Applications, properties and curiosities of the WRP and related problems

Martine Labbé¹ Justo Puerto² Moisés Rodríguez-Madrena^{1,2}

¹ Université Libre de Bruxelles, Brussels, Belgium ² IMUS. Universidad de Sevilla. Spain

December 21, 2021 - IMUS

OUTLINE:

- From Shortest Paths in Graphs to Geometric Shortest Paths
- Intersection Problem (WRP)
 - Applications
 - Properties
 - Curiosities
- The Simple-Path ℓ_p -WRP
 - Local optimality condition for gate points and relation with Snell's law

Shortest Path Problem

El camino más corto que lleva del nodo 1 al 7 es $1 \longrightarrow 3 \longrightarrow 6 \longrightarrow 7$ y su longitud es 4.

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

Applications, properties and curiosities of the WRP

Geometric Shortest Path Problems

Geometric Shortest Path Problems

Geometric Shortest Path Problems

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena Applic

Applications, properties and curiosities of the WRP

Geometric Shortest Path Problems

Weighted Region Problem (WRP)

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

Applications, properties and curiosities of the WRP

Weighted Region Problem (WRP)

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

Applications, properties and curiosities of the WRP

WRP and triangle inequality

 $\begin{aligned} & 3\|(10,9)-(1,0)\|_2 = 38.1837\dots \\ & 3\|(1,1)-(1,0)\|_2 + 2\|(1,6)-(1,1)\|_2 + \|(1,9)-(1,6)\|_2 = 16 \\ & \|(4,9)-(1,9)\|_2 + 2\|(9,9)-(4,9)\|_2 + 3\|(10,9)-(9,9)\|_2 = 16 \end{aligned}$

Applications of the WRP

Figure: Mitchell and Papadimitriou (1991)

Applications of the WRP

Figure: Gheibi, Maheshwari, Sack and Scheffer (2018)

Local optimality condition for gate points

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

Applications, properties and curiosities of the WRP

Local optimality condition for gate points

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

Applications, properties and curiosities of the WRP

Snell's law

Martine Labbé • Justo Puerto • Moisés Rdgz. Madrena 👘 Applications, properties and curiosities of the WRP

Snell's law

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena 🛛 🗛

Applications, properties and curiosities of the WRP

< ∃ →

Some references on the WRP and related problems

- J.S.B. Mitchell, C.H. Papadimitriou: The weighted region problem: finding shortest paths through a weighted planar subdivision. J. Assoc. Comput. Mach. 38, 18-73 (1991)
- C. S. Mata, J.S.B. Mitchell: A new algorithm for computing shortest paths in weighted planar subdivisions. In Proceedings of the thirteenth annual symposium on Computational geometry, 264-273 (1997)
- L. Aleksandrov, A. Maheshwari, J.-R. Sack: Determining approximate shortest paths on weighted polyhedral surfaces. J. Assoc. Comput. Mach., 25–53 (2005)
- Z. Sun, J. Reif: On finding approximate optimal paths in weighted regions. J. Algorithms 58, 1–32 (2006)
- S.-W. Cheng, H.-S. Na, A. Vigneron, Y. Wang: Approximate shortest paths in anisotropic regions. SIAM J. Comput. 38, 802-824, (2008)
- S.-W. Cheng, H.-S. Na, A. Vigneron, Y. Wang: Querying approximate shortest paths in anisotropic regions. SIAM J. Comput. 39, 1888–1918 (2010)
- M. Fort, J.A. Sellares: Approximating generalized distance functions on weighted triangulated surfaces with applications. J. Comput. Appl. Math. 236, 3461–3477 (2012)
- A. Gheibi, A. Maheshwari, J. R. Sack, C. Scheffer: Path refinement in weighted regions. Algorithmica, 80(12), 3766-3802 (2018)

