Applications, properties and curiosities of the WRP and related problems

Martine Labbé ${ }^{1}$ Justo Puerto ${ }^{2}$ Moisés Rodríguez-Madrena ${ }^{1,2}$
${ }^{1}$ Université Libre de Bruxelles, Brussels, Belgium
${ }^{2}$ IMUS, Universidad de Sevilla, Spain

December 21, 2021 - IMUS

UNIVERSITÉ
LIBRE
DE BRUXELLES

OUTLINE:

(1) From Shortest Paths in Graphs to Geometric Shortest Paths
(2) The Weightred Region Problem (WRP)

- Applications
- Properties
- Curiosities
(3) The Simple-Path ℓ_{p}-WRP
- Local optimality condition for gate points and relation with Snell's law

Shortest Path Problem

El camino más corto que lleva del nodo 1 al 7 es
$1 \longrightarrow 3 \longrightarrow 6 \longrightarrow 7$ y su longitud es 4 .

Advances on data analysis, logistics and transportation problems on complex networks

Geometric Shortest Path Problems

Advances on data analysis, logistics and transportation problems on complex networks

Geometric Shortest Path Problems

Advances on data analysis, logistics and transportation problems on complex networks

Geometric Shortest Path Problems

Advances on data analysis, logistics and transportation problems on complex networks

Geometric Shortest Path Problems

Advances on data analysis, logistics and transportation problems on complex networks

Weighted Region Problem (WRP)

Advances on data analysis, logistics and transportation problems on complex networks

Weighted Region Problem (WRP)

Advances on data analysis, logistics and transportation problems on complex networks

WRP and triangle inequality

$$
\begin{aligned}
& 3\|(10,9)-(1,0)\|_{2}=38.1837 \ldots \\
& 3\|(1,1)-(1,0)\|_{2}+2\|(1,6)-(1,1)\|_{2}+\|(1,9)-(1,6)\|_{2}=16 \\
& \|(4,9)-(1,9)\|_{2}+2\|(9,9)-(4,9)\|_{2}+3\|(10,9)-(9,9)\|_{2}=16
\end{aligned}
$$

Applications of the WRP

Figure: Mitchell and Papadimitriou (1991)

Advances on data analysis, logistics and transportation problems on complex networks

Applications of the WRP

Figure: Gheibi, Maheshwari, Sack and Scheffer (2018)

Advances on data analysis, logistics and transportation problems on complex networks

Local optimality condition for gate points

Advances on data analysis, logistics and transportation problems on complex networks

Local optimality condition for gate points

Snell's law

Snell's law

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Some references on the WRP and related problems

- J.S.B. Mitchell, C.H. Papadimitriou: The weighted region problem: finding shortest paths through a weighted planar subdivision. J. Assoc. Comput. Mach. 38, 18-73 (1991)
- C. S. Mata, J.S.B. Mitchell: A new algorithm for computing shortest paths in weighted planar subdivisions. In Proceedings of the thirteenth annual symposium on Computational geometry, 264-273 (1997)
- L. Aleksandrov, A. Maheshwari, J.-R. Sack: Determining approximate shortest paths on weighted polyhedral surfaces. J. Assoc. Comput. Mach., 25-53 (2005)
- Z. Sun, J. Reif: On finding approximate optimal paths in weighted regions. J. Algorithms 58, 1-32 (2006)
- S.-W. Cheng, H.-S. Na, A. Vigneron, Y. Wang: Approximate shortest paths in anisotropic regions. SIAM J. Comput. 38, 802-824, (2008)
- S.-W. Cheng, H.-S. Na, A. Vigneron, Y. Wang: Querying approximate shortest paths in anisotropic regions. SIAM J. Comput. 39, 1888-1918 (2010)
- M. Fort, J.A. Sellares: Approximating generalized distance functions on weighted triangulated surfaces with applications. J. Comput. Appl. Math. 236, 3461-3477 (2012)
- A. Gheibi, A. Maheshwari, J. R. Sack, C. Scheffer: Path refinement in weighted regions. Algorithmica, 80(12), 3766-3802 (2018)

