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Electric vehicles in transportation

Current situation
Transport sector is responsible for

greenhouse emissions
energy consumption (32% increase from 1990 to 2016)

Targets and international agreements
Carbon neutrality over the next 30 years
Low emission zones (LEZ)
EU green deal ⇒ locating charging stations at

highways
airports
ports
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Electric vehicles in transportation

Private cars
Car sharing vehicles
Public transport vehicles (buses)
Logistics vehicles

limited light-duty EV choice
limited driving range
long charging time
lack of charging stations

Autonomous vehicles
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The electric location-routing problem (ELRP)

customer depot

customer depot station
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Most relevant studies to the ELRP

ELRP with time windows and partial recharging (ELRP-TWPR):
a generalization of the EVRP-TW by Schneider et al. (2014).

Schiffer and Walther (2017b): ELRP-TWPR
An MIP formulation based on MTZ (labeling) constraints

Schiffer and Walther (2017a):
An ALNS heuristic that solves ELRP-TWPR

Our problem: ELRP with partial recharging for heterogeneous fleet (no
time windows)
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Notation - The physical network

G = (N, A) with node set N = I ∪ J ∪ {0} and arc set A

′0′ is the depot node.

I = {1, . . . , n} is the set of customer locations.

J is the set of potential locations for charging stations (not necessarily
identical).

I and J are not necessarily disjoint (we assume I ⊂ J).

K is the (finite) set of vehicles (non-identical).

(Çalık et al., 2021)
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Notation - Capacity and range parameters

0

di - demand
eij - energy cons.

i

Qk - freight capacity

βk - battery capacity

j

customer depot station
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Notation - Cost parameters

0

fj - fixed cost

cij - routing cost
i

vk - vehicle cost

r - recharging cost

j

customer depot station
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Notation - Modeling challenges: an extreme case (β = 1)
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Notation - Multi-visit network G ′ = (N ′,A′)
Multiple copies of potential stations for multiple visits by the same vehicle

0j1
1 j1

2

j2
1 j2

2

customer depot station

No arcs between copies of the same station
fj = dj = 0 for additional copies
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How difficult is the problem?

Small EVRP-TW instances (Schneider et al. (2014))

|I| 5 10 15
|J | 7 - 8 12 - 14 17 - 22

⇒ |N ′| 43 - 49 133 - 155 273 - 353

|N′| = 1 + |J| × (|I|+ 1)

The state-of-the-art exact LRP method solves instances with less than 100 nodes
(Contardo et al., 2014).
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Pre-processing

Eliminate infeasible arcs
violating freight capacities
violating battery restrictions

Find a lower bound on the number of vehicles (nVMin)
⇒ solve a bin packing problem with Q,d
Find a lower bound on the number of stations (nSMin)
⇒ solve a minimum (set) covering problem with β, e
Find an upper bound on the number of copies needed
⇒ solve a knapsack problem with Qmax , d
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Problem Formulation - PF

Objective function

min
∑
k∈K

∑
(i ,j)∈Ak

cijxk
ij +

∑
k∈K

∑
j≥1

rzk
j +

∑
j≥1

fjyj +
∑
k∈K

∑
(0,i)∈Ak

vkxk
0i (1)

yj = 1 if station j ∈ J is open, 0 otherwise.
xk

ij = 1 if arc (i , j) is traversed by vehicle k ∈ K , 0 otherwise.
zk

j ≥ 0 is the amount of energy recharged at station j ∈ J for k ∈ K .

Lexicographic station selection

yi ≤ yj , i ∈ JA
j : i 6= j (2)
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Problem Formulation - PF (cont’d.)
Sub-tour elimination - commodity flows (Yaman, 2006)∑

(i,j)∈Ak

(lk
ij − dixk

ij ) =
∑

(j,i)∈Ak

lk
ji , i ≥ 1,∀k ∈ K (3)

∑
j≥1

lk
0j = 0, ∀k ∈ K (4)

lk
ij ≤ Qkxk

ij , ∀k ∈ K , (i , j) ∈ Ak (5)

lk
ij ≥ 0 is the cumulative load of vehicle k at node i before leaving for node j .

Routing constraints
x and y variables.