イロト 不得下 イヨト イヨト 二日

Some references on the WRP and related problems

- J.S.B. Mitchell, C.H. Papadimitriou: The weighted region problem: finding shortest paths through a weighted planar subdivision. J. Assoc. Comput. Mach. 38, 18-73 (1991)
- C. S. Mata, J.S.B. Mitchell: A new algorithm for computing shortest paths in weighted planar subdivisions. In Proceedings of the thirteenth annual symposium on Computational geometry, 264-273 (1997)
- L. Aleksandrov, A. Maheshwari, J.-R. Sack: Determining approximate shortest paths on weighted polyhedral surfaces. J. Assoc. Comput. Mach., 25–53 (2005)
- Z. Sun, J. Reif: On finding approximate optimal paths in weighted regions. J. Algorithms 58, 1-32 (2006)
- S.-W. Cheng, H.-S. Na, A. Vigneron, Y. Wang: Approximate shortest paths in anisotropic regions. SIAM J. Comput. 38, 802-824, (2008)
- S.-W. Cheng, H.-S. Na, A. Vigneron, Y. Wang: Querying approximate shortest paths in anisotropic regions. SIAM J. Comput. 39, 1888–1918 (2010)
- M. Fort, J.A. Sellares: Approximating generalized distance functions on weighted triangulated surfaces with applications. J. Comput. Appl. Math. 236, 3461–3477 (2012)
- A. Gheibi, A. Maheshwari, J. R. Sack, C. Scheffer: Path refinement in weighted regions. Algorithmica, 80(12), 3766-3802 (2018)

Unsolvability of the WRP

De Carufel, Grimm, Maheshwari, Owen and Smid (2014)

In general, the exact solution of WRP cannot be computed in \mathbb{Q} using a finite number of the operations +, -, ×, ÷, $\sqrt[k]{}$, for any $k \geq 2$.

Unsolvability of the WRP

De Carufel, Grimm, Maheshwari, Owen and Smid (2014) In general, the exact solution of WRP cannot be computed in \mathbb{Q} using a finite number of the operations +, -, ×, ÷, $\sqrt[k]{}$, for any $k \ge 2$.

Gheibi, Maheshwari, Sack and Scheffer (2018):

- "It is unlikely that WRP can be solved in polynomial time".
- "To the best of our knowledge, still no FPTAS is known for WRP".

Counterexample in De Carufel, Grimm, Maheshwari, Owen and Smid (2014)

Counterexample in De Carufel, Grimm, Maheshwari, Owen and Smid (2014)

For simplicity, we let $\theta = \theta_1$. Hence, we must have $\sin(\theta_2) = \frac{w_1}{w_2}\sin(\theta)$ and $\sin(\theta_3) = \frac{w_1}{w_3}\sin(\theta)$. Since the sum of the vertical distances travelled in all regions must be equal to the y-coordinate of *t*, we need to solve

 $\tan(\theta) + 2\tan(\theta_2) + 3\tan(\theta_3) = 2.$

Since $\tan(\theta) = \frac{\sin(\theta)}{\sqrt{1-\sin^2(\theta)}}$ for $0 \le \theta < \frac{1}{2}\pi$, this can be rewritten as

$$\phi(X) = \frac{X}{\sqrt{1 - X^2}} + 2\frac{\frac{w_1}{w_2}X}{\sqrt{1 - (\frac{w_1}{w_2}X)^2}} + 3\frac{\frac{w_1}{w_3}X}{\sqrt{1 - (\frac{w_1}{w_3}X)^2}} = 2$$

where $X = \sin(\theta)$. By appropriately squaring three times, this can be transformed into

$$\begin{split} p_{12}(u) &= 419904 - 3545856u + 12394944u^2 - 24006816u^3 + 28904608u^4 - 22882588u^5 \\ &\quad + 12204109u^6 - 4396586u^7 + 1060979u^8 - 168272u^9 + 16843u^{10} - 970u^{11} + 25u^{12} = 0, \end{split}$$

 re $u = X^2.$

whe

- ・ 同 ト ・ ヨ ト - ヨ ト - ヨ

Simple-Path ℓ_p -WRP

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena 🛛 🗛

Applications, properties and curiosities of the WRP

-

Balls of the ℓ_p -norms

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

Applications, properties and curiosities of the WRP

Balls of the "pasted" ℓ_p -norms

Figure: Plastria (2019)

Blanco, Puerto and Ponce (2017)

Simple-Path ℓ_p -Weighted-Region Location Problem

Classical Snell's law

$$w_A \sin \theta(c-a, v) = w_B \sin \theta(b-c, v)$$

(E) < E)</p>

for all non-zero vector $v \perp H$.