Some references on the WRP and related problems

- J.S.B. Mitchell, C.H. Papadimitriou: The weighted region problem: finding shortest paths through a weighted planar subdivision. J. Assoc. Comput. Mach. 38, 18-73 (1991)
- C. S. Mata, J.S.B. Mitchell: A new algorithm for computing shortest paths in weighted planar subdivisions. In Proceedings of the thirteenth annual symposium on Computational geometry, 264-273 (1997)
- L. Aleksandrov, A. Maheshwari, J.-R. Sack: Determining approximate shortest paths on weighted polyhedral surfaces. J. Assoc. Comput. Mach., 25-53 (2005)
- Z. Sun, J. Reif: On finding approximate optimal paths in weighted regions. J. Algorithms 58, 1-32 (2006)
- S.-W. Cheng, H.-S. Na, A. Vigneron, Y. Wang: Approximate shortest paths in anisotropic regions. SIAM J. Comput. 38, 802-824, (2008)
- S.-W. Cheng, H.-S. Na, A. Vigneron, Y. Wang: Querying approximate shortest paths in anisotropic regions. SIAM J. Comput. 39, 1888-1918 (2010)
- M. Fort, J.A. Sellares: Approximating generalized distance functions on weighted triangulated surfaces with applications. J. Comput. Appl. Math. 236, 3461-3477 (2012)
- A. Gheibi, A. Maheshwari, J. R. Sack, C. Scheffer: Path refinement in weighted regions. Algorithmica, 80(12), 3766-3802 (2018)

Unsolvability of the WRP

De Carufel, Grimm, Maheshwari, Owen and Smid (2014)

In general, the exact solution of WRP cannot be computed in \mathbb{Q} using a finite number of the operations,$+-\times, \div, \sqrt[k]{ }$, for any $k \geq 2$.

Unsolvability of the WRP

De Carufel, Grimm, Maheshwari, Owen and Smid (2014)

In general, the exact solution of WRP cannot be computed in \mathbb{Q} using a finite number of the operations,$+-\times, \div \sqrt[k]{ }$, for any $k \geq 2$.

Gheibi, Maheshwari, Sack and Scheffer (2018):

- "It is unlikely that WRP can be solved in polynomial time".
- "To the best of our knowledge, still no FPTAS is known for WRP".

Advances on data analysis, logistics and transportation problems on complex networks

Counterexample in De Carufel, Grimm, Maheshwari, Owen and Smid (2014)

Advances on data analysis, logistics and transportation problems on complex networks

Counterexample in De Carufel, Grimm, Maheshwari, Owen and Smid (2014)

For simplicity, we let $\theta=\theta_{1}$. Hence, we must have $\sin \left(\theta_{2}\right)=\frac{w_{1}}{w_{2}} \sin (\theta)$ and $\sin \left(\theta_{3}\right)=\frac{w_{1}}{w_{3}} \sin (\theta)$.
Since the sum of the vertical distances travelled in all regions must be equal to the y-coordinate of t, we need to solve

$$
\tan (\theta)+2 \tan \left(\theta_{2}\right)+3 \tan \left(\theta_{3}\right)=2
$$

Since $\tan (\theta)=\frac{\sin (\theta)}{\sqrt{1-\sin ^{2}(\theta)}}$ for $0 \leqslant \theta<\frac{1}{2} \pi$, this can be rewritten as

$$
\phi(X)=\frac{X}{\sqrt{1-X^{2}}}+2 \frac{\frac{w_{1}}{w_{2}} X}{\sqrt{1-\left(\frac{w_{1}}{w_{2}} X\right)^{2}}}+3 \frac{\frac{w_{1}}{w_{3}} X}{\sqrt{1-\left(\frac{w_{1}}{w_{3}} X\right)^{2}}}=2
$$

where $X=\sin (\theta)$. By appropriately squaring three times, this can be transformed into

$$
\begin{aligned}
p_{12}(u)= & 419904-3545856 u+12394944 u^{2}-24006816 u^{3}+28904608 u^{4}-22882588 u^{5} \\
& +12204109 u^{6}-4396586 u^{7}+1060979 u^{8}-168272 u^{9}+16843 u^{10}-970 u^{11}+25 u^{12}=0
\end{aligned}
$$

where $u=X^{2}$.

