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Abstract

We consider an obnoxious facility location problem in which the facility is a trajectory consisting of a bounded
length polygonal chain of two edges having extremes anchored at two given points. In other words, given a setS
of points in the plane and a positive valuel0, we want to compute an anchored 1-corner polygonal chain having
length at mostl0 such that the minimum distance to the points inSis maximized. We present non-trivial algorithms
based on geometric properties of each possible configuration providing a solution. More specifically, we give an
O(n log n)-time algorithm for finding a 1-corner obnoxious polygonal chain whose length is exactlyl0, and an
O(n2)-time algorithm when the length of the optimal chain is at most the given boundl0.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A classical operations research problem that has also been considered in the computer science com-
munity is thefacility locationproblem. The task is to position an object (the facility) in an underlying
space such that a distance measure between the facility and some given points (the demand points) is
minimized or maximized. Most of the problems described in the literature are concerned with finding an
optimal location for a “desirable” facility, where the goal is to minimize a distance function between the
facility and the sites. Just as important is the case of locating an “undesirable” or “obnoxious” facility. In
this case, instead of minimizing the largest distance between the facility and the given points, we would
like to maximize the smallest distance.
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The most classical versions of facility location problems consider the positioning of one or several
point-like facilities. Nowadays, there is a growing body of research on the location of non-point facilities;
see Díaz-Báñez et al.[1] for a recent survey on the current state-of-art of these problems.

In this paper, we deal with the placement of an undesirable facility modelled by a polygonal chain with
one corner, amidst existing installations or facilities. It is clear that the location of this trajectory must
be constrained, as otherwise the route may be simply removed to infinity. We also consider an additional
constraint on the length of the chain, because when the chain represents a facility to be constructed or
routed, the length is related to some cost, and becomes clearly relevant. We also add the restriction that the
chain must start and end at specified anchor pointsaandb, corresponding to given origin and destination.

Due the geometric nature of the problem we address the resolution from the point of view of the
computational geometry. There is a vast literature on location theory and there exist actually a lot of
papers based on its connection with computational geometry. In fact, with many practical motivations,
geometric instances of facility location problems have attracted a significant amount of the research to date.
Some applications of the computation of an obnoxious route include urban, industrial and military task
planning when the transportation of some kind of obnoxious material is addressed. The proposed problem
combines the computation of a short path with risks issues as actually done in real-world applications
within hazardous material logistic area. See Erkut and Verter[2,3] where a discrete underlying space is
considered and Drezner and Wesolowsky[4], Melachrinoudis and Xanthopulos[5] and Díaz-Báñez et
al. [6] for the continuous case.

On the other hand, applications of these problems go well beyond the field of location science. For
instance, the problem to compute a connecting path avoiding collisions is one of the most important
tasks in robotics. In[7], a path allowing right-angle turns is considered. In order to minimize the cost, to
consider a bound on the length of the path is a logical constraint. In this sense, our problem gives a path
with maximal clearance.

There has been considerable activity in the computational geometry community on facility location
problems that involve computing non-single facilities of various types. Several optimization problems
dealing the location of a 1-corner chain using a minimax criterion have been posed by Glozman et al.
[8] and Díaz-Báñez et al.[9]. On the other hand, maximin criteria have been investigated for the optimal
positioning of points[10–12], lines[13], line segments[14], circumferences[15], and planes in 3-D[16].

An outline of the paper is as follows. In Section 2, we study the configuration cases that may determine
an optimal route depending on whether the length of the polygonal chain is equal to or at mostl0. We show
that an optimal 1-corner route for the problem must be at minimum distance from two or three points; all
these configurations may be explored with a brute-forceO(n4)-time algorithm. In Section 3, we present
anO(n log n)-time algorithm for the maximin 1-corner polygonal route problem when the length of the
route is exactlyl0. Whenl0 is an upper bound for the length, we propose different algorithms, described
in Section 4, depending on the position of the points that determine an optimal chain. All these cases can
be solved withinO(n2) worst case running time.