Classical Snell's law

Snell's law - Classical form

$$w_A \sin \theta(c-a, v) = w_B \sin \theta(b-c, v)$$

for all non-zero vector $v \perp H$.

Snell's law - Cosine form

 $w_A \cos \theta(c-a, v) = w_B \cos \theta(b-c, v)$

伺 ト イヨ ト イヨ ト

3

for all non-zero vector $v \in V(H)$.

Classical Snell's law

Snell's law - Classical form

$$w_A \sin \theta(c-a, v) = w_B \sin \theta(b-c, v)$$

for all non-zero vector $v \perp H$.

Snell's law - Cosine form

 $w_A \cos \theta(c-a, v) = w_B \cos \theta(b-c, v)$

for all non-zero vector $v \in V(H)$.

Snell's law - Dot product form

$$w_A \left(\frac{c-a}{\|c-a\|_2}\right)^T v = w_B \left(\frac{b-c}{\|b-c\|_2}\right)^T v$$

for all non-zero vector $v \in V(H)$. Applications, properties and curiosities of the WRP

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

.

Generalized Snell's law

Optimality condition for the gate point \boldsymbol{c}

$$w_A u_A^T v = w_B u_B^T v$$

for all non-zero vector $v \in V(H)$, where

$$u_A = \left(\left[\frac{|c_1 - a_1|}{\|c - a\|_{p_A}} \right]^{p_A - 1} \operatorname{sign}(c_1 - a_1), \\ \dots, \left[\frac{|c_n - a_n|}{\|c - a\|_{p_A}} \right]^{p_A - 1} \operatorname{sign}(c_n - a_n) \right)^T$$

and

$$u_B = \left(\left[\frac{|b_1 - c_1|}{\|b - c\|_{P_B}} \right]^{P_B - 1} \operatorname{sign}(b_1 - c_1), \\ \dots, \left[\frac{|b_n - c_n|}{\|b - c\|_{P_B}} \right]^{P_B - 1} \operatorname{sign}(b_n - c_n) \right)^T.$$

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

Applications, properties and curiosities of the WRP

- E

Blanco, Puerto and Ponce (2017)

$$\sin_{p_A} \gamma_a = \frac{|\alpha^t a - \beta|}{\|a - x^*\|_{p_A}} \quad \left(\text{analogously } \sin_{p_B} \gamma_b = \frac{|\alpha^t b - \beta|}{\|b - x^*\|_{p_B}} \right)$$

Polarity correspondence of ℓ_p -norms

Definition (Polar norm)

Consider an ℓ_p -norm with $p \in (1, +\infty)$ and let B_p be its unit ball. Then, there exists a unique ℓ_{p° -norm with $p^\circ \in (1, +\infty)$ whose unit ball B_{p° is the polar set of B_p , where the polar set B_p° of B_p is given by

$$B_p^{\circ} = \left\{ x' \in \mathbb{R}^n : x^T x' \le 1, \forall x \in B_p \right\}.$$

The norm $\ell_{p^{\circ}}$ is called the polar norm of ℓ_p .

Polarity correspondence of ℓ_p -norms

Definition (Polar norm)

Consider an ℓ_p -norm with $p \in (1, +\infty)$ and let B_p be its unit ball. Then, there exists a unique ℓ_{p° -norm with $p^\circ \in (1, +\infty)$ whose unit ball B_{p° is the polar set of B_p , where the polar set B_p° of B_p is given by

$$B_p^{\circ} = \left\{ x' \in \mathbb{R}^n : x^T x' \le 1, \forall x \in B_p \right\}.$$

The norm $\ell_{p^{\circ}}$ is called the polar norm of ℓ_p .

Proposition (Characterization of polarity correspondence)

The norms ℓ_p and ℓ_{p° are polar to each other iff $\frac{1}{p} + \frac{1}{p^\circ} = 1$.

Polarity correspondence of ℓ_p -norms

Definition (Polar norm)

Consider an ℓ_p -norm with $p \in (1, +\infty)$ and let B_p be its unit ball. Then, there exists a unique ℓ_{p° -norm with $p^\circ \in (1, +\infty)$ whose unit ball B_{p° is the polar set of B_p , where the polar set B_p° of B_p is given by

$$B_p^{\circ} = \left\{ x' \in \mathbb{R}^n : x^T x' \le 1, \forall x \in B_p \right\}.$$

The norm $\ell_{p^{\circ}}$ is called the polar norm of ℓ_p .