Advances on data analysis, logistics and transportation problems on complex networks

Simple-Path ℓ_{p}-WRP

Advances on data analysis, logistics and transportation problems on complex networks

Balls of the ℓ_{p}-norms

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \quad \forall x \in \mathbb{R}^{n} \quad \text { where } p \in[1, \infty)
$$

Advances on data analysis, logistics and transportation problems on complex networks

Balls of the "pasted" ℓ_{p}-norms

Figure: Plastria (2019)

Advances on data analysis, logistics and transportation problems on complex networks

Blanco, Puerto and Ponce (2017)

Advances on data analysis, logistics and transportation problems on complex networks

Simple-Path ℓ_{p}-Weighted-Region Location Problem

Advances on data analysis, logistics and transportation problems on complex networks

Classical Snell's law

Snell's law - Classical form
 $$
w_{A} \sin \theta(c-a, v)=w_{B} \sin \theta(b-c, v)
$$

for all non-zero vector $v \perp H$.

Advances on data analysis, logistics and transportation problems on complex networks

Classical Snell's law

Snell's law - Classical form

$$
w_{A} \sin \theta(c-a, v)=w_{B} \sin \theta(b-c, v)
$$

for all non-zero vector $v \perp H$.

Snell's law - Cosine form

$$
w_{A} \cos \theta(c-a, v)=w_{B} \cos \theta(b-c, v)
$$

for all non-zero vector $v \in V(H)$.

Advances on data analysis, logistics and transportation problems on complex networks

Classical Snell's law

Snell's law - Classical form

$$
w_{A} \sin \theta(c-a, v)=w_{B} \sin \theta(b-c, v)
$$

for all non-zero vector $v \perp H$.

Snell's law - Cosine form

$$
w_{A} \cos \theta(c-a, v)=w_{B} \cos \theta(b-c, v)
$$

for all non-zero vector $v \in V(H)$.

Snell's law - Dot product form

$w_{A}\left(\frac{c-a}{\|c-a\|_{2}}\right)^{T} v=w_{B}\left(\frac{b-c}{\|b-c\|_{2}}\right)^{T} v$
for all non-zero vector $v \in V(H)$.

Generalized Snell's law

Optimality condition for the gate point c

$$
w_{A} u_{A}^{T} v=w_{B} u_{B}^{T} v
$$

for all non-zero vector $v \in V(H)$, where

$$
\begin{gathered}
u_{A}=\left(\left[\frac{\left|c_{1}-a_{1}\right|}{\|c-a\|_{p_{A}}}\right]^{p_{A}-1} \operatorname{sign}\left(c_{1}-a_{1}\right)\right. \\
\left.\ldots,\left[\frac{\left|c_{n}-a_{n}\right|}{\|c-a\|_{p_{A}}}\right]^{p_{A}-1} \operatorname{sign}\left(c_{n}-a_{n}\right)\right)^{T}
\end{gathered}
$$

and

$$
\begin{aligned}
& u_{B}=\left(\left[\frac{\left|b_{1}-c_{1}\right|}{\|b-c\|_{p_{B}}}\right]^{p_{B}-1} \operatorname{sign}\left(b_{1}-c_{1}\right)\right. \\
& \left.\ldots,\left[\frac{\left|b_{n}-c_{n}\right|}{\|b-c\|_{p_{B}}}\right]^{p_{B}-1} \operatorname{sign}\left(b_{n}-c_{n}\right)\right)^{T}
\end{aligned}
$$

Advances on data analysis, logistics and transportation problems on complex networks

Blanco, Puerto and Ponce (2017)

$$
\sin _{p_{A}} \gamma_{a}=\frac{\left|\alpha^{t} a-\beta\right|}{\left\|a-x^{*}\right\|_{p_{A}}} \quad\left(\text { analogously } \sin _{p_{B}} \gamma_{b}=\frac{\left|\alpha^{t} b-\beta\right|}{\left\|b-x^{*}\right\|_{p_{B}}}\right)
$$

Polarity correspondence of ℓ_{p}-norms

Definition (Polar norm)

Consider an ℓ_{p}-norm with $p \in(1,+\infty)$ and let B_{p} be its unit ball. Then, there exists a unique $\ell_{p^{\circ}}$-norm with $p^{\circ} \in(1,+\infty)$ whose unit ball $B_{p^{\circ}}$ is the polar set of B_{p}, where the polar set B_{p}° of B_{p} is given by

$$
B_{p}^{\circ}=\left\{x^{\prime} \in \mathbb{R}^{n}: x^{T} x^{\prime} \leq 1, \forall x \in B_{p}\right\} .
$$

The norm $\ell_{p^{\circ}}$ is called the polar norm of ℓ_{p}.

