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Abstract

A topological graph is a compact connected set X containing a finite
subset E such that each connected component of X \E is homeomorphic
to an open interval. A tree is a topological graph with no loop (i.e.,
no subset homeomorphic to a circle). Thanks to their one-dimensional
character, dynamical systems on topological graphs have some properties
which are similar to those of interval maps. For example a transitive
graph map with at least one periodic point has a positive topological
entropy and a dense set of periodic points [1, Corollary 5.3.11]; note that
a transitive graph map with no periodic point is topologically conjugate
to an irrational rotation on the circle [2].

A point x is periodic of period n for the map f if fn(x) = x and
f i(x) 6= x for all 1 ≤ i ≤ n− 1. Call Per(f) the set of periods:

Per(f) = {n ∈ N∗ | there exists a periodic point of period n}.

For interval maps the striking Sharkovskii Theorem states that the existence
of a periodic point of a given period implies the existence of other periods
which are determined by the following order:

3B5B7B9B· · ·B2·3B2·5B2·7B· · ·B22·3B23·5B· · ·B2∞B· · · 23B22B2B1;

if the continuous map f : [0, 1] → [0, 1] has a periodic point of period n
then it has periodic points of period m for all integers m C n. In other
words, the set Per(f) is equal to {n ∈ N∗ | mEn} for some n ∈ N∗∪{2∞}
(f is said of type n). Moreover all the possibilities occur, that is, for every
n ∈ N∗ ∪ {2∞} there exists a continuous interval map of type n.

Finding a generalisation of the Sharkovskii Theorem for graph maps is
a big challenge and in general it is not known what the sets of periods may
be. The characterisation of Per(f) was given for some classes of graphs,
in particular for n-stars (an n-star is a tree composed of n intervals with
a common endpoint) [3] and for continuous maps on trees such that all
the branching points are fixed [4]. For a continuous map on the circle the
set of periods depends on the degree d of f (see e.g. [1]). If d 6= −1, 0, 1
then Per(f) = N∗ (if d = −2 the case Per(f) = N∗ \ {2} is also possible).
If d ∈ {0,−1} then Per(f) is ruled by the Sharkovskii order, that is,
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Per(f) = {m ∈ N∗ | m E n} for some n ∈ N∗ ∪ {2∞}. The case d = 1
is more complex; the answer is given by the rotation set theory, that we
expose briefly below.

Let S1 = R/Z be the circle and π:R → S1 the natural projection.
Consider a continuous map f : S1 → S1 of degree 1 and F :R→ R a lifting
of f , that is, f ◦ π = π ◦ F . The rotation number of x ∈ S1 is defined as

ρ(x) = lim
n→+∞

F n(x̂)− x̂

n
,

where π(x̂) = x; the limit (when it exists) does not depend on the choice of
x̂. It is the asymptotic rotation speed of fn(x) on the circle. Let Rot(f) =
{ρ(x) | x ∈ S1} be the rotation set of f . Then Rot(f) is a compact
nonempty interval. A periodic point of period q has a rational rotation
number of the form p/q for some p ∈ Z. Reciprocally, if p/q ∈ Rot(f)
there exists a periodic point of rotation number p/q. More precisely, if
p/q ∈ Int(Rot(f)) then for every integer n ≥ 1 there exists a periodic
point x of period nq with ρ(x) = p/q; if min Rot(f) = p/q with p, q
coprime then there exists s ∈ N∗ ∪ {2∞} such that the set of periods of
periodic points of rotation number p/q is equal to {nq | qEs} (where E is
the Sharkovskii order). The same result holds for max Rot(f). Finally we
get the following characterisation of the set of periods of f : if Rot(f) =
[a, b] then

Per(f) = {n ∈ N∗ | ∃k ∈ Z, a < k
n

< b} ∪ S(a, sa) ∪ S(b, sb)

where sa, sb ∈ N∗∪{2∞}, S(r, s) = ∅ if r 6∈ Q and S(p/q, s) = {nq | nEs}
if p, q are coprime.

The aim of this work is to generalise the rotation set theory to continuous
maps f : G → G of degree 1 where G is a topological graph with a unique
loop S. There is no difficulty to extend the definition of rotation numbers,
and a periodic point still has a rational rotation number. In this setting the
rotation set Rot(f) may not be connected and presently we do not know
if it is closed. However the subset RotS(f) of rotation numbers of points
belonging to the loop S has properties which are similar to, although
weaker than, those of the rotation interval for a circle. The set RotS(f) is a
compact non empty interval and, if

S
n≥0 fn(S) is dense in G (in particular

if f is transitive) then RotS(f) = Rot(f). If p/q ∈ RotS(f) then there
exists a periodic point of rotation number p/q, and if p/q ∈ Int(RotS(f))
then for all integers n great enough there exists a periodic point of period
nq of rotation number p/q. We derive from these results that if RotS(f)
is not reduced to a single point then N\Per(f) is finite. Actually most of
these results are valid in a more general class of spaces that we will define
below.
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