Rotation sets for graph maps of degree 1^*

Lluís Alsedà Sylvie Ruette

Key words: Lower dimensional tori, quasi-periodic Floquet theory, normal forms, reducibility.

Abstract

A topological graph is a compact connected set X containing a finite subset E such that each connected component of $X \setminus E$ is homeomorphic to an open interval. A tree is a topological graph with no loop (i.e., no subset homeomorphic to a circle). Thanks to their one-dimensional character, dynamical systems on topological graphs have some properties which are similar to those of interval maps. For example a transitive graph map with at least one periodic point has a positive topological entropy and a dense set of periodic points [1, Corollary 5.3.11]; note that a transitive graph map with no periodic point is topologically conjugate to an irrational rotation on the circle [2].

A point x is periodic of period n for the map f if $f^n(x) = x$ and $f^i(x) \neq x$ for all $1 \leq i \leq n-1$. Call Per(f) the set of periods:

 $Per(f) = \{n \in \mathbb{N}^* \mid \text{there exists a periodic point of period } n\}.$

For interval maps the striking Sharkovskii Theorem states that the existence of a periodic point of a given period implies the existence of other periods which are determined by the following order:

 $3 \triangleright 5 \triangleright 7 \triangleright 9 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots \triangleright 2^2 \cdot 3 \triangleright 2^3 \cdot 5 \triangleright \cdots \triangleright 2^{\infty} \triangleright \cdots 2^3 \triangleright 2^2 \triangleright 2 \triangleright 1;$

if the continuous map $f:[0,1] \to [0,1]$ has a periodic point of period nthen it has periodic points of period m for all integers $m \triangleleft n$. In other words, the set Per(f) is equal to $\{n \in \mathbb{N}^* \mid m \trianglelefteq n\}$ for some $n \in \mathbb{N}^* \cup \{2^\infty\}$ (f is said of type n). Moreover all the possibilities occur, that is, for every $n \in \mathbb{N}^* \cup \{2^\infty\}$ there exists a continuous interval map of type n.

Finding a generalisation of the Sharkovskii Theorem for graph maps is a big challenge and in general it is not known what the sets of periods may be. The characterisation of Per(f) was given for some classes of graphs, in particular for *n*-stars (an *n*-star is a tree composed of *n* intervals with a common endpoint) [3] and for continuous maps on trees such that all the branching points are fixed [4]. For a continuous map on the circle the set of periods depends on the degree *d* of *f* (see e.g. [1]). If $d \neq -1, 0, 1$ then $Per(f) = \mathbb{N}^*$ (if d = -2 the case $Per(f) = \mathbb{N}^* \setminus \{2\}$ is also possible). If $d \in \{0, -1\}$ then Per(f) is ruled by the Sharkovskii order, that is,

^{*}oral communication.

 $Per(f) = \{m \in \mathbb{N}^* \mid m \leq n\}$ for some $n \in \mathbb{N}^* \cup \{2^\infty\}$. The case d = 1 is more complex; the answer is given by the rotation set theory, that we expose briefly below.

Let $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ be the circle and $\pi: \mathbb{R} \to \mathbb{S}^{\not\vdash}$ the natural projection. Consider a continuous map $f: \mathbb{S}^1 \to \mathbb{S}^1$ of degree 1 and $F: \mathbb{R} \to \mathbb{R}$ a lifting of f, that is, $f \circ \pi = \pi \circ F$. The rotation number of $x \in \mathbb{S}^1$ is defined as

$$\rho(x) = \lim_{n \to +\infty} \frac{F^n(\hat{x}) - \hat{x}}{n},$$

where $\pi(\hat{x}) = x$; the limit (when it exists) does not depend on the choice of \hat{x} . It is the asymptotic rotation speed of $f^n(x)$ on the circle. Let $Rot(f) = \{\rho(x) \mid x \in \mathbb{S}^1\}$ be the rotation set of f. Then Rot(f) is a compact nonempty interval. A periodic point of period q has a rational rotation number of the form p/q for some $p \in \mathbb{Z}$. Reciprocally, if $p/q \in Rot(f)$ there exists a periodic point of rotation number p/q. More precisely, if $p/q \in Int(Rot(f))$ then for every integer $n \geq 1$ there exists a periodic point x of period nq with $\rho(x) = p/q$; if $\min Rot(f) = p/q$ with p, q coprime then there exists $s \in \mathbb{N}^* \cup \{2^\infty\}$ such that the set of periods of periodic points of rotation number p/q is equal to $\{nq \mid q \leq s\}$ (where \leq is the Sharkovskii order). The same result holds for $\max Rot(f)$. Finally we get the following characterisation of the set of periods of f: if Rot(f) = [a, b] then

$$Per(f) = \{n \in \mathbb{N}^* \mid \exists k \in \mathbb{Z}, a < \frac{k}{n} < b\} \cup S(a, s_a) \cup S(b, s_b)$$

where $s_a, s_b \in \mathbb{N}^* \cup \{2^\infty\}$, $S(r, s) = \emptyset$ if $r \notin \mathbb{Q}$ and $S(p/q, s) = \{nq \mid n \leq s\}$ if p, q are coprime.

The aim of this work is to generalise the rotation set theory to continuous maps $f: G \to G$ of degree 1 where G is a topological graph with a unique loop S. There is no difficulty to extend the definition of rotation numbers, and a periodic point still has a rational rotation number. In this setting the rotation set Rot(f) may not be connected and presently we do not know if it is closed. However the subset $Rot_S(f)$ of rotation numbers of points belonging to the loop S has properties which are similar to, although weaker than, those of the rotation interval for a circle. The set $Rot_S(f)$ is a compact non empty interval and, if $\bigcup_{n>0} f^n(S)$ is dense in G (in particular if f is transitive) then $Rot_S(f) = Rot(f)$. If $p/q \in Rot_S(f)$ then there exists a periodic point of rotation number p/q, and if $p/q \in Int(Rot_S(f))$ then for all integers n great enough there exists a periodic point of period nq of rotation number p/q. We derive from these results that if $Rot_S(f)$ is not reduced to a single point then $\mathbb{N} \setminus Per(f)$ is finite. Actually most of these results are valid in a more general class of spaces that we will define below.

References

 Ll. Alsedà, J. Llibre, and M. Misiurewicz. Combinatorial dynamics and entropy in dimension one, second ed., World Scientific Publishing Co. Inc., River Edge, NJ, 2000.

- [2] J. Auslander and Y. Katznelson. Continuous maps of the circle without periodic points. Israel J. Math., 32:375–381, 1979.
- [3] S. Baldwin. An extension of Sharkovskii's theoreom to the n-od. Ergod. Th. Dynam. Sys., 11:249–271, 1991.
- [4] S. Baldwin and J. Llibre. Periods of maps on trees with all branching points fixed. *Ergod. Th. Dynam. Sys.*, 15:239–246, 1995.