
Hierarchies, prices and portfolios

Marina Leal Palazón (m.leal@umh.es)

Advances on data analysis, logistics and
transportation problems on complex networks

Marina Leal Palazón Hierarchies, prices and portfolios 1



Outline

1 Introduction

2 Bilevel Portfolio Selection Problem with DISCRETE Pricing
Decisions on Transaction Costs

3 Bilevel Portfolio Selection Problem with CONTINUOUS Pricing
Decisions on Transaction Costs

4 Bilevel Portfolio Selection Problem with ORDERED Pricing
Decisions on Transaction Costs

Marina Leal Palazón Hierarchies, prices and portfolios 2



Outline

1 Introduction

2 Bilevel Portfolio Selection Problem with DISCRETE Pricing
Decisions on Transaction Costs

3 Bilevel Portfolio Selection Problem with CONTINUOUS Pricing
Decisions on Transaction Costs

4 Bilevel Portfolio Selection Problem with ORDERED Pricing
Decisions on Transaction Costs

Marina Leal Palazón Hierarchies, prices and portfolios 2



Introduction

PORTFOLIO OPTIMIZATION

the process of choosing the proportions of various assets to be held in a
portfolio, in such a way as to make the portfolio better than any other
according to some criterion.

+

TRANSACTION COSTS

costs incurred by the investors when buying and selling assets on the
markets, that are charged by the brokers or the financial institutions
playing the role of intermediary.
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Introduction

Markowitz, H.M. (1952). Portfolio selection. Journal of Finance, 7,
77–91.

Through two criteria:

the expected return,

the risk,

variance

as a measure of the variability of the return.
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Introduction

R. Mansini, W. Ogryczak, M.G. Speranza. (2014). Twenty years of linear
programming based on portfolio optimization. European Journal of Operational
Research, Vol. 234, Issue 2, 518-535.

R. Mansini, W. Ogryczak, M.G. Speranza. (2015) Chapter 8: Portfolio
Optimization and Transaction Costs. In Quantitative Financial Risk Management:
Theory and Practice. C. Zopounidis and E. Galariotis, John Wiley and Sons, Inc,
Hoboken, NJ, USA.

Transaction Costs are assumed to be given: fixed cost applied to
each security, variable depending on the amount, etc.
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Discrete Pricing Portfolio.

M. Leal, D. Ponce and J. Puerto
“Portfolio problems with two levels decision-makers: Optimal portfolio
selection with Pricing decisions on transaction costs”.
European Journal of Operations Research, 2020.
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Discrete Pricing Portfolio. Contributions

Contributions:

Turning transaction costs into decision variables.

Incorporating two levels of decision-makers in Portfolio Problems
(incorporating the Broker as a decision-maker).

Developing different bilevel programming formulations to obtain
optimal solutions for the considered models.

+ Discrete set of prices

Broker-dealer
Investor
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Discrete Pricing Portfolio. The models. Broker problem

{1, ..., n} be the set of securities considered for an investment.

B ⊆ {1, ..., n} a subset in which the Broker can charge a
transaction cost.

The Broker has to decide a price Pj for each security j ∈ B from a
discrete set of possible costs Cj = {cj1, ..., cjsj}, maximizing its benefits.
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Discrete Pricing Portfolio. The models. Broker problem

- x = (xj)j=1,...,n vector of decision variables xj expressing the
weights defining a portfolio.

- Binary decision variables ajk = 1 if price cjk is assigned to Pj .

max benefits

st.

the prices are chosen
from the set of possible prices.
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Discrete Pricing Portfolio. The models. Investor problem

Two criteria:

the expected return,

the risk,

conditional value at
risk (CVaR)

R. Mansini, W. Ogryczak,
M.G. Speranza. (2003). On lp
solvable models for portfolio
selection. Informatica,
14(1):37-62.

Fomulated as a LP:

max η − 1

α

T∑
t=1

πtdt

st.
dt ≥ η − yt, ∀t,
yt =

∑n
j=1 rjtxj , ∀t,

n∑
j=1

xj = 1,

xj ≥ 0, ∀j,
dt ≥ 0, ∀t.
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Discrete Pricing Portfolio. The models. Investor problem

Two criteria:

the expected return,

the risk,

conditional value at
risk (CVaR)

CVaR(α): aims to avoid large
losses. Measures the conditional
expectation of the smallest
returns with a cumulative
probability α. (Average return
of the given size (quantile) of
worst realizations.

Fomulated as a LP:

max η − 1

α

T∑
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Discrete Pricing Portfolio. The models. Investor problem

max η − 1

α

T∑
t=1

πtdt

st.
dt ≥ η − yt, ∀t,
dt ≥ 0, ∀t

yt =

n∑
j=1

rjtxj −

∑
j∈B

Pjxj

, ∀t,

n∑
j=1

xj = 1,

xj ≥ 0, ∀j,

T∑
t=1

πtyt ≥ µ0.