Battery related constraints
bk

ij ≥ 0 is the battery level of vehicle k at node i before leaving for node j .
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General algorithmic framework

Phase I
Solve the restrictive problem with at most one visit to each station.
⇒ Upper bound Z 1.

Intermediate reduction procedure
For each station j , calculate a lower bound ZLB

mjk for m ≥ 2 visits to j
with vehicle k.
If ZLB

mjk > Z 1, no need for m visits to j .
⇒ remove corresponding decision variables from PF.

Phase II
Solve the reduced PF to optimality.
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Intermediate reduction process - a closer look

Three types of lower bounds on the total cost:

LB1: Minimum recharging need

Em: the energy consumption needed for m visits, and
Rm: the amount of recharging needed for m visits.
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Intermediate reduction process - a closer look

You visit a different customer between every two visits to j .

LB2: Partial network structure

Em: the energy consumption needed for m visits, and
Rm: the amount of recharging needed for m visits.
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Intermediate reduction process - a closer look

Lower bounds for TSP are lower bounds for VRP as well.
Minimum spanning tree and 1-tree relaxations.

LB3: A 1-tree lower bound (single vehicle)
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Intermediate reduction process - a closer look
1-tree lower bound for two vehicles

1-tree lower bound for three vehicles
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Solving the restrictive PF and reduced PF more efficiently
Still difficult to solve (Schiffer and Walther, 2017b) ⇒ decomposition.

Benders decomposition - Benders (1962)
First-stage variables (binary, integral) ⇒ Master problem (MP)
Second-stage variables (continuous) ⇒ Sub-problem (SP)

conv(MP )

SP

xm

xopt

FC1

conv(MP ∪ FC1)

SP

xm3

xm2

xopt

FC2

OC1

Extreme rays of dual SP (DSP) ⇒ feasibility cuts (FC)
Extreme points of DSP ⇒ optimality cuts (OC)
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Structure of our Benders implementation (BDA)

First-stage variables (y, x, l): binary, continuous ⇒ Master problem
(MP)
Second-stage variables (z,b): continuous ⇒ Sub-problem (SP)
Feasibility cuts only

MP’ with wk =
∑

j∈JA zk
j ≥ 0,∀k ∈ K

SP decomposes into vehicle routes ⇒ SPk ,∀k ∈ K

Branch-and-cut

Valid inequalities
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Computational Study - Instances

Test instances and the environment
Small EVRP-TW instances (Schneider et al., 2014)
|I|=5, 10, 15 and |J |=7-22
Three types of vehicles S, M, L (30000 e- 65000 e- 5 years):
Up to 2-4 vehicles (different fleet configurations)
Fast charging units (8000 e- 3 years)
Time limit: 3600, 10800 seconds
Memory Limit: 16 GB
IBM ILOG CPLEX 12.8 (single thread)
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Computational Study - Results

Using heterogeneous fleets
The cost is halved for |I| = 5, 10.
Fewer stations are needed.
Fewer vehicles are needed for |I| = 5, 10.
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Computational Study - Average gap and solving time
BDA Phase I BDA Phase II PF

g t(s) g t(s) g t(s)
|I| = 5 0.00 1.57 0.00 1.76 0.02 523.93
|I| = 10 0.00 188.53 0.00 286.73
|I| = 15 0.10 4658.65 0.10 4833.38
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Computational Study - Average , number of stations
opened and number of vehicles used

Figure: For each heterogeneous fleet type.

Fleets with smaller vehicles are usually more costly and challenging.
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Computational Study - Average , number of stations
opened and number of vehicles used

Figure: For each network type (heterogeneous fleets).

Some smaller networks are more challenging and costly as well.
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Summary and Conclusions

Contribution
ELRP-PR with heterogeneous fleets
An MIP with commodity flows
An exact decomposition framework
Benders algorithm ⇒ quick feasible solutions
Intermediate process ⇒ a much smaller problem size

Conclusions
Heterogeneous fleets are worth consideration.
Fleet composition must be well analyzed.
The framework with lower bounds is very successful.
Can it be improved?
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Future Research Directions

Methodological and experimental
TSP lower bounds for LRP methods (Gandra et al., 2021)
Matheuristic approaches
Meta-heuristics to embed in the proposed framework

Consideration of additional real-world components
Periodic and/or multi-period
Time windows
Multi-depot with location decisions also on depots
Stochastic or dynamic problems
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