Proposition (Characterization of polarity correspondence)

The norms ℓ_p and ℓ_{p° are polar to each other iff $\frac{1}{p} + \frac{1}{p^\circ} = 1$.

Notation:

Some considerations

• The standard angle between two non-zero vectors v and v' is defined as the real number $\theta \in [0, \pi]$ satisfying the equality $\cos \theta = \frac{v^T v'}{\|v\|_2 \|v'\|_2}$.

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena Applications, properties and curiosities of the WRP

3

- The standard angle between two non-zero vectors v and v' is defined as the real number $\theta \in [0, \pi]$ satisfying the equality $\cos \theta = \frac{v^T v'}{\|v\|_2 \|v'\|_2}$.
- It is the Cauchy-Schwarz inequality $|v^Tv'| \le ||v||_2 ||v'||_2$ which ensures $-1 \le \frac{v^Tv'}{\||v\||_2 \|v'\|_2} \le 1$ (proper image of the cosine function).

ゆ く き と く き と し き

- The standard angle between two non-zero vectors v and v' is defined as the real number $\theta \in [0, \pi]$ satisfying the equality $\cos \theta = \frac{v^T v'}{\|v\|_2 \|v'\|_2}$.
- It is the Cauchy-Schwarz inequality $|v^Tv'| \le ||v||_2 ||v'||_2$ which ensures $-1 \le \frac{v^Tv'}{\|v\|_2 \|v'\|_2} \le 1$ (proper image of the cosine function).
- More generally, recall that in all normed spaces $(\mathbb{R}^n, \|\cdot\|)$ where the norm $\|\cdot\|$ can be defined from an inner product $\langle \cdot, \cdot \rangle$ as $\|\tilde{v}\| = \sqrt{\langle \tilde{v}, \tilde{v} \rangle}$ for each $\tilde{v} \in \mathbb{R}^n$, the Cauchy-Schwarz inequality $|\langle v, v' \rangle| \leq \|v\| \|v'\|$ is satisfied.

伺 ト く ヨ ト く ヨ ト 二 ヨ

- The standard angle between two non-zero vectors v and v' is defined as the real number $\theta \in [0, \pi]$ satisfying the equality $\cos \theta = \frac{v^T v'}{\|v\|_2 \|v'\|_2}$.
- It is the Cauchy-Schwarz inequality $|v^Tv'| \le ||v||_2 ||v'||_2$ which ensures $-1 \le \frac{v^Tv'}{||v||_2 ||v'||_2} \le 1$ (proper image of the cosine function).
- More generally, recall that in all normed spaces $(\mathbb{R}^n, \|\cdot\|)$ where the norm $\|\cdot\|$ can be defined from an inner product $\langle \cdot, \cdot \rangle$ as $\|\tilde{v}\| = \sqrt{\langle \tilde{v}, \tilde{v} \rangle}$ for each $\tilde{v} \in \mathbb{R}^n$, the Cauchy-Schwarz inequality $|\langle v, v' \rangle| \leq \|v\| \|v'\|$ is satisfied.
- Consider now a normed space $(\mathbb{R}^n, \|\cdot\|_p)$ with $p \in (1, +\infty)$. It is known that when $p \neq 2$ there is not an inner product $\langle \cdot, \cdot \rangle$ from which the norm $\|\cdot\|_p$ can be defined as indicated above. Moreover, the Cauchy-Schwarz inequality is not satisfied in $(\mathbb{R}^n, \|\cdot\|_p)$ when $p \neq 2$.

