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Shortest Path Problem

El camino más corto que lleva del nodo 1 al 7 es

1 −→ 3 −→ 6 −→ 7 y su longitud es 4.

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena Applications, properties and curiosities of the WRP



Advances on data analysis, logistics and transportation problems on complex networks

Geometric Shortest Path Problems

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena Applications, properties and curiosities of the WRP



Advances on data analysis, logistics and transportation problems on complex networks

Geometric Shortest Path Problems

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena Applications, properties and curiosities of the WRP



Advances on data analysis, logistics and transportation problems on complex networks

Geometric Shortest Path Problems

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena Applications, properties and curiosities of the WRP



Advances on data analysis, logistics and transportation problems on complex networks

Geometric Shortest Path Problems

Martine Labbé • Justo Puerto • Moisés Rdgz.-Madrena Applications, properties and curiosities of the WRP



Advances on data analysis, logistics and transportation problems on complex networks

Weighted Region Problem (WRP)
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WRP and triangle inequality

3‖(10, 9)− (1, 0)‖2 = 38.1837 . . .

3‖(1, 1)− (1, 0)‖2 + 2‖(1, 6)− (1, 1)‖2 + ‖(1, 9)− (1, 6)‖2 = 16

‖(4, 9)− (1, 9)‖2 + 2‖(9, 9)− (4, 9)‖2 + 3‖(10, 9)− (9, 9)‖2 = 16
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Applications of the WRP

Figure: Mitchell and Papadimitriou (1991)
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Applications of the WRP

Figure: Gheibi, Maheshwari, Sack and Sche�er (2018)
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Local optimality condition for gate points
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Snell's law
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Unsolvability of the WRP

De Carufel, Grimm, Maheshwari, Owen and Smid (2014)

In general, the exact solution of WRP cannot be computed in Q
using a �nite number of the operations +, −, ×, ÷, k

√
, for any

k ≥ 2.

Gheibi, Maheshwari, Sack and Sche�er (2018):

�It is unlikely that WRP can be solved in polynomial time�.

�To the best of our knowledge, still no FPTAS is known for

WRP�.
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Counterexample in De Carufel, Grimm, Maheshwari, Owen
and Smid (2014)
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Counterexample in De Carufel, Grimm, Maheshwari, Owen
and Smid (2014)
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Simple-Path `p-WRP
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Balls of the `p-norms

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

∀x ∈ Rn where p ∈ [1,∞)
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Balls of the �pasted� `p-norms

Figure: Plastria (2019)
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Blanco, Puerto and Ponce (2017)
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Simple-Path `p-Weighted-Region Location Problem
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Classical Snell's law

Snell's law - Classical form

wA sin θ(c− a, v) = wB sin θ(b− c, v)

for all non-zero vector v ⊥ H.

Snell's law - Cosine form

wA cos θ(c− a, v) = wB cos θ(b− c, v)

for all non-zero vector v ∈ V (H).

Snell's law - Dot product form

wA

(
c− a
‖c− a‖2

)T

v = wB

(
b− c
‖b− c‖2

)T

v

for all non-zero vector v ∈ V (H).
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Generalized Snell's law

Optimality condition for the gate point c

wAu
T
Av = wBu

T
Bv

for all non-zero vector v ∈ V (H), where

uA =

([
|c1−a1|
‖c−a‖pA

]pA−1
sign(c1 − a1),

. . . ,
[
|cn−an|
‖c−a‖pA

]pA−1
sign(cn − an)

)T

and

uB =

([
|b1−c1|
‖b−c‖pB

]pB−1
sign(b1 − c1),

. . . ,
[
|bn−cn|
‖b−c‖pB

]pB−1
sign(bn − cn)

)T

.
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Blanco, Puerto and Ponce (2017)
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Polarity correspondence of `p-norms

De�nition (Polar norm)

Consider an `p-norm with p ∈ (1,+∞) and let Bp be its unit ball.

Then, there exists a unique `p◦-norm with p◦ ∈ (1,+∞) whose unit

ball Bp◦ is the polar set of Bp, where the polar set B◦p of Bp is

given by

B◦p =
{
x′ ∈ Rn : xTx′ ≤ 1,∀x ∈ Bp

}
.

The norm `p◦ is called the polar norm of `p.

Proposition (Characterization of polarity correspondence)

The norms `p and `p◦ are polar to each other i� 1
p +

1
p◦ = 1.

Notation:
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Some considerations

The standard angle between two non-zero vectors v and v′ is de�ned as

the real number θ ∈ [0, π] satisfying the equality cos θ = vT v′

‖v‖2‖v′‖2
.