Polarity correspondence of ℓ_{p}-norms

Definition (Polar norm)

Consider an ℓ_{p}-norm with $p \in(1,+\infty)$ and let B_{p} be its unit ball. Then, there exists a unique $\ell_{p^{\circ}}$-norm with $p^{\circ} \in(1,+\infty)$ whose unit ball $B_{p^{\circ}}$ is the polar set of B_{p}, where the polar set B_{p}° of B_{p} is given by

$$
B_{p}^{\circ}=\left\{x^{\prime} \in \mathbb{R}^{n}: x^{T} x^{\prime} \leq 1, \forall x \in B_{p}\right\} .
$$

The norm $\ell_{p^{\circ}}$ is called the polar norm of ℓ_{p}.

Proposition (Characterization of polarity correspondence)

The norms ℓ_{p} and $\ell_{p^{\circ}}$ are polar to each other iff $\frac{1}{p}+\frac{1}{p^{\circ}}=1$.

Polarity correspondence of ℓ_{p}-norms

Definition (Polar norm)

Consider an ℓ_{p}-norm with $p \in(1,+\infty)$ and let B_{p} be its unit ball. Then, there exists a unique $\ell_{p^{\circ}}$-norm with $p^{\circ} \in(1,+\infty)$ whose unit ball $B_{p} \circ$ is the polar set of B_{p}, where the polar set B_{p}° of B_{p} is given by

$$
B_{p}^{\circ}=\left\{x^{\prime} \in \mathbb{R}^{n}: x^{T} x^{\prime} \leq 1, \forall x \in B_{p}\right\} .
$$

The norm $\ell_{p^{\circ}}$ is called the polar norm of ℓ_{p}.

Proposition (Characterization of polarity correspondence)

The norms ℓ_{p} and $\ell_{p^{\circ}}$ are polar to each other iff $\frac{1}{p}+\frac{1}{p^{\circ}}=1$.

Notation:

Some considerations

- The standard angle between two non-zero vectors v and v^{\prime} is defined as the real number $\theta \in[0, \pi]$ satisfying the equality $\cos \theta=\frac{v^{T} v^{\prime}}{\|v\|_{2}\left\|v^{\prime}\right\|_{2}}$.

Some considerations

- The standard angle between two non-zero vectors v and v^{\prime} is defined as the real number $\theta \in[0, \pi]$ satisfying the equality $\cos \theta=\frac{v^{T} v^{\prime}}{\|v\|_{2}\left\|v^{\prime}\right\|_{2}}$.
- It is the Cauchy-Schwarz inequality $\left|v^{T} v^{\prime}\right| \leq\|v\|_{2}\left\|v^{\prime}\right\|_{2}$ which ensures $-1 \leq \frac{v^{T} v^{\prime}}{\|v\|_{2}\left\|v^{\prime}\right\|_{2}} \leq 1$ (proper image of the cosine function).

Some considerations

- The standard angle between two non-zero vectors v and v^{\prime} is defined as the real number $\theta \in[0, \pi]$ satisfying the equality $\cos \theta=\frac{v^{T} v^{\prime}}{\|v\|_{2}\left\|v^{\prime}\right\|_{2}}$.
- It is the Cauchy-Schwarz inequality $\left|v^{T} v^{\prime}\right| \leq\|v\|_{2}\left\|v^{\prime}\right\|_{2}$ which ensures $-1 \leq \frac{v^{T} v^{\prime}}{\|v\|_{2}\left\|v^{\prime}\right\|_{2}} \leq 1$ (proper image of the cosine function).
- More generally, recall that in all normed spaces $\left(\mathbb{R}^{n},\|\cdot\|\right)$ where the norm $\|\cdot\|$ can be defined from an inner product $\langle\cdot, \cdot\rangle$ as $\|\tilde{v}\|=\sqrt{\langle\tilde{v}, \tilde{v}\rangle}$ for each $\tilde{v} \in \mathbb{R}^{n}$, the Cauchy-Schwarz inequality $\left|\left\langle v, v^{\prime}\right\rangle\right| \leq\|v\|\left\|v^{\prime}\right\|$ is satisfied.

