). This set is denoted as 
��� � and is given by

��� � � �' � ��� �( � ��� '� � ������'�(�'��


� � 
�� �� �
' � ���'����

�� ' � � , where ��� � �
��� is obtained from � �

��� �

��� ���
.

Note that for any initial state '��� � 
��� �, initial values of the
states of the dynamic controller (��� and '���� can be found such that
���� � 
�� �, i.e., such that the asymptotically stability of the closed-
loop system is ensured. In order to maximize the size of 
��� �, we
can, for instance, consider the minimization of the trace of���

�� . Note
that the trace of���

�� is equal to the sum of the semi-axis of the 
��� �.
This can be indirectly accomplished by considering an auxiliary matrix
variable ) and the following optimization problem:

��� ������)�

��� ����� ����� �����
) ��

�� ���
� � (20)

Other optimization criteria on the size of 
��� �, leading to convex
problems, can easily be stated, such as: minor axis maximization, maxi-
mization in certain directions and volume maximization (see details for
instance in [23] and [24])

It is worth noticing that performance requirements such as contrac-
tion rate, pole placement of the closed-loop system or quadratic cost
minimization can be added to the problem. In this case, the resulting
optimization problem can also be written as an LMI optimization
problem. For instance the controller can be designed in order to ensure
some degree of time-domain performance in a neighborhood of the
origin. In general we consider this neighborhood as the region of
linear behavior of the closed-loop system [7], i.e., the region where
saturation does not occur, which is defined as

)	 � � � �������� ������� � ������

������� � ������ � � �� � � � � 	
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Fig. 2. simulations.

In this case, the time-domain performance can be achieved if we
consider the pole placement of matrix� in a suitable region inside the
unit circle. Considering an LMI framework, the results stated in [22]
can be used to place the poles in a so called LMI region in the complex
plane. For example, if we verify the following LMI:

��� ������ � �

������ ��� � �

�� �� �� ��� ��� ��� ������
�� ��� �	� ������ ���


 � (21)

it is easy to show that the poles of � will be placed in a disk centered
on zero and with radius � 
 � 
 �. In this case, the smaller the � the
faster the decay rate of the time-response inside the linearity region.

Remark 3: If the open-loop system is stabilizable, LMIs (15)–(17)
will always be feasible. Note that the solution of these LMIs with
��� � ��� � ��� � ��� � � (which corresponds to consider
�� � �� � � in the generalized sector conditions) is feasible,
since it corresponds to the synthesis of a dynamic linear compensator
(as in [22]) leading to ��
 � � ��. Of course, under performance
constraints, this leads to small regions of stability (see discussion
in [7]). The idea is therefore to explore the degrees of freedom in
variables ��� , ��� , ���, ��� to obtain stability regions not included
in �� (i.e., where saturations effectively occur).

TABLE I
TRADE-OFF: SATURATION � REGION OF STABILITY � PERFORMANCE

VI. NUMERICAL EXAMPLE

Consider the discrete-time linear system given by

� �
��� ��	

���
 ���
� 	 �

�

�
� � � � � � 


with the following saturating limits: ������ � � and ������� � ���.
In order to ensure a certain time-domain performance when the system
is not saturated, we also consider that the poles of matrix � must be
placed inside a disk of radius 0.9.

Solving the optimization problem (20) with the additional constraint
(21), the following controller matrices are obtained:
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The projection of the stability region ��
 � onto the plant states is given
by

���
 � � � � �� � ��
���
�� �������

������� ����
�
� � �

In Fig. 2(a) this contractive ellipsoid is shown as well as the tra-
jectories of the controlled system for several initial states. For a given
plant initial state, the initial controller states i.e ���� and �����, are
chosen in such a way that ���� � ������� ������ �����

�
� is in ��
 �.
In Fig. 2(b) the evolution of the output system ����, control action
���� and increment of the control action ����� are depicted when the
system starts from ���� � ���� � ��	
�, ���� � ������, ����� �
�

��
��� � �������
 � �	���
��
�. Notice that the limit require-
ments in ���� and ����� are satisfied thanks to the proposed saturating
dynamic output feedback. Indeed, note that both ���� and ����� are
effectively saturated in the first samples.

In Table I, the trade-off between saturation, the size of the stability
region and the time-domain performance are illustrated in terms of the
pole placement of matrix� in a disk of radius �. Considering different
values of �, the values of ���������

�� � and �������� (which is re-
lated to the volume of the ellipsoid), obtained from the solution of (20),
are shown in two situations: the first one regarding the application of
the results of Theorem 1, i.e., the saturation and the nonlinear behavior
of the closed-loop system are effectively considered; the second one
concerns the linear solution, i.e., the stability region is forced to be
contained in the region of linear behavior of the closed-loop system
���� in order to avoid saturation (i.e., ��
 � � ��). As expected, the
smaller the � (i.e., more stringent is the performance requirement), the
smaller the obtained stability region. On the other hand, the solutions
considering saturation and nonlinear behavior lead to larger domains
of stability.
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VII. CONCLUSION

In this paper a technique for the design of stabilizing dynamic output
feedback controllers for discrete-time linear systems with rate and am-
plitude constrained actuators is proposed. This controller is composed
of a classical linear dynamic compensator in cascade with an input sat-
urating integrator system and two static anti-windup loops.

Theoretical conditions to ensure local (regional) stabilization of the
closed-loop system, composed of the plant and the proposed controller,
are formulate in LMI form. This allows the controller matrices to be
computed in order to maximize the size of the domain of attraction,
maintaining certain performance requirement, from the solution of
convex optimization problems.
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Output Feedback Stabilization for a Discrete-Time
System With a Time-Varying Delay
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Abstract—This study employs the free-weighting matrix approach to in-
vestigate the output feedback control of a linear discrete-time system with
an interval time-varying delay. First, the delay-dependent stability is an-
alyzed using a new method of estimating the upper bound on the differ-
ence of a Lyapunov function without ignoring any terms; and based on the
results, a design criterion for a static output feedback (SOF) controller is
derived. Since the conditions thus obtained for the existence of admissible
controllers are not expressed strictly in terms of linear matrix inequali-
ties, a modified cone complementarity linearization algorithm is employed
to solve the nonconvex feasibility SOF control problem. Furthermore, the
problem of designing a dynamic output feedback controller is formulated
as one of designing an SOF controller. Numerical examples demonstrate
the effectiveness of the method and its advantage over existing methods.

Index Terms—Discrete-time systems, linear matrix inequality (LMI),
output feedback, stabilization, time-varying delay.

I. INTRODUCTION

Increasing attention is being paid to the delay-dependent stability,
stabilization, and�� control of linear systems with state delays (See,
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