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Electric vehicles in transportation

Current situation

@ Transport sector is responsible for

e greenhouse emissions
o energy consumption (32% increase from 1990 to 2016)
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Electric vehicles in transportation

Current situation

@ Transport sector is responsible for

e greenhouse emissions
o energy consumption (32% increase from 1990 to 2016)

Targets and international agreements
e Carbon neutrality over the next 30 years
@ Low emission zones (LEZ)
@ EU green deal = locating charging stations at
e highways
e airports
@ ports
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Electric vehicles in transportation

Private cars

Car sharing vehicles

Public transport vehicles (buses)
Logistics vehicles
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Electric vehicles in transportation

Private cars
Car sharing vehicles
Public transport vehicles (buses)

Logistics vehicles

e limited light-duty EV choice
o limited driving range

e long charging time

e lack of charging stations
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Electric vehicles in transportation

Private cars

Car sharing vehicles

Public transport vehicles (buses)
Logistics vehicles

limited light-duty EV choice

o limited driving range

e long charging time

e lack of charging stations

Autonomous vehicles
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The electric location-routing problem (ELRP)

O customer A depot



The electric location-routing problem (ELRP)

—7
!

O customer A depot D station
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Most relevant studies to the ELRP

ELRP with time windows and partial recharging (ELRP-TWPR):
a generalization of the EVRP-TW by Schneider et al. (2014).
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Most relevant studies to the ELRP

ELRP with time windows and partial recharging (ELRP-TWPR):
a generalization of the EVRP-TW by Schneider et al. (2014).

e Schiffer and Walther (2017b): ELRP-TWPR
An MIP formulation based on MTZ (labeling) constraints

e Schiffer and Walther (2017a):
An ALNS heuristic that solves ELRP-TWPR
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Most relevant studies to the ELRP

ELRP with time windows and partial recharging (ELRP-TWPR):
a generalization of the EVRP-TW by Schneider et al. (2014).

e Schiffer and Walther (2017b): ELRP-TWPR
An MIP formulation based on MTZ (labeling) constraints

e Schiffer and Walther (2017a):
An ALNS heuristic that solves ELRP-TWPR

Our problem: ELRP with partial recharging for heterogeneous fleet (no
time windows)
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Notation - The physical network

e G=(N,A) with node set N = /U JU {0} and arc set A

e '0 is the depot node.

o I ={1,...,n} is the set of customer locations.

o Jis the set of potential locations for charging stations (not necessarily
identical).

e / and J are not necessarily disjoint (we assume [ C J).

e K is the (finite) set of vehicles (non-identical).

(Calik et al., 2021)
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Notation - Capacity and range parameters

Q. - freight capacity

B - battery capacity

e;j - energy cons.r—

O customer A depot D station
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Notation - Cost parameters

v, - vehicle cost

r - recharging cost

c;; - routing cost

fj - fixed cost

(O customer A depot D station
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Notation - Modeling challenges: an extreme case (5 = 1)
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Notation - Modeling challenges: an extreme case (5 = 1)
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Notation - Multi-visit network G’ = (N'; A")

Multiple copies of potential stations for multiple visits by the same vehicle

O customer A depot D station

@ No arcs between copies of the same station
e f; = d; = 0 for additional copies
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How difficult is the problem?

Small EVRP-TW instances (Schneider et al. (2014))

|| 5 10 15
|J] 7-8 12 - 14 17 - 22
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How difficult is the problem?

Small EVRP-TW instances (Schneider et al. (2014))

|| 5 10 15
1J] 7-8 12 - 14 17 - 22
= IN'| 43 - 49 133-155 273 -353

INI =14 [J] x (1 +1)
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How difficult is the problem?

