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Abstract

We consider an obnoxious facility location problem in which the facility is a trajectory consisting of a bounded
length polygonal chain of two edges having extremes anchored at two given points. In other words, given a set
of points in the plane and a positive valige we want to compute an anchored 1-corner polygonal chain having
length at mosty such that the minimum distance to the pointSis maximized. We present non-trivial algorithms
based on geometric properties of each possible configuration providing a solution. More specifically, we give an
O (n log n)-time algorithm for finding a 1-corner obnoxious polygonal chain whose length is eXactind an
0 (n®)-time algorithm when the length of the optimal chain is at most the given biund
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A classical operations research problem that has also been considered in the computer science com:
munity is thefacility location problem. The task is to position an objetid facility) in an underlying
space such that a distance measure between the facility and some given theiksnjand poinjss
minimized or maximized. Most of the problems described in the literature are concerned with finding an
optimal location for a “desirable” facility, where the goal is to minimize a distance function between the
facility and the sites. Just as important is the case of locating an “undesirable” or “obnoxious” facility. In
this case, instead of minimizing the largest distance between the facility and the given points, we would
like to maximize the smallest distance.
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The most classical versions of facility location problems consider the positioning of one or several
point-like facilities. Nowadays, there is a growing body of research on the location of non-point facilities;
see Diaz-Barfiez et dlL] for a recent survey on the current state-of-art of these problems.

In this paper, we deal with the placement of an undesirable facility modelled by a polygonal chain with
one corner, amidst existing installations or facilities. It is clear that the location of this trajectory must
be constrained, as otherwise the route may be simply removed to infinity. We also consider an additional
constraint on the length of the chain, because when the chain represents a facility to be constructed o
routed, the length is related to some cost, and becomes clearly relevant. We also add the restriction that th
chain must start and end at specified anchor paiatgdb, corresponding to given origin and destination.

Due the geometric nature of the problem we address the resolution from the point of view of the
computational geometry. There is a vast literature on location theory and there exist actually a lot of
papers based on its connection with computational geometry. In fact, with many practical motivations,
geometric instances of facility location problems have attracted a significantamount of the research to date
Some applications of the computation of an obnoxious route include urban, industrial and military task
planning when the transportation of some kind of obnoxious material is addressed. The proposed problen
combines the computation of a short path with risks issues as actually done in real-world applications
within hazardous material logistic area. See Erkut and V§2t8} where a discrete underlying space is
considered and Drezner and Wesolow§kly Melachrinoudis and XanthopuldS] and Diaz-Bafiez et
al. [6] for the continuous case.

On the other hand, applications of these problems go well beyond the field of location science. For
instance, the problem to compute a connecting path avoiding collisions is one of the most important
tasks in robotics. Ifi7], a path allowing right-angle turns is considered. In order to minimize the cost, to
consider a bound on the length of the path is a logical constraint. In this sense, our problem gives a path
with maximal clearance.

There has been considerable activity in the computational geometry community on facility location
problems that involve computing non-single facilities of various types. Several optimization problems
dealing the location of a 1-corner chain using a minimax criterion have been posed by Glozman et al.
[8] and Diaz-Bafiez et g9]. On the other hand, maximin criteria have been investigated for the optimal
positioning of point§10-12] lines[13], line segmentgl4], circumferencegl5], and planes in 3-[PL6].

An outline of the paper is as follows. In Section 2, we study the configuration cases that may determine
an optimal route depending on whether the length of the polygonal chain is equal to or & M&sshow
that an optimal 1-corner route for the problem must be at minimum distance from two or three points; all
these configurations may be explored with a brute-f@¢e*)-time algorithm. In Section 3, we present
an O (n log n)-time algorithm for the maximin 1-corner polygonal route problem when the length of the
route is exactlyo. Whenlg is an upper bound for the length, we propose different algorithms, described
in Section 4, depending on the position of the points that determine an optimal chain. All these cases can
be solved withinO (n?) worst case running time.