2. Overview

We start by introducing some notations. Hereafter we denote byS={p1, p2, . . . , pn} the given finite set
of points. A1-corner routeR is a polygonal chain with one corner (its intermediate vertex) that starts and
ends at specified anchor pointsaandb. When the corner point isq, we also use the notationR=a−q−b.
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Fig. 1. An empty anchored boomerang and its three parts.

We denote the line segment connectingp andq bypq. The Euclidean distance between two pointsp and
q is denotedd(p, q). If p is a point inR2, andC is a closed subset ofR2, then the distance betweenp
andC is defined asd(p,C) = min{d(p, q) : q ∈ C}. Thus,d(p,R) = min{d(p, aq), d(p, pq)}. The
maximin 1-corner polygonal chain problem can be now stated as follows.
Given a set S of points in the plane and a positive valuel0, find a 1-corner polygonal route,R with

Euclidean lengthl(R)� l0, such thatminpi∈S d(pi,R) is maximized among all possible chains fulfilling
the conditions.

It is clear that the solution to this problem might not be unique. For example when the anchor points
are outside the convex hull ofS there may exist an infinite number of solutions. Although our algorithms
can be handled for detecting all optimal solutions when there exist a finite number of them, in this paper
we focus on findingoneoptimal configuration.

Let us observe that the restriction on the length implies that the pointq cannot be exterior to an ellipse
with focus ata andb. This defines a continuous search space; however, we can generate a discrete set of
candidate placements as follows.

Definition 1. Given a 1-corner routeR = a − q − b, the locus of points at distancer from R is called a
boomerangcentered atR and radiusr. We call a boomerang anempty boomerangif it does not contain
any point ofS. An empty boomerang iscritical when some points fromSlie on its boundary; in this case
enlarging its radius would result in a non-empty boomerang.

Equivalently, a boomerang is the area swept by a disk whose center describes the route. Thus, in a
geometric setting, the problem asks for finding the largest empty boomerang anchored ata andb (refer
to Fig. 1).

Definition 2. The points inSthat determine a tentative placement of an optimal routeR= a − q − b by
the fact that they lie on the boundary of its critical boomerang are called thecritical points.

Let B1, B2 andB3 be the parts of the boomerang where the critical points may lie, corresponding to
points whose closest point in the route belongs to segmentaq, qb, or is the pointq, respectively (Fig.1).
We classify the cases for critical points cases according to their location on the parts of the boomerang,
as shown inFig. 2. We briefly describe the way for obtaining the cases. We begin with the obvious
observation that the boundary of an optimal boomerang must contain at least one point ofSas, otherwise,
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Fig. 2. Cases of critical points.

the radius can be increased. Then, the idea is to use the freedom left in order to move the chain anchored
ata andb and to increase its radius until at least one more point ofS is encountered. All of the six cases
in Fig. 2are candidates or critical configurations because every movement of the cornerq decreases the
minimum distance to the chain. An exhaustive but straightforward analysis of the situations that may
arise gives immediately the following result, which we state formally for future reference.

Lemma 1. LetR be a solution for the maximin 1-corner polygonal chain and B the critical boomerang
generated byR. Then the possible positions of the critical points forR are as follows.

1. If q is on the ellipse:

(a) One point inB1 and one point inB2, or
(b) one point inB1 (or B2) and one point inB3, or
(c) one point inB1 ∩ B2.

2. If q is inside the ellipse:

(a) One point inB1, one point inB2 and one point inB3, or
(b) one point inB1 ∩ B2, and one point inB3, or
(c) two points inB1 (or B2).

Using this lemma we could exhaustively consider all possible cases for the placement of a critical
boomerang according to its critical points, and then find the optimal one, which would lead to a naive
O(n4)-time algorithm.

In the next sections, we show how to solve the problem more efficiently.
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3. Finding the best corner on the ellipse

In this section, we give anO(n log n)-time algorithm for the version of the maximin 1-corner route
problem in which the length of the route is exactly a numberl0, which is equivalent to force the cornerq to
lie on an ellipseEwith focusaandb. In other words, we want to compute an anchored routeR=a−q−b,
with q ∈ E, such that minpi∈Sd(pi,R) is maximized.