Some considerations

- The standard angle between two non-zero vectors v and v^{\prime} is defined as the real number $\theta \in[0, \pi]$ satisfying the equality $\cos \theta=\frac{v^{T} v^{\prime}}{\|v\|_{2}\left\|v^{\prime}\right\|_{2}}$.
- It is the Cauchy-Schwarz inequality $\left|v^{T} v^{\prime}\right| \leq\|v\|_{2}\left\|v^{\prime}\right\|_{2}$ which ensures $-1 \leq \frac{v^{T} v^{\prime}}{\|v\|_{2}\left\|v^{\prime}\right\|_{2}} \leq 1$ (proper image of the cosine function).
- More generally, recall that in all normed spaces $\left(\mathbb{R}^{n},\|\cdot\|\right)$ where the norm $\|\cdot\|$ can be defined from an inner product $\langle\cdot, \cdot\rangle$ as $\|\tilde{v}\|=\sqrt{\langle\tilde{v}, \tilde{v}\rangle}$ for each $\tilde{v} \in \mathbb{R}^{n}$, the Cauchy-Schwarz inequality $\left|\left\langle v, v^{\prime}\right\rangle\right| \leq\|v\|\left\|v^{\prime}\right\|$ is satisfied.
- Consider now a normed space $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ with $p \in(1,+\infty)$. It is known that when $p \neq 2$ there is not an inner product $\langle\cdot, \cdot\rangle$ from which the norm $\|\cdot\|_{p}$ can be defined as indicated above. Moreover, the Cauchy-Schwarz inequality is not satisfied in $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ when $p \neq 2$.

Some considerations

- The standard angle between two non-zero vectors v and v^{\prime} is defined as the real number $\theta \in[0, \pi]$ satisfying the equality $\cos \theta=\frac{v^{T} v^{\prime}}{\|v\|_{2}\left\|v^{\prime}\right\|_{2}}$.
- It is the Cauchy-Schwarz inequality $\left|v^{T} v^{\prime}\right| \leq\|v\|_{2}\left\|v^{\prime}\right\|_{2}$ which ensures $-1 \leq \frac{v^{T} v^{\prime}}{\|v\|_{2}\left\|v^{\prime}\right\|_{2}} \leq 1$ (proper image of the cosine function).
- More generally, recall that in all normed spaces $\left(\mathbb{R}^{n},\|\cdot\|\right)$ where the norm $\|\cdot\|$ can be defined from an inner product $\langle\cdot, \cdot\rangle$ as $\|\tilde{v}\|=\sqrt{\langle\tilde{v}, \tilde{v}\rangle}$ for each $\tilde{v} \in \mathbb{R}^{n}$, the Cauchy-Schwarz inequality $\left|\left\langle v, v^{\prime}\right\rangle\right| \leq\|v\|\left\|v^{\prime}\right\|$ is satisfied.
- Consider now a normed space $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ with $p \in(1,+\infty)$. It is known that when $p \neq 2$ there is not an inner product $\langle\cdot, \cdot\rangle$ from which the norm $\|\cdot\|_{p}$ can be defined as indicated above. Moreover, the Cauchy-Schwarz inequality is not satisfied in $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ when $p \neq 2$.
- Hölder inequality states:

$$
\sum_{k=1}^{n}\left|v_{k} v_{k}^{\prime}\right| \leq\|v\|_{p}\left\|v^{\prime}\right\|_{p^{\circ}}
$$

for all $v=\left(v_{1}, \cdots, v_{n}\right)^{T}, v^{\prime}=\left(v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right)^{T} \in \mathbb{R}^{n}$. Hölder inequality ensures $-1 \leq \frac{v^{T} v^{\prime}}{\|v\|_{p}\left\|v^{\prime}\right\|_{p^{\circ}}} \leq 1$ for all non-zero vectors $v, v^{\prime} \in \mathbb{R}^{n}$.