2. Overview
We start by introducing some notations. Hereafter we denafediy1, po, ..., pn}the givenfinite set

of points. Al-corner routez is a polygonal chain with one corner (its intermediate vertex) that starts and
ends at specified anchor poiatandb. When the corner point i, we also use the notatign=a — g — b.
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Fig. 1. An empty anchored boomerang and its three parts.

We denote the line segment connectirandq by pq. The Euclidean distance between two pomend
q is denotedi(p, ¢). If pis a point inR?, andC is a closed subset 6t then the distance between
andC is defined asl(p, C) = min{d(p, q) : g € C}. Thus,d(p, #) = min{d(p,aq),d(p, pq)}. The
maximin 1-corner polygonal chain problem can be now stated as follows.

Given a set S of points in the plane and a positive v&uénd a 1-corner polygonal routez with
Euclidean lengtti(#) <lo, such thamin,,cs d(p;, #) is maximized among all possible chains fulfilling
the conditions.

It is clear that the solution to this problem might not be unique. For example when the anchor points
are outside the convex hull 6fthere may exist an infinite number of solutions. Although our algorithms
can be handled for detecting all optimal solutions when there exist a finite number of them, in this paper
we focus on findingoneoptimal configuration.

Let us observe that the restriction on the length implies that the gaiannot be exterior to an ellipse
with focus ata andb. This defines a continuous search space; however, we can generate a discrete set of
candidate placements as follows.

Definition 1. Given a 1-corner rout& = a — g — b, the locus of points at distancdrom 2 is called a
boomerangentered a# and radiug. We call a boomerang aampty boomerani it does not contain
any point ofS. An empty boomerang isritical when some points fror§lie on its boundary; in this case
enlarging its radius would result in a non-empty boomerang.

Equivalently, a boomerang is the area swept by a disk whose center describes the route. Thus, in a
geometric setting, the problem asks for finding the largest empty boomerang anchawsatat(refer
to Fig. 1).

Definition 2. The points inSthat determine a tentative placement of an optimal rettea — g — b by
the fact that they lie on the boundary of its critical boomerang are callectitieal points

Let B1, B> and B3 be the parts of the boomerang where the critical points may lie, corresponding to
points whose closest point in the route belongs to segmgntb, or is the point, respectively (Figl).
We classify the cases for critical points cases according to their location on the parts of the boomerang,
as shown inFig. 2 We briefly describe the way for obtaining the cases. We begin with the obvious
observation that the boundary of an optimal boomerang must contain at least one gais} ofherwise,
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la 1c
2a 2c
the radius can be increased. Then, the idea is to use the freedom left in order to move the chain anchore
ataandb and to increase its radius until at least one more poi&isfencountered. All of the six cases
in Fig. 2are candidates or critical configurations because every movement of the galeeneases the

minimum distance to the chain. An exhaustive but straightforward analysis of the situations that may
arise gives immediately the following result, which we state formally for future reference.

Y

1b

>

2b

Fig. 2. Cases of critical points.

Lemma 1. Let# be a solution for the maximin 1-corner polygonal chain and B the critical boomerang
generated byz. Then the possible positions of the critical points #oare as follows

1. If gis on the ellipse

(a) One pointinB1 and one point inBy, or
(b) one pointinBy (or B2) and one point inBz, or
(c) one point inBy N Bs.

2. If g is inside the ellipse

(a) One point inBy, one point inB2 and one point inBs, or
(b) one pointinB; N B2, and one point inB3, or
(c) two points inB1 (or B2).

Using this lemma we could exhaustively consider all possible cases for the placement of a critical
boomerang according to its critical points, and then find the optimal one, which would lead to a naive
O (n*)-time algorithm.

In the next sections, we show how to solve the problem more efficiently.
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3. Finding the best corner on the ellipse

In this section, we give a® (n log n)-time algorithm for the version of the maximin 1-corner route
problem in which the length of the route is exactly a nunipewrhich is equivalent to force the corngto
lie on an ellipsd= with focusaandb. In other words, we want to compute an anchored raste: —g — b,
with ¢ € E, such that mip,csd(p;, #) is maximized.

