-
E. Fernández-Cara, M.J. Garrido-Atienza
& J. Real, On the approximate controllability of a stochastic parabolic
equation with a multiplicative noise, C. R. Acad. Sci. Paris, Volumen
328, Serie I (1999), 675-680, PDF
-
T. Caraballo, M.J. Garrido-Atienza &
J. Real, Existence and uniqueness of solutions for delay stochastic
evolution equations, Stoch. Anal. Appl. Stoch. Anal. Appl.
20(2002), 6, 1225-1255.
PDF
-
T. Caraballo, M.J. Garrido-Atienza &
J. Real, Asymptotic stability
for non-linear stochastic evolution equations, Stoch. Anal. Appl.
21(2003), 2, 301-327. PDF
-
T. Caraballo, M.J. Garrido-Atienza &
J. Real, Stochastic stabilization of differential systems with general
decay rate, Syst. Control Letters 48(2003), 5, 397-406. PDF
-
M.J. Garrido-Atienza & J. Real,Existence
and uniqueness of solutions for delay evolution equations of second order
in time, J. Math. Anal. Appl. 283(2003), 2, 584-611. PDF
-
M.J. Garrido-Atienza & J. Real,
Existence and uniqueness of solutions for delay stochastic evolution equations
of second order in time, Stochastic and Dynamics 3(2003), 2, 141-167.
PDF
-
T. Caraballo, M.J. Garrido-Atienza &
J. Real, The exponential behaviour of nonlinear stochastic functional
equations of second order in time, Stochastic and Dynamics 3(2003),
2, 169-186. PDF
-
T. Caraballo, M.J. Garrido-Atienza
& B. Schmalfuss, On the stability of stationary solutions of stochastic
evolution equations with delays, Equadiff 2003, Proceedings of the
International Conference on Differential Equations. ISBN 981-256-169-2.
PDF
-
T. Caraballo, M.J. Garrido-Atienza &
B. Schmalfuss, Asymptotic behaviour of non-trivial stationary solutions
of stochastic functional evolution equations, Dopovidy NAN Ukrainy 6(2004),
39-42. PDF
-
M.J. Garrido-Atienza & P. Marín-Rubio,
Navier-Stokes
equations with delays on unbounded domains, Non Linear Analysis Series
A: Theory, Methods & Applications 64 (2006), 5, 1100-1118. PDF
-
T. Caraballo, M.J. Garrido-Atienza &
J. Real, Stability of nonlinear functional stochastic evolution equations
of second order in time, Journal of Mathematical Sciences 138(2006),
1, 5377-5389. PDF
-
T. Caraballo, M.J. Garrido-Atienza &
B. Schmalfuss, Existence of exponentially attracting stationary solutions
for delay evolution equations, Discrete and Continuous Dynamical Systems,
Series A (aparecerá).
|