Polar vector

Definition (ℓ_{p}-angle)

Let $p \in(1,+\infty)$. Given two non-zero vectors $v, v^{\prime} \in \mathbb{R}^{n}$, the ℓ_{p}-angle between v and v^{\prime}, which we denote by $\theta_{p}\left(v, v^{\prime}\right)$, is the real number $\theta_{p}\left(v, v^{\prime}\right) \in[0, \pi]$ such that $\cos \theta_{p}\left(v, v^{\prime}\right)=\frac{v^{T} v^{\prime}}{\|v\|_{p}\left\|v^{\prime}\right\|_{p^{\circ}}}$.

Polar vector

Definition (ℓ_{p}-angle)

Let $p \in(1,+\infty)$. Given two non-zero vectors $v, v^{\prime} \in \mathbb{R}^{n}$, the ℓ_{p}-angle between v and v^{\prime}, which we denote by $\theta_{p}\left(v, v^{\prime}\right)$, is the real number $\theta_{p}\left(v, v^{\prime}\right) \in[0, \pi]$ such that $\cos \theta_{p}\left(v, v^{\prime}\right)=\frac{v^{T} v^{\prime}}{\|v\|_{p}\left\|v^{\prime}\right\|_{p^{\circ}}}$.

Remark: When $p \neq 2$, in general $\theta_{p}\left(v, v^{\prime}\right) \neq \theta_{p}\left(v^{\prime}, v\right)$, but it is satisfied $\theta_{p}\left(v, v^{\prime}\right)=\theta_{p^{\circ}}\left(v^{\prime}, v\right)$.

Polar vector

Definition (ℓ_{p}-angle)

Let $p \in(1,+\infty)$. Given two non-zero vectors $v, v^{\prime} \in \mathbb{R}^{n}$, the ℓ_{p}-angle between v and v^{\prime}, which we denote by $\theta_{p}\left(v, v^{\prime}\right)$, is the real number $\theta_{p}\left(v, v^{\prime}\right) \in[0, \pi]$ such that $\cos \theta_{p}\left(v, v^{\prime}\right)=\frac{v^{T} v^{\prime}}{\|v\|_{p}\left\|v^{\prime}\right\|_{p^{\circ}}}$.

Remark: When $p \neq 2$, in general $\theta_{p}\left(v, v^{\prime}\right) \neq \theta_{p}\left(v^{\prime}, v\right)$, but it is satisfied $\theta_{p}\left(v, v^{\prime}\right)=\theta_{p} \circ\left(v^{\prime}, v\right)$.

Proposition 1

Assume \mathbb{R}^{n} is endowed with an ℓ_{p}-norm with $p \in(1,+\infty)$. Consider the map between normed spaces $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|_{p^{\circ}}\right)$ that associates to $v=\left(v_{1}, \ldots, v_{d}\right)^{T}$ the vector $v^{\circ}=\left(\left(\frac{\left|v_{1}\right|}{\|v\|_{p}}\right)^{p-1} \operatorname{sign}\left(v_{1}\right)\|v\|_{p}, \ldots,\left(\frac{\left|v_{n}\right|}{\|v\|_{p}}\right)^{p-1} \operatorname{sign}\left(v_{n}\right)\|v\|_{p}\right)^{T}$ if v is not the zero vector, otherwise v° is the zero vector. Then, given $v \in \mathbb{R}^{n}$, the vector v° is the unique vector in \mathbb{R}^{n} satisfaying $\|v\|_{p}=\left\|v^{\circ}\right\|_{p^{\circ}}$ and $\theta_{p}\left(v, v^{\circ}\right)=0$.

Polar vector

Definition (ℓ_{p}-angle)

Let $p \in(1,+\infty)$. Given two non-zero vectors $v, v^{\prime} \in \mathbb{R}^{n}$, the ℓ_{p}-angle between v and v^{\prime}, which we denote by $\theta_{p}\left(v, v^{\prime}\right)$, is the real number $\theta_{p}\left(v, v^{\prime}\right) \in[0, \pi]$ such that $\cos \theta_{p}\left(v, v^{\prime}\right)=\frac{v^{T} v^{\prime}}{\|v\|_{p}\left\|v^{\prime}\right\|_{p^{\circ}}}$.