Our algorithm uses the lower envelope of a suitable family of functions. The key idea is to divide the
ellipse into a linear number of arcs such that in each arc we know which pdamhfimizes the distance
to the articulated configuration that models the route. Notice that when this p&ig ohique, it has the
same property minimizing the distance in a neighborhood, and therefore that the positions on the ellipse
in which there are ties are finite in number.

Denote byZ the partition ofE into arcsA; = {g € E : min,csd(p;, #) = d(p;, #)}, where we
assume that no two consecutive arcs belong to the same pd{btierwise we would merge the two
arcs).

We can prove tha? has a linear number of ares;. In order to simplify the explanation, notice first
of all that we can obtain the same kind of partitiong and#; of E corresponding, respectively, to the
segmentgg andbq, independently and see that their size is linear. Then, by using the definition of the
distance function, we can easily compuatesinced (p;, #) =min{d (p;, aq), d(p;, E)}, and therefore?
can be computed in linear time by comparing distances in each sub-interval, as weha\@, | + |2 |.
Hence, we see that itis enough to show how to compute the partition of the &hgsen the left segment
aq rotates withg describingg, as the partition?, can be computed in an analogous way.

Without loss of generality, we consider that the origin of coordinatesthe anchor poina. Let 0
be the polar angle of € E; for eachp; € S we denote by, (0) = d(p;, oq) the distance between
the point p; and the segmerig. Then, it is sufficient to compute the lower envelope of thani-
variated continuous functions (0), p; € S, in order to determine the ares; of the partition of the
ellipseE.

Lemma 2. Let p; and p; be two distinct points of. 3 hen the graphs of the functions andd; intersect
at most twice

Proof. Given two pointsp; andp; of S i # j, letL(i, j) ={x € RZ; d(p;, 0x) =d(pj,ox)} be the
locusof pointsx in the plane such that the distance frgmandp; to the line segmernix are equal. We
show below that. (i, j) andE intersect at most twice; consequently, there exist at most two points
on E for whichd(p;, 0x) =d(p;, ox)andd(p;, oy) =d(p;, 0y).

Barcia et al[14] give an exhaustive description of the locli§, j). For the sake of simplicity, we
only describe one of the cases (the most common one); the other situations are similar. Suppose that
d(pi,0)>d(pj,o) and p;, p; ando are not collinear. Theid.(i, j) is a differentiable 2-dimensional
curve consisting of two half-lines joined by an arc of curve of maximum degree four (as illustrdtied in
3). The locudL (i, j) dissects the plane into two domaibsi, j) andD(j, i) having both of thend. (i, j)
as complete separating boundary. More precisely, dehétej) = {x € R? : d(p;, 0x) <d(pj,o0x)}
andD(j,i) ={x € R?: d(p;j,ox) <d(p;,0x)}. Barcia et al[14] give a complete proof of the fact that
D(i, j) is a convex region and that, furthermofsj, ;) is contained in a wedge with angle< (r/2) and
apex ino (seeFig. ). As the origino lies inside the elipse, this implies thati, j) intersects the ellipse
E at most twice, which proves the claimd
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Fig. 3. The locud. (i, j).

Let L% be the lower envelope of the graphs of the functigndraverse this envelope from left to right,
and form an ordered sequence with the labels of the points defining the pieces of functions encountered
Lemma 2 implies that this sequence is a Davenport—Schinzel sequence of ordéi7twbherefore,
the number of intervals in the partition @(rn) [17], and thatL, can be computed using a standard
divide-and-conquer approach in(n log n) time.

In a similar way, letL.? be the lower envelope of the graphs of the functignahen the origiro is
used instead of the anchbrIn O (n) time we can compute the lower enveldpef both functionsLg
andL?, which consists 0D (r) vertices. In fact, the merge step simply scans two sorted lists of intervals.
Finally, traversing_ from left to right, we can identify its maximum. In summary, we have proven the
following result.