It is the Cauchy-Schwarz inequality |vT v′| ≤ ‖v‖2‖v′‖2 which ensures

−1 ≤ vT v′

‖v‖2‖v′‖2
≤ 1 (proper image of the cosine function).

More generally, recall that in all normed spaces (Rn, ‖ · ‖) where the norm
‖ · ‖ can be de�ned from an inner product 〈·, ·〉 as ‖ṽ‖ =

√
〈ṽ, ṽ〉 for each

ṽ ∈ Rn, the Cauchy-Schwarz inequality |〈v, v′〉| ≤ ‖v‖‖v′‖ is satis�ed.
Consider now a normed space (Rn, ‖ · ‖p) with p ∈ (1,+∞). It is known
that when p 6= 2 there is not an inner product 〈·, ·〉 from which the norm
‖ · ‖p can be de�ned as indicated above. Moreover, the Cauchy-Schwarz
inequality is not satis�ed in (Rn, ‖ · ‖p) when p 6= 2.

Hölder inequality states:
n∑

k=1

|vkv′k| ≤ ‖v‖p‖v′‖p◦

for all v = (v1, · · · , vn)T , v′ = (v′1, · · · , v′n)T ∈ Rn. Hölder inequality

ensures −1 ≤ vT v′

‖v‖p‖v′‖p◦
≤ 1 for all non-zero vectors v, v′ ∈ Rn.
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√
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Polar vector

De�nition (`p-angle)

Let p ∈ (1,+∞). Given two non-zero vectors v, v′ ∈ Rn, the `p-angle between v and
v′, which we denote by θp(v, v′), is the real number θp(v, v′) ∈ [0, π] such that

cos θp(v, v′) =
vT v′

‖v‖p‖v′‖p◦
.

Remark: When p 6= 2, in general θp(v, v′) 6= θp(v′, v), but it is satis�ed
θp(v, v′) = θp◦ (v

′, v).

Proposition 1

Assume Rn is endowed with an `p-norm with p ∈ (1,+∞). Consider the map between
normed spaces (Rn, ‖ · ‖p)→ (Rn, ‖ · ‖p◦ ) that associates to v = (v1, . . . , vd)

T the

vector v◦ =

((
|v1|
‖v‖p

)p−1
sign(v1)‖v‖p, . . . ,

(
|vn|
‖v‖p

)p−1
sign(vn)‖v‖p

)T

if v is not

the zero vector, otherwise v◦ is the zero vector. Then, given v ∈ Rn, the vector v◦ is
the unique vector in Rn satisfaying ‖v‖p = ‖v◦‖p◦ and θp(v, v◦) = 0.

De�nition (Polar vector)

Assume Rn is endowed with an `p-norm with p ∈ (1,+∞) and let v ∈ Rn. The polar
vector of v is the vector v◦ given in Proposition 1.
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Polar vector

De�nition (`p-angle)
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v′, which we denote by θp(v, v′), is the real number θp(v, v′) ∈ [0, π] such that

cos θp(v, v′) =
vT v′

‖v‖p‖v′‖p◦
.

Remark: When p 6= 2, in general θp(v, v′) 6= θp(v′, v), but it is satis�ed
θp(v, v′) = θp◦ (v

′, v).

Proposition 1
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normed spaces (Rn, ‖ · ‖p)→ (Rn, ‖ · ‖p◦ ) that associates to v = (v1, . . . , vd)

T the

vector v◦ =

((
|v1|
‖v‖p

)p−1
sign(v1)‖v‖p, . . . ,

(
|vn|
‖v‖p

)p−1
sign(vn)‖v‖p

)T

if v is not

the zero vector, otherwise v◦ is the zero vector. Then, given v ∈ Rn, the vector v◦ is
the unique vector in Rn satisfaying ‖v‖p = ‖v◦‖p◦ and θp(v, v◦) = 0.
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Generalized Snell's law

Generalized Snell's law - Dot product form

wA

(
(c− a)◦

‖(c− a)◦‖p◦
A

)T

v

= wB

(
(b− c)◦

‖(b− c)◦‖p◦
B

)T

v

for all non-zero vector v ∈ V (H).

Generalized Snell's law - Cosine form

wA‖v‖pA cos θp◦
A
((c− a)◦, v)

= wB‖v‖pB cos θp◦
B
((b− c)◦, v)

for all non-zero vector v ∈ V (H).
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Many thanks for your attention.
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