・ 「「・・・ ・ 」 ・ ・ 」 ・

- The standard angle between two non-zero vectors v and v' is defined as the real number $\theta \in [0, \pi]$ satisfying the equality $\cos \theta = \frac{v^T v'}{\|v\|_2 \|v'\|_2}$.
- It is the Cauchy-Schwarz inequality $|v^Tv'| \le ||v||_2 ||v'||_2$ which ensures $-1 \le \frac{v^Tv'}{||v||_2 ||v'||_2} \le 1$ (proper image of the cosine function).
- More generally, recall that in all normed spaces $(\mathbb{R}^n, \|\cdot\|)$ where the norm $\|\cdot\|$ can be defined from an inner product $\langle \cdot, \cdot \rangle$ as $\|\tilde{v}\| = \sqrt{\langle \tilde{v}, \tilde{v} \rangle}$ for each $\tilde{v} \in \mathbb{R}^n$, the Cauchy-Schwarz inequality $|\langle v, v' \rangle| \leq \|v\| \|v'\|$ is satisfied.
- Consider now a normed space $(\mathbb{R}^n, \|\cdot\|_p)$ with $p \in (1, +\infty)$. It is known that when $p \neq 2$ there is not an inner product $\langle \cdot, \cdot \rangle$ from which the norm $\|\cdot\|_p$ can be defined as indicated above. Moreover, the Cauchy-Schwarz inequality is not satisfied in $(\mathbb{R}^n, \|\cdot\|_p)$ when $p \neq 2$.
- Hölder inequality states:

$$\sum_{k=1}^{n} |v_k v'_k| \le \|v\|_p \|v'\|_{p^{\circ}}$$

for all $v = (v_1, \cdots, v_n)^T, v' = (v'_1, \cdots, v'_n)^T \in \mathbb{R}^n$. Hölder inequality ensures $-1 \leq \frac{v^T v'}{\|v\|_p \|v'\|_{p^\circ}} \leq 1$ for all non-zero vectors $v, v' \in \mathbb{R}^n$.

Definition $(\ell_p \text{-} angle)$

Let $p \in (1, +\infty)$. Given two non-zero vectors $v, v' \in \mathbb{R}^n$, the ℓ_p -angle between v and v', which we denote by $\theta_p(v, v')$, is the real number $\theta_p(v, v') \in [0, \pi]$ such that $\cos \theta_p(v, v') = \frac{v^T v'}{\|v\|_p \|v'\|_{p^\circ}}$.

伺 ト イヨ ト イヨ ト ・ ヨ ・ の へ ()

Definition $(\ell_p \text{-} angle)$

Let $p \in (1, +\infty)$. Given two non-zero vectors $v, v' \in \mathbb{R}^n$, the ℓ_p -angle between v and v', which we denote by $\theta_p(v, v')$, is the real number $\theta_p(v, v') \in [0, \pi]$ such that $\cos \theta_p(v, v') = \frac{v^T v'}{\|v\|_p \|v'\|_p \circ}$.

Remark: When $p \neq 2$, in general $\theta_p(v, v') \neq \theta_p(v', v)$, but it is satisfied $\theta_p(v, v') = \theta_{p^\circ}(v', v)$.

◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ● ● ● ● ● ●

Definition $(\ell_p$ -angle)

Let $p \in (1, +\infty)$. Given two non-zero vectors $v, v' \in \mathbb{R}^n$, the ℓ_p -angle between v and v', which we denote by $\theta_p(v, v')$, is the real number $\theta_p(v, v') \in [0, \pi]$ such that $\cos \theta_p(v, v') = \frac{v^T v'}{\|v\|_p \|v'\|_p \circ}$.

Remark: When $p \neq 2$, in general $\theta_p(v, v') \neq \theta_p(v', v)$, but it is satisfied $\theta_p(v, v') = \theta_{p^\circ}(v', v)$.

Proposition 1

Assume \mathbb{R}^n is endowed with an ℓ_p -norm with $p \in (1, +\infty)$. Consider the map between normed spaces $(\mathbb{R}^n, \|\cdot\|_p) \to (\mathbb{R}^n, \|\cdot\|_{p^\circ})$ that associates to $v = (v_1, \ldots, v_d)^T$ the vector $v^\circ = \left(\left(\frac{\|v_1\|}{\|v\|_p}\right)^{p-1} \operatorname{sign}(v_1) \|v\|_p, \ldots, \left(\frac{\|v_n\|}{\|v\|_p}\right)^{p-1} \operatorname{sign}(v_n) \|v\|_p\right)^T$ if v is not the zero vector, otherwise v° is the zero vector. Then, given $v \in \mathbb{R}^n$, the vector v° is the unique vector in \mathbb{R}^n satisfaying $\|v\|_p = \|v^\circ\|_{p^\circ}$ and $\theta_p(v, v^\circ) = 0$.