Theorem 1. The obnoxious 1-corner route problem with corner on the ellipse E can be solved in
O(n log n) time

4. Finding the corner inside the ellipse

In this section, we study the situations in which the corner of the trajectory may be placed in the interior
of the ellipse, giving rise to the possibilities described in Lemma 1.

Case?a: By definition, there are three points at minimum distance from the ehain — ¢ — b, each
one in a different part of the associated boomerang. In order to explore all these configurations, for every
point p; of Swe construct the largest radius boomerang thathas its part Bs.

Lemma 3. Given a set of points S and their radial orderings around a and arouridrteach pointp;
of S we can find in linear time the largest radius critical boomerang hawinmp its part B3, and two
additional critical points one inB; and another one irB>.
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p.

SRS

Fig. 4. Finding an optimal route fqgs; in Case 2a.

Proof. Suppose without loss of generality that is above the line containing andb as inFig. 4;
let us see how to obtain an optimal configuration for this caseTl bk the set of points db inside
the triangle of vertices, p; andb. Let ¢, andr,, respectively, be the left supporting line @H(T;)
from a and the right supporting line froln, and let us denote by the point where, andz, intersect,
and byc, andc, the respective contact points of these supporting lines @HI(T;). If q is outside the
triangle, therp; would not generate a candidate configuration for this case, thus we assumis thaide
the triangle.

Since the order of the points Il arounda (as well as around) is given,CH(T;) can be obtained in
linear time. Besides that, we can obtain an ordered list of the nearest polDki 6f) to the tangent,
(resptp) when it rotates counterclockwise (resp. clockwise), which is simply the list of verticald @)
as they appear counterclockwise on its boundary starting(aesp. clockwise starting ag). In this way,
in O (n) time we can find the first points of each ljst, p, such that!(p,, ag*) =d(py, bg*)=d(pi, q*),
whereg* is the intersection point between the rays framndb which satisfies the preceding equalities.
This pointg™ gives the tentative optimal configuration; the emptyness of the rest of the boomerang can
be checked in a final step.0]

If we compute in a first step, usin@(n log »n) time, the radial order of the points 8 both arounda
andb, and then tentatively apply the preceding construction to every pgime see that Lemma 3 gives
an O (n?) time algorithm in order to find an optimal 1-corner route for Case 2a.
Case2b: Suppose that there is a critical pomtin B; N B, and another critical poinp; in Bs.
We now consider the poin; as fixed and compute the largest empty boomerang corresponding to this
configuration Fig. 5).

Lemma 4. Given the Voronoi diagram of, ¥ (S), for each pointp; € S we can obtain in linear time
an optimal 1-corner route? = a — ¢ — b among those such that p;, aq) = d(p;, bqg) =d(p;, q), for
somep; € S\{pi}.

Proof. Consider a poinp; in Sand letL; be the locus of pointg such thatl(p;, ag) = d(p;, bq). Itis
easy to prove that the locus is a line passing through;. Then, we must find the first poipt; € S\{p;}
with the following properties: (1) There exists a panh L; such that/(p;, ¢) =d(p;, aq) =d(p;, bq);
and (2) no poiny in S\{p;, pj} withd(py,a —q — b) <d(pi;,a —q —b) =d(pj,a —q — b).
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a b

Fig. 5. Finding an optimal route fgs; in Case 2b.

As the circleC throughp; centered af) must be empty of points &, g must lie in the Voronoi region
of p;. Therefore, we can interseLt with V(S), which gives a linear number of segments, and find the
solution for the pointg satisfying the equalities in (1) above, in constant time in every such segment. If
we walk alongL;, starting atp;, and process the segments in the order in which they are encountered,
we see that we can find the poipj in linear time, which proves the claim.0

If we compute in a first step, using(n log »n) time, the Voronoi diagran¥ (S) of the points inS, and
then tentatively apply the preceding construction in Lemma 4 to every pginte obtain arO (n2) time
algorithm in order to find an optimal 1-corner route for Case 2b.