Our algorithm uses the lower envelope of a suitable family of functions. The key idea is to divide the
ellipse into a linear number of arcs such that in each arc we know which point ofSminimizes the distance
to the articulated configuration that models the route. Notice that when this point ofSis unique, it has the
same property minimizing the distance in a neighborhood, and therefore that the positions on the ellipse
in which there are ties are finite in number.

Denote byP the partition ofE into arcsAj = {q ∈ E : minpi∈Sd(pi,R) = d(pj ,R)}, where we
assume that no two consecutive arcs belong to the same point ofS (otherwise we would merge the two
arcs).

We can prove thatP has a linear number of arcsAj . In order to simplify the explanation, notice first
of all that we can obtain the same kind of partitionsPa andPb of E corresponding, respectively, to the
segmentsaq andbq, independently and see that their size is linear. Then, by using the definition of the
distance function, we can easily computeP, sinced(pi,R)=min{d(pi, aq), d(pi, bq)}, and thereforeP
can be computed in linear time by comparing distances in each sub-interval, as we have|P|� |Pa|+|Pb|.
Hence, we see that it is enough to show how to compute the partition of the ellipseEwhen the left segment
aq rotates withq describingE, as the partitionPb can be computed in an analogous way.

Without loss of generality, we consider that the origin of coordinateso is the anchor pointa. Let �
be the polar angle ofq ∈ E; for eachpi ∈ S we denote bydi(�) = d(pi, oq) the distance between
the pointpi and the segmentoq. Then, it is sufficient to compute the lower envelope of then uni-
variated continuous functionsdi(�), pi ∈ S, in order to determine the arcsAj of the partition of the
ellipseE.

Lemma 2. Letpi andpj be two distinct points of S.Then, the graphs of the functionsdi anddj intersect
at most twice.

Proof. Given two pointspi andpj of S, i �= j , let L(i, j) = {x ∈ R2; d(pi, ox) = d(pj , ox)} be the
locusof pointsx in the plane such that the distance frompi andpj to the line segmentox are equal. We
show below thatL(i, j) andE intersect at most twice; consequently, there exist at most two pointsx, y

onE for whichd(pi, ox) = d(pj , ox)andd(pi, oy) = d(pj , oy).
Barcia et al.[14] give an exhaustive description of the locusL(i, j). For the sake of simplicity, we

only describe one of the cases (the most common one); the other situations are similar. Suppose that
d(pi, o)> d(pj , o) andpi , pj ando are not collinear. ThenL(i, j) is a differentiable 2-dimensional
curve consisting of two half-lines joined by an arc of curve of maximum degree four (as illustrated inFig.
3). The locusL(i, j) dissects the plane into two domainsD(i, j) andD(j, i) having both of themL(i, j)
as complete separating boundary. More precisely, denoteD(i, j) = {x ∈ R2 : d(pi, ox)< d(pj , ox)}
andD(j, i) = {x ∈ R2 : d(pj , ox)< d(pi, ox)}. Barcia et al.[14] give a complete proof of the fact that
D(i, j) is a convex region and that, furthermore,L(i, j) is contained in a wedge with angle�<(�/2) and
apex ino (seeFig. 3). As the origino lies inside the elipse, this implies thatL(i, j) intersects the ellipse
E at most twice, which proves the claim.�
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Fig. 3. The locusL(i, j).

LetLa
o be the lower envelope of the graphs of the functionsdi . Traverse this envelope from left to right,

and form an ordered sequence with the labels of the points defining the pieces of functions encountered.
Lemma 2 implies that this sequence is a Davenport–Schinzel sequence of order two[17]. Therefore,
the number of intervals in the partition isO(n) [17], and thatLo can be computed using a standard
divide-and-conquer approach inO(n log n) time.

In a similar way, letLb
o be the lower envelope of the graphs of the functionsdi when the origino is

used instead of the anchorb. In O(n) time we can compute the lower envelopeL of both functionsLa
o

andLb
o, which consists ofO(n) vertices. In fact, the merge step simply scans two sorted lists of intervals.

Finally, traversingL from left to right, we can identify its maximum. In summary, we have proven the
following result.