Small EVRP-TW instances (Schneider et al. (2014))

|| 5 10 15
1J] 7-8 12 - 14 17 - 22
= IN'| 43 - 49 133-155 273 -353

INI =14 [J] x (1 +1)

The state-of-the-art exact LRP method solves instances with less than 100 nodes
(Contardo et al., 2014).
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Pre-processing

@ Eliminate infeasible arcs
e violating freight capacities
e violating battery restrictions
e Find a lower bound on the number of vehicles (nVMin)
= solve a bin packing problem with @, d

Find a lower bound on the number of stations (nSMin)
= solve a minimum (set) covering problem with 3, e

Find an upper bound on the number of copies needed
= solve a knapsack problem with Q™ d
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Problem Formulation - PF

Objective function

mn Y3 Gt YooY Yy > vegs (1)

keK (i j)eAk keK j>1 jz1 keK (0,i)eAk

e y; = 1 if station j € J is open, 0 otherwise.
° xé? = 1if arc (i,j) is traversed by vehicle k € K, 0 otherwise.

° zjk > 0 is the amount of energy recharged at station j € J for k € K.

Hatice Calik Mathematical Formulation November 26, 2021 14 /29



Problem Formulation - PF

Objective function

mn Y3 Gt YooY Yy > vegs (1)

keK (i j)eAk keK j>1 jz1 keK (0,i)eAk

e y; = 1 if station j € J is open, 0 otherwise.

Lexicographic station selection

yi <y, i€ i (2)
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Problem Formulation - PF (cont'd.)

Sub-tour elimination - commodity flows (Yaman, 2006)

> (- dixf) = Z I, i>1,YkeK (3)
(i.j)EAK i)EAK
Z =0, Vk e K (4)
j>1
< o, Vk € K, (i,)) € A« (5)

° I,-f > 0 is the cumulative load of vehicle k at node i before leaving for node j.

Routing constraints

x and y variables

Battery related constraints

° bfj‘- > 0 is the battery level of vehicle k at node i before leaving for node ;.

Hatice Calik Mathematical Formulation November 26, 2021 15 /29



General algorithmic framework

@ Solve the restrictive problem with at most one visit to each station.

e = Upper bound Z.
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General algorithmic framework

@ Solve the restrictive problem with at most one visit to each station.

e = Upper bound Z*.

Intermediate reduction procedure

@ For each station j, calculate a lower bound ZtB for m > 2 visits to j

mjk
with vehicle k.
o If Z,f,ﬁ( > Z', no need for m visits to j.

@ = remove corresponding decision variables from PF.

Hatice Calik Decomposition Algorithm November 26, 2021 16 / 29



General algorithmic framework

@ Solve the restrictive problem with at most one visit to each station.

e = Upper bound Z*.

Intermediate reduction procedure

@ For each station j, calculate a lower bound Z . for m > 2 visits to j
with vehicle k.

o If ZL e Z%, no need for m visits to j.

@ = remove corresponding decision variables from PF.

@ Solve the reduced PF to optimality.
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Intermediate reduction process - a closer look

Three types of lower bounds on the total cost:

LB1: Minimum recharging need
: : T

.

E™: the energy consumption needed for m visits, and
R™: the amount of recharging needed for m visits.
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Intermediate reduction process - a closer look

You visit a different customer between every two visits to ;.

LB2: Partial network structure

i —O——{e—O—{a A

3 C_ o. 5, b . s , 3 c k
E° > E =ejote te,jte,te,itepo R3 > E¢ —pha

E™: the energy consumption needed for m visits, and
R™: the amount of recharging needed for m visits.
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Intermediate reduction process - a closer look

Lower bounds for TSP are lower bounds for VRP as well.

Minimum spanning tree and 1-tree relaxations.

LB3: A 1-tree lower bound (single vehicle)
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Intermediate reduction process - a closer look

1-tree lower bound for two vehicles
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Solving the restrictive PF and reduced PF more efficiently

o Still difficult to solve (Schiffer and Walther, 2017b) = decomposition.

Benders decomposition - Benders (1962)

@ First-stage variables (binary, integral) = Master problem (MP)
@ Second-stage variables (continuous) = Sub-problem (SP)

e .