Case2c: Without loss of generality, we assume that the critical poiatand p; determining the
optimal 1-cornew — ¢ — b are closer t@yg than tobq. A technical result is required.

Lemmab. Letas, ag, ..., a, ben ordered real numbers and let, r», ..., r, be n non-negative values
Then the seUKign [a; — ri, a; + r;] can be computed i@ (n) time.

Proof. Let us construct the s¢t); _; ., /; incrementally following the increasing order of the centers
ai, az, . .., a,. \We maintain the currentunion in a ligtof disjoint intervals/y, ..., J;, (ingeneral different
from the intervald;), stored in the order given by their centers.

Initially, we set the list to be? : ={J1 = I1}. If I1 N I, = & we simply add/> = I to .#. Otherwise
we update the list to contain the single interval= 11 U . Observe that, in this case, the centevof
lies betweem1 anday, which in particular implies that it lies to the left a§.

For the general step, assume that the udioa I> U - - - U I; has been computed and stored in a list
¥ ={J1, ..., Ji}. Recall that the intervals ity are disjoint, their centers are increasingly ordered and
all lie to the left ofa; 1; then we proceed as follows.

If ;110N Jy =, we simply addJi+1 = I;+1 to the current list, with cosO (1) which we charge
to the intervall;; 1, that has just entered the list; furthermore notice that N J, = & implies that
LiyinJi=-=LyNJ1=0.
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Fig. 6. Configuration for Case 2c.

If ;11 N Jx = we update the list by making, : =J; U I;11, in O (1) time which we charge to the
“old” Ji, which has been just replaced. Next we check the intersedtion 1. If it is empty, the cost of
its computation is charged @, 1, which has entered the list after a suitable merging step, and we proceed
to the next iteration with; ;. Otherwise, i.e., iy N J;_1 # &, we update/,_1tobeJi_1: =Jr_1U J;
and remove/, from the list, actions with coaP (1) which is charged to the removeg. Next we would
check whether,_1 N J;_2 is empty or not, and so on.

As in the whole process there are at mosgttervals enteringZ and at most — 1 intervals removed
from the list, the overall running time i@ (n), as claimed. O

Remark. Notice that the preceding lemma also applies when, instead of points on a line, we have a circle
(or an arc of circle), with points on it whose radial order around the center of the circle is given, and the
union of intervals centered at these points has to be computed.

We are now ready for dealing with Case 2c. For the ease of description we are assuming general position
hereafter, that is, no two points 8are collinear witha or are exactly at the same distance fraifthese
degenerate cases can be handled by the method but require many case details).

Lemma 6. Suppose that the radial order of S around b is known. Then we can obtaiif) time an
optimal configuratiom?=a — g — b characterized by two critical points in the pa®i of the corresponding
boomerang

Proof. For eachy>0 and each poinp; € S, let Df denote the disk with center; and radius. Let Rf
ande be the rays anchoredathat are right tangent and left tangent, respectively, to theldfsthen
d grows, the tangenth andL;S rotate clockwise and counterclockwise, respectively, for gach

Let us denote by’ the point in which the ray through a poigtand havinga as origin, intersects the
ellipseE. Any configuratioru — ¢ — b in situation 2c, with the critical points iB; and radius, fulfills
three conditions (refer tBig. 6).

(1) The disks of radius centered ah andb are empty of points frons.
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Fig. 7. Checking condition (3).

(2) If p; andp; arethe critical points, the disl&f andD? aretangentaqat points; and:;, respectively.

If ¢; (for example) is the contact point furthest away frapmo diskD,f is tangent or overlaps the
segmentit;, fork #1i, j.

(3) If we consider the disks as obstaclesan see a point (namety in the segment;¢’ such that the
disk of radiuss centered at] contains no point fronsand no diskD;{S overlaps qg.