Theorem 1. The obnoxious 1-corner route problem with corner on the ellipse E can be solved in
O(n log n) time.

4. Finding the corner inside the ellipse

In this section, we study the situations in which the corner of the trajectory may be placed in the interior
of the ellipse, giving rise to the possibilities described in Lemma 1.
Case2a: By definition, there are three points at minimum distance from the chainR= a − q − b, each

one in a different part of the associated boomerang. In order to explore all these configurations, for every
pointpi of Swe construct the largest radius boomerang that haspi in its partB3.

Lemma 3. Given a set of points S and their radial orderings around a and around b, for each pointpi

of S we can find in linear time the largest radius critical boomerang havingpi in its partB3, and two
additional critical points, one inB1 and another one inB2.
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Fig. 4. Finding an optimal route forpi in Case 2a.

Proof. Suppose without loss of generality thatpi is above the line containinga andb as in Fig. 4;
let us see how to obtain an optimal configuration for this case. LetTi be the set of points ofS inside
the triangle of verticesa, pi andb. Let ta and tb, respectively, be the left supporting line toCH(Ti)
from a and the right supporting line fromb, and let us denote byq the point whereta andtb intersect,
and byca andcb the respective contact points of these supporting lines withCH(Ti). If q is outside the
triangle, thenpi would not generate a candidate configuration for this case, thus we assume thatq is inside
the triangle.

Since the order of the points inTi arounda (as well as aroundb) is given,CH(Ti) can be obtained in
linear time. Besides that, we can obtain an ordered list of the nearest points ofCH(Ti) to the tangentta
(resp.tb) when it rotates counterclockwise (resp. clockwise), which is simply the list of vertices ofCH(Ti)
as they appear counterclockwise on its boundary starting atca (resp. clockwise starting atcb). In this way,
in O(n) time we can find the first points of each listpa,pb such thatd(pa, aq∗)=d(pb, bq

∗)=d(pi, q
∗),

whereq∗ is the intersection point between the rays froma andbwhich satisfies the preceding equalities.
This pointq∗ gives the tentative optimal configuration; the emptyness of the rest of the boomerang can
be checked in a final step.�

If we compute in a first step, usingO(n log n) time, the radial order of the points inS, both arounda
andb, and then tentatively apply the preceding construction to every pointpi , we see that Lemma 3 gives
anO(n2) time algorithm in order to find an optimal 1-corner route for Case 2a.
Case2b: Suppose that there is a critical pointpi in B1 ∩ B2 and another critical pointpj in B3.

We now consider the pointpi as fixed and compute the largest empty boomerang corresponding to this
configuration (Fig. 5).

Lemma 4. Given the Voronoi diagram of S, V (S), for each pointpi ∈ S we can obtain in linear time
an optimal 1-corner routeR = a − q − b among those such thatd(pi, aq) = d(pi, bq) = d(pj , q), for
somepj ∈ S\{pi}.

Proof. Consider a pointpi in Sand letLi be the locus of pointsq such thatd(pi, aq) = d(pi, bq). It is
easy to prove that the locusLi is a line passing throughpi . Then, we must find the first pointpj ∈ S\{pi}
with the following properties: (1) There exists a pointq in Li such thatd(pj , q)=d(pi, aq)=d(pi, bq);
and (2) no pointpk in S\{pi, pj } with d(pk, a − q − b)< d(pi, a − q − b) = d(pj , a − q − b).
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Fig. 5. Finding an optimal route forpi in Case 2b.

As the circleC throughpj centered atqmust be empty of points ofS, qmust lie in the Voronoi region
of pj . Therefore, we can intersectLi with V (S), which gives a linear number of segments, and find the
solution for the pointsq satisfying the equalities in (1) above, in constant time in every such segment. If
we walk alongLi , starting atpi , and process the segments in the order in which they are encountered,
we see that we can find the pointpj in linear time, which proves the claim.�

If we compute in a first step, usingO(n log n) time, the Voronoi diagramV (S) of the points inS, and
then tentatively apply the preceding construction in Lemma 4 to every pointpi , we obtain anO(n2) time
algorithm in order to find an optimal 1-corner route for Case 2b.
Case2c: Without loss of generality, we assume that the critical pointspi andpj determining the

optimal 1-cornera − q − b are closer toaq than tobq. A technical result is required.