Remark: When $p \neq 2$, in general $\theta_{p}\left(v, v^{\prime}\right) \neq \theta_{p}\left(v^{\prime}, v\right)$, but it is satisfied $\theta_{p}\left(v, v^{\prime}\right)=\theta_{p} \circ\left(v^{\prime}, v\right)$.

Proposition 1

Assume \mathbb{R}^{n} is endowed with an ℓ_{p}-norm with $p \in(1,+\infty)$. Consider the map between normed spaces $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|_{p^{\circ}}\right)$ that associates to $v=\left(v_{1}, \ldots, v_{d}\right)^{T}$ the vector $v^{\circ}=\left(\left(\frac{\left|v_{1}\right|}{\|v\|_{p}}\right)^{p-1} \operatorname{sign}\left(v_{1}\right)\|v\|_{p}, \ldots,\left(\frac{\left|v_{n}\right|}{\|v\|_{p}}\right)^{p-1} \operatorname{sign}\left(v_{n}\right)\|v\|_{p}\right)^{T}$ if v is not the zero vector, otherwise v° is the zero vector. Then, given $v \in \mathbb{R}^{n}$, the vector v° is the unique vector in \mathbb{R}^{n} satisfaying $\|v\|_{p}=\left\|v^{\circ}\right\|_{p^{\circ}}$ and $\theta_{p}\left(v, v^{\circ}\right)=0$.

Definition (Polar vector)

Assume \mathbb{R}^{n} is endowed with an ℓ_{p}-norm with $p \in(1,+\infty)$ and let $v \in \mathbb{R}^{n}$. The polar vector of v is the vector v° given in Proposition 1.

Advances on data analysis, logistics and transportation problems on complex networks

Generalized Snell's law

Generalized Snell's law - Dot product form

$$
\begin{aligned}
& w_{A}\left(\frac{(c-a)^{\circ}}{\left\|(c-a)^{\circ}\right\|_{p_{A}^{\circ}}}\right)^{T} v \\
& =w_{B}\left(\frac{(b-c)^{\circ}}{\left\|(b-c)^{\circ}\right\|_{p_{B}^{\circ}}}\right)^{T} v
\end{aligned}
$$

for all non-zero vector $v \in V(H)$.

Generalized Snell's law

Generalized Snell's law - Dot product form

$$
\begin{aligned}
& w_{A}\left(\frac{(c-a)^{\circ}}{\left\|(c-a)^{\circ}\right\|_{p_{A}^{\circ}}}\right)^{T} v \\
& =w_{B}\left(\frac{(b-c)^{\circ}}{\left\|(b-c)^{\circ}\right\|_{p_{B}^{\circ}}}\right)^{T} v
\end{aligned}
$$

for all non-zero vector $v \in V(H)$.

Generalized Snell's law - Cosine form

$$
\begin{aligned}
& w_{A}\|v\|_{p_{A}} \cos \theta_{p_{A}^{\circ}}\left((c-a)^{\circ}, v\right) \\
& =w_{B}\|v\|_{p_{B}} \cos \theta_{p_{B}^{\circ}}\left((b-c)^{\circ}, v\right)
\end{aligned}
$$

for all non-zero vector $v \in V(H)$.

Generalized Snell's law

Generalized Snell's law - Dot product form

$$
\begin{aligned}
& w_{A}\left(\frac{(c-a)^{\circ}}{\left\|(c-a)^{\circ}\right\|_{p_{A}^{\circ}}}\right)^{T} v \\
& =w_{B}\left(\frac{(b-c)^{\circ}}{\left\|(b-c)^{\circ}\right\|_{p_{B}^{\circ}}}\right)^{T} v
\end{aligned}
$$

for all non-zero vector $v \in V(\operatorname{aff}(H))$.

Generalized Snell's law - Cosine form

$$
\begin{aligned}
& w_{A}\|v\|_{p_{A}} \cos \theta_{p_{A}^{\circ}}\left((c-a)^{\circ}, v\right) \\
& =w_{B}\|v\|_{p_{B}} \cos \theta_{p_{B}^{\circ}}\left((b-c)^{\circ}, v\right)
\end{aligned}
$$

for all non-zero vector $v \in V(\operatorname{aff}(H))$.

Many thanks for your attention.