The first condition can be guaranteed a fortiori by taking values bbunded above bymin =
min{min{d(a, p;), pi € S}, min{d(b, p;), p; € S}}. If in addition to that we have a pair of critical
points p; and p; in the situation of condition (2) (and henceforth a fixed valué)pfve can check con-
dition (3) in O (n) time: We first shrink the segmeny’ to ;4" to ensure that no dislo,((S overlapsq”,
and then we treat the disk3} with centers in the halfplane of the lire ; in which b lies as obstacles
when seen fron, that we can project onto intervals on a circle centerelg) and then compute their
union as described in the remark after Lemma 5; the complement of the union gives the windows for
fitting the armg — b of a — g — b (Fig. 7).

Therefore, we are left with the task of determining how many pairs of poin§ gife candidate
configurations in the situation of condition (2), and which is the cost of finding all such pairs.

Notice that for a fixed pair of critical points;, p; as inFigs. 6and7, the tangent®; andL ; coincide
for some value ob. For larger values of the diskD;S will always overlap the segment betweamand
the contact point oL ; with D;?, thereforeL ; can no longer appear in a candidate configuration. Hence,
if we charge the starting pajf;, p; to L, i.e., to the tangent with contact point further away frammwe
have a charging scheme proving that the number of candidate configurations is linear.

In order to find all of them let us proceed as follows. For everyone of the tan@igrfess well as for
Ry), k=1, ..., n, letusfind all the values @fmaking the tangent coincide with some other tangent. These
values are stored in a doubly linked ligt(Lx), each value with a pointer to its copy in the list for the
other tangent giving rise to the value. Each list is scanned and rearranged in such a way that the smalles
value appears in first position. The whole process for the set of tangentsgk@stime.

Next, we select the minimum valude among the first values from each list. If it corresponds to two
left tangentsL; and L ;, with respective contact pointsand¢;, andt; is further away froma thanz;,
the tangenL. ; cannot participate in a candidate configuration for larger valuéstmdcause the dis@;3
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would overlap the segmeat ;. Therefore we can discard the tangént as well as the lis(L ;) and
the associated copies of the values in the other lists, resofrem #(L;), and scan the updated list
Z(L;) in order to put in the first position the smallest value. The whole process @kestime. If 51
corresponds to two right tangents, we proceed analogously. If it corresponds to a right tangent and a left
tangent, we get a candidate configuration, but we have already seen in the charging scheme that one o
the tangents can be discarded for larger values fir the other one we removia from its associated
list and update the smallest value.

In any case, we see that we can always discard one of the tangents)itime, and are then ready
to iterate. Therefore, the whole process of identifying ¢h@) candidates can be carried outdnn?)
time. As each one can be checked for condition (3) in linear time, and we can maintain the best found
solution, this gives the claimed complexity(]

If we compute in afirst step, using(n log n) time, the radial order of the points $arounda andb,
and then apply Lemma 6, we obtain &n?) time algorithm in order to find an optimal 1-corner route
for Case 2c.

Combining the results from the three preceding cases, we arrive at the main result of this section.

Theorem 2. The obnoxious 1-corner route problem whose corner is not external to an ellipse with focus
a and b can be solved i@ (n?) time

5. Conclusion and remarks

In this paper, we have considered a problem consisting of locating an undesirable facility amidst
demand-points, where the facility is an anchored 1-corner polygonal chain with length constrained to be
at most a given number. Algorithms based on geometric concepts and techniques have been proposed
beating substantially the brute-force approach.

The methods for the case in which the corner is constrained to lie on the ellipse can be extended to
some other types of curves. In fact, if the corggs on a curve intersecting the locdsi, j) at most
twice, the approach can be applied in a quite similar way.

Finally, let us mention that the techniques we have used would lead to very high complexities when
k corners are allowed, hence a new approach would have to be developed in order to obtain exact and
efficient algorithms for general polygonal chains.
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