伺 ト イヨ ト イヨ ト 二 ヨ

Definition $(\ell_p$ -angle)

Let $p \in (1, +\infty)$. Given two non-zero vectors $v, v' \in \mathbb{R}^n$, the ℓ_p -angle between v and v', which we denote by $\theta_p(v, v')$, is the real number $\theta_p(v, v') \in [0, \pi]$ such that $\cos \theta_p(v, v') = \frac{v^T v'}{\|v\|_p \|v'\|_p \circ}$.

Remark: When $p \neq 2$, in general $\theta_p(v, v') \neq \theta_p(v', v)$, but it is satisfied $\theta_p(v, v') = \theta_{p^\circ}(v', v)$.

Proposition 1

Assume \mathbb{R}^n is endowed with an ℓ_p -norm with $p \in (1, +\infty)$. Consider the map between normed spaces $(\mathbb{R}^n, \|\cdot\|_p) \to (\mathbb{R}^n, \|\cdot\|_{p^\circ})$ that associates to $v = (v_1, \ldots, v_d)^T$ the vector $v^\circ = \left(\left(\frac{\|v_1\|}{\|v\|_p}\right)^{p-1} \operatorname{sign}(v_1) \|v\|_p, \ldots, \left(\frac{\|v_n\|}{\|v\|_p}\right)^{p-1} \operatorname{sign}(v_n) \|v\|_p\right)^T$ if v is not the zero vector, otherwise v° is the zero vector. Then, given $v \in \mathbb{R}^n$, the vector v° is the unique vector in \mathbb{R}^n satisfaying $\|v\|_p = \|v^\circ\|_{p^\circ}$ and $\theta_p(v, v^\circ) = 0$.

Definition (Polar vector)

Assume \mathbb{R}^n is endowed with an ℓ_p -norm with $p \in (1, +\infty)$ and let $v \in \mathbb{R}^n$. The polar vector of v is the vector v° given in Proposition 1.

500

Generalized Snell's law

Generalized Snell's law - Dot product form

$$w_A \left(\frac{(c-a)^{\circ}}{\|(c-a)^{\circ}\|_{P_A^{\circ}}}\right)^T v$$

$$= w_B \left(\frac{(b-c)^{\circ}}{\|(b-c)^{\circ}\|_{P_B^{\circ}}}\right)^T v$$
for all non-zero vector $v \in V(H)$.

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena Applications, properties and curiosities of the WRP

for

Generalized Snell's law

Generalized Snell's law - Dot product form

$$\begin{split} & w_A \left(\frac{(c-a)^{\circ}}{\|(c-a)^{\circ}\|_{p_A^{\circ}}} \right)^T v \\ & = w_B \left(\frac{(b-c)^{\circ}}{\|(b-c)^{\circ}\|_{p_B^{\circ}}} \right)^T v \end{split}$$

for all non-zero vector $v \in V(H)$.

Generalized Snell's law - Cosine form

$$w_A \|v\|_{p_A} \cos \theta_{p_A^{\diamond}} ((c-a)^{\diamond}, v)$$

= $w_B \|v\|_{p_B} \cos \theta_{p_B^{\diamond}} ((b-c)^{\diamond}, v)$

for all non-zero vector $v \in V(H)$.

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

Applications, properties and curiosities of the WRP

イロト イボト イヨト イヨト

э

Generalized Snell's law

Generalized Snell's law - Dot product form

$$\begin{split} & w_A \left(\frac{(c-a)^{\circ}}{\|(c-a)^{\circ}\|_{p_A^{\circ}}} \right)^T v \\ & = w_B \left(\frac{(b-c)^{\circ}}{\|(b-c)^{\circ}\|_{p_B^{\circ}}} \right)^T v \end{split}$$

for all non-zero vector $v \in V(\operatorname{aff}(H))$.

Generalized Snell's law - Cosine form

$$w_A \|v\|_{p_A} \cos \theta_{p_A^{\diamond}} ((c-a)^{\diamond}, v)$$

= $w_B \|v\|_{p_B} \cos \theta_{p_B^{\diamond}} ((b-c)^{\diamond}, v)$

イロト 不得下 イヨト イヨト 二日

for all non-zero vector $v \in V(aff(H))$.

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena

Applications, properties and curiosities of the WRP

Many thanks for your attention.