Lemma 5. Leta1, a2, . . . , an ben ordered real numbers and letr1, r2, . . . , rn be n non-negative values.
Then, the set

⋃
1� i�n [ai − ri, ai + ri] can be computed inO(n) time.

Proof. Let us construct the set
⋃

1� i�nIi incrementally following the increasing order of the centers
a1, a2, . . . , an. We maintain the current union in a listLof disjoint intervalsJ1, ..., Jt , (in general different
from the intervalsIi), stored in the order given by their centers.

Initially, we set the list to beL : ={J1 = I1}. If I1 ∩ I2 = � we simply addJ2 = I2 to L. Otherwise
we update the list to contain the single intervalJ1 = I1 ∪ I2. Observe that, in this case, the center ofJ1
lies betweena1 anda2, which in particular implies that it lies to the left ofa3.

For the general step, assume that the unionI1 ∪ I2 ∪ · · · ∪ Ii has been computed and stored in a list
L = {J1, . . . , Jk}. Recall that the intervals inL are disjoint, their centers are increasingly ordered and
all lie to the left ofai+1; then we proceed as follows.

If Ii+1 ∩ Jk = �, we simply addJk+1 = Ii+1 to the current list, with costO(1) which we charge
to the intervalIi+1, that has just entered the list; furthermore notice thatIi+1 ∩ Jk = � implies that
Ii+1 ∩ J1 = · · · = Ii+1 ∩ Jk−1 = �.
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Fig. 6. Configuration for Case 2c.

If Ii+1 ∩ Jk �= � we update the list by makingJk : =Jk ∪ Ii+1, in O(1) time which we charge to the
“old” Jk, which has been just replaced. Next we check the intersectionJk ∩Jk−1. If it is empty, the cost of
its computation is charged toIi+1, which has entered the list after a suitable merging step, and we proceed
to the next iteration withIi+2. Otherwise, i.e., ifJk ∩Jk−1 �= �, we updateJk−1 to beJk−1 : =Jk−1 ∪Jk
and removeJk from the list, actions with costO(1) which is charged to the removedJk. Next we would
check whetherJk−1 ∩ Jk−2 is empty or not, and so on.

As in the whole process there are at mostn intervals enteringL and at mostn − 1 intervals removed
from the list, the overall running time isO(n), as claimed. �

Remark. Notice that the preceding lemma also applies when, instead of points on a line, we have a circle
(or an arc of circle), with points on it whose radial order around the center of the circle is given, and the
union of intervals centered at these points has to be computed.

We are now ready for dealing with Case 2c. For the ease of description we are assuming general position
hereafter, that is, no two points inSare collinear witha or are exactly at the same distance froma (these
degenerate cases can be handled by the method but require many case details).

Lemma 6. Suppose that the radial order of S around b is known. Then we can obtain inO(n2) time an
optimal configurationR=a−q−b characterized by two critical points in the partB1of the corresponding
boomerang.

Proof. For each��0 and each pointpi ∈ S, letD�
i denote the disk with centerpi and radius�. LetR�

i

andL�
i be the rays anchored ata that are right tangent and left tangent, respectively, to the diskD�

i . When
� grows, the tangentsR�

i andL�
i rotate clockwise and counterclockwise, respectively, for eachpi .

Let us denote byq ′ the point in which the ray through a pointq, and havinga as origin, intersects the
ellipseE. Any configurationa − q − b in situation 2c, with the critical points inB1 and radius�, fulfills
three conditions (refer toFig. 6).

(1) The disks of radius� centered ata andb are empty of points fromS.
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Fig. 7. Checking condition (3).

(2) If pi andpj are the critical points, the disksD�
i andD�

j are tangent ataqat pointsti andtj , respectively.

If tj (for example) is the contact point furthest away froma, no diskD�
k is tangent or overlaps the

segmentatj , for k �= i, j .
(3) If we consider the disks as obstacles,b can see a point (namelyq) in the segmenttj q ′ such that the

disk of radius� centered atq contains no point fromSand no diskD�
k overlapstj q.

