On nonautonomous H^{∞} control problem: linear and nonlinear cases.*

<u>Roberta Fabbri</u>

Abstract

Using methods of the theory of nonautonomous linear differential systems we study nonautonomous H^{∞} control problems with infinite horizon. We pass from a Riccati equation to a linear nonautonomous Hamiltonian system. Using the concepts and properties of exponential dichotomy and rotation number we define a minimal attenuation value and prove stability when the disturbance is zero. Then we consider a nonlinear nonautonomous H^{∞} control problem formulated as a perturbation of a linear one. Using the concept of exponential dichotomy we obtain stabilization and attenuation results.

^{*}oral communication.