N FG

oo,

=77 conu(MP) - cono(MPUFC)

@ Extreme rays of dual SP (DSP) = feasibility cuts (FC)

@ Extreme points of DSP = optimality cuts (OC)
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Structure of our Benders implementation (BDA)

First-stage variables (y, x,/): binary, continuous = Master problem
(MP)
@ Second-stage variables (z, b): continuous = Sub-problem (SP)

Feasibility cuts only
o MP’ with wk = P zjk >0,Vke K
o SP decomposes into vehicle routes = SPy,Vk € K

Branch-and-cut

Valid inequalities
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Computational Study - Instances

Test instances and the environment
@ Small EVRP-TW instances (Schneider et al., 2014)
o |/|=5, 10, 15 and |J|=7-22
Three types of vehicles S, M, L (30000 €- 65000 €- 5 years):

e Up to 2-4 vehicles (different fleet configurations)
e Fast charging units (8000 €- 3 years)

@ Time limit: 3600, 10800 seconds

@ Memory Limit: 16 GB

e IBM ILOG CPLEX 12.8 (single thread)

.
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Computational Study - Results

Homogeneous vs. heterogeneous fleets

» 39 3 g

e 30 2 .50 S

3 25 29,44 10 2 T

5 220 28.67 16.63 179 © =
o = 15 24.34 5
10 15.02 700 1 =
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0 0:56 0:62 015 0 ©
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Homogeneous fleet Heterogeneous fleet 2

Fleet size and type

Average cost ====Number of stations opened =#=Number of vehicles used

Using heterogeneous fleets
@ The cost is halved for |/| = 5, 10.
@ Fewer stations are needed.
o Fewer vehicles are needed for |/| = 5, 10.
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Computational Study - Average gap and solving time

BDA Phase | BDA Phase Il PF

e )| g ts)| g ts)
/=5 [0.00 1.57(0.00 1.76 |0.02 523.93
/l=10(0.00 188.53|0.00 286.73
[l = 15| 0.10 4658.65| 0.10 4833.38
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Computational Study - Average gap and solving time

BDA Phase | BDA Phase Il PF

e )| g ts)| g ts)
Il=5 |0.00 1.57(0.00 1.76 |0.02 523.93
/| =10{0.00 188.53|/0.00 286.73
/| =15| 0.10 4658.65| 0.10 4833.38

Average BDA solving time (Phase |, Phase Il, and Phase I+Phase 1) and gaps per heterogeneous fleet

Thousands
N

«

Average BDA time

Fleet type

Phase | time mmEPhase lltime =#=Phase |gap =——Phase Il gap
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Computational Study - Average , number of stations

opened and number of vehicles used

Average cost, number of stations opened and number of vehicles used per heterogeneous fleet

30 3.39

Thousands

Cost
N
15}

v el 2 v % : 2 % 7 p % ’ 7 % . 7 :
RIS N N W7 v 2 W ~ ,w v W ki W i b
A ) V 4 2 4 \ 2 \ N N ; 9 /)

< @ « @4 @\ @4 @* @4 @4 I T S
¢ ¢ ¢ ¢ ¢ ©® @ ¢
Fleet type
B Avg. cost =-e-Avg. number of stations opened ——Avg. number of vehicles used

Figure: For each heterogeneous fleet type.

Fleets with smaller vehicles are usually more costly and challenging.
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Figure: For each network type (heterogeneous fleets).
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Some smaller networks are more challenging and costly as well.
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Summary and Conclusions

Contribution
@ ELRP-PR with heterogeneous fleets
@ An MIP with commodity flows

@ An exact decomposition framework
Benders algorithm = quick feasible solutions
Intermediate process = a much smaller problem size
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Summary and Conclusions

Contribution
@ ELRP-PR with heterogeneous fleets
@ An MIP with commodity flows

@ An exact decomposition framework
Benders algorithm = quick feasible solutions
Intermediate process = a much smaller problem size

@ Heterogeneous fleets are worth consideration.

@ Fleet composition must be well analyzed.

@ The framework with lower bounds is very successful.
Can it be improved?
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Future Research Directions

Methodological and experimental
@ TSP lower bounds for LRP methods (Gandra et al., 2021)

@ Matheuristic approaches

@ Meta-heuristics to embed in the proposed framework

Hatice Calik Summary and Future Research Directions November 26, 2021



Future Research Directions

Methodological and experimental

@ TSP lower bounds for LRP methods (Gandra et al., 2021)

@ Matheuristic approaches

@ Meta-heuristics to embed in the proposed framework

Consideration of additional real-world components

@ Periodic and/or multi-period
@ Time windows

@ Multi-depot with location decisions also on depots

@ Stochastic or dynamic problems
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