The first condition can be guaranteed a fortiori by taking values of� bounded above by�min =
min{min{d(a, pi), pi ∈ S},min{d(b, pi), pi ∈ S}}. If in addition to that we have a pair of critical
pointspi andpj in the situation of condition (2) (and henceforth a fixed value of�), we can check con-
dition (3) inO(n) time: We first shrink the segmenttj q ′ to tj q

′′ to ensure that no diskD�
k overlapstj q ′′,

and then we treat the disksD�
k with centers in the halfplane of the lineatj in which b lies as obstacles

when seen fromb, that we can project onto intervals on a circle centered atb, and then compute their
union as described in the remark after Lemma 5; the complement of the union gives the windows for
fitting the armq − b of a − q − b (Fig. 7).

Therefore, we are left with the task of determining how many pairs of points ofS give candidate
configurations in the situation of condition (2), and which is the cost of finding all such pairs.

Notice that for a fixed pair of critical pointspi, pj as inFigs. 6and7, the tangentsRi andLj coincide
for some value of�. For larger values of� the diskD�

i will always overlap the segment betweena and
the contact point ofLj with D�

j , thereforeLj can no longer appear in a candidate configuration. Hence,
if we charge the starting pairpi, pj toLj , i.e., to the tangent with contact point further away froma, we
have a charging scheme proving that the number of candidate configurations is linear.

In order to find all of them let us proceed as follows. For everyone of the tangentsLk (as well as for
Rk), k=1, ..., n, let us find all the values of� making the tangent coincide with some other tangent. These
values are stored in a doubly linked listL(Lk), each value with a pointer to its copy in the list for the
other tangent giving rise to the value. Each list is scanned and rearranged in such a way that the smallest
value appears in first position. The whole process for the set of tangents takesO(n2) time.

Next, we select the minimum value�1 among the first values from each list. If it corresponds to two
left tangentsLi andLj , with respective contact pointsti andtj , andtj is further away froma thanti ,
the tangentLj cannot participate in a candidate configuration for larger values of�, because the diskD�

i
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would overlap the segmentatj . Therefore we can discard the tangentLj , as well as the listL(Lj ) and
the associated copies of the values in the other lists, remove�1 from L(Li), and scan the updated list
L(Li) in order to put in the first position the smallest value. The whole process takesO(n) time. If �1
corresponds to two right tangents, we proceed analogously. If it corresponds to a right tangent and a left
tangent, we get a candidate configuration, but we have already seen in the charging scheme that one of
the tangents can be discarded for larger values of�; for the other one we remove�1 from its associated
list and update the smallest value.

In any case, we see that we can always discard one of the tangents inO(n) time, and are then ready
to iterate. Therefore, the whole process of identifying theO(n) candidates can be carried out inO(n2)

time. As each one can be checked for condition (3) in linear time, and we can maintain the best found
solution, this gives the claimed complexity.�

If we compute in a first step, usingO(n log n) time, the radial order of the points inSarounda andb,
and then apply Lemma 6, we obtain anO(n2) time algorithm in order to find an optimal 1-corner route
for Case 2c.

Combining the results from the three preceding cases, we arrive at the main result of this section.

Theorem 2. The obnoxious 1-corner route problem whose corner is not external to an ellipse with focus
a and b can be solved inO(n2) time.

5. Conclusion and remarks

In this paper, we have considered a problem consisting of locating an undesirable facility amidst
demand-points, where the facility is an anchored 1-corner polygonal chain with length constrained to be
at most a given number. Algorithms based on geometric concepts and techniques have been proposed,
beating substantially the brute-force approach.

The methods for the case in which the corner is constrained to lie on the ellipse can be extended to
some other types of curves. In fact, if the cornerq is on a curve intersecting the locusL(i, j) at most
twice, the approach can be applied in a quite similar way.

Finally, let us mention that the techniques we have used would lead to very high complexities when
k corners are allowed, hence a new approach would have to be developed in order to obtain exact and
efficient algorithms for general polygonal chains.
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