CVaR

Expected return in each
scenario

Portfolio constraints

Expected return
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Discrete Pricing Portfolio. The models

Broker-leader
INVESTOR-follower

max Broker objective function
st.

Broker constraints

x ∈ argmax investor objective function
st.

investor constraints

INVESTOR-leader
Broker-follower

max investor objective function
st.

investor constraints

P ∈ argmax Broker objective function
st.

Broker constraints

SOCIAL WELFARE

max investor + Broker obj. functs.
st.

investor constraints
Broker constraints
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Discrete Pricing Portfolio. Broker-Investor model

max
∑
j∈B

Pjxj

st.
Broker constraints

x ∈ argmax {η − 1

α

T∑
t=1

πtdt}

st. ∑n
j=1 xj = 1,

dt ≥ η − yt, ∀t,
yt =

∑n
j=1 rjtxj −

(∑
j∈B Pjxj

)
, ∀t,∑T

t=1 πtyt ≥ µ0

xj ≥ 0, ∀j,
dt ≥ 0, ∀t.
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Discrete Pricing Portfolio. Broker-Investor model

PRIMAL:

max {η − 1

α

T∑
t=1

πtdt}

st.∑n
j=1 xj = 1,

dt ≥ η − yt, ∀t,
yt =

∑n
j=1 rjtxj −

(∑
j∈B Pjxj

)
,∀t,∑T

t=1 πtyt ≥ µ0

xj ≥ 0,∀j,
dt ≥ 0,∀t.

DUAL:

min β + µ0µ
st.

β −
T∑
t=1

(rjt − Pj)δt ≥ 0,∀j,

β −
T∑
t=1

rjtδt ≥ 0,∀j,

−
T∑
t=1

γt = 1,

γt ≥ −πt
α
,∀t,

γt + δt + πtµ ≥ 0,∀t,
γt ≤ 0,∀t,
µ ≤ 0.
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Discrete Pricing Portfolio. Broker-Investor model

max
∑
j∈B

Pjxj

st.
Broker constraints

η − 1

α

T∑
t=1

πtdt = β + µ0µ

investor problem constraints,

dual problem constraints.

Linearising the
products of variables

⇓
MILP

formulation

Marina Leal Palazón Hierarchies, prices and portfolios 18
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Discrete Pricing Portfolio. Investor-Broker model

max {η − 1

α

T∑
t=1

πtdt}

st.
Investor constraints,

P ∈ argmax
∑
j∈B

Pjxj

s.t. Pj =

sj∑
k=1

cjkajk ∀j ∈ B,

sj∑
k=1

ajk = 1 ∀j ∈ B,

ajk ∈ {0, 1} ∀j ∈ B, k = 1, ..., sj ,
P ∈ P.
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Discrete Pricing Portfolio. Investor-Broker model

max {η − 1

α

T∑
t=1

πtdt}

st.
Investor constraints,

P ∈ argmax
∑
j∈B

Pjxj

s.t. Pj =

sj∑
k=1

cjkajk ∀j ∈ B,

sj∑
k=1

ajk = 1 ∀j ∈ B,

ajk ∈ {0, 1} ∀j ∈ B, k = 1, ..., sj ,
P ∈ P///////.

Given a solution x,
fixing the prices to
their maximum
possible values is
always an optimal
solution of the
Broker problem.
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Discrete Pricing Portfolio. Investor-Broker model

If we denote by P+
j = max

k=1,...,sj
cjk ∀j ∈ B, the Investor-leader

Broker-follower Problem can be formulated as::

max {η − 1

α

T∑
t=1

πtdt}

st.
n∑

j=1

xj = 1,

dt ≥ η − yt, ∀t = 1, ..., T,

yt =
∑n

j=1 rjtxj −
(∑

j∈B P+
j xj

)
, ∀t = 1, ..., T,∑T

t=1 πtyt ≥ µ0

xj ≥ 0, ∀j = 1, ..., n,
dt ≥ 0, ∀t = 1, ..., T,
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Discrete Pricing Portfolio. Investor-Broker model

max {η − 1

α

T∑
t=1

πtdt}

st.
Investor constraints,

P ∈ argmax
∑
j∈B

Pjxj

s.t. Pj =

sj∑
k=1

cjkajk ∀j ∈ B,

sj∑
k=1

ajk = 1 ∀j ∈ B,

ajk ∈ {0, 1} ∀j ∈ B, k = 1, ..., sj ,
P ∈ P.
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Theorem

Let ϑ =
∑

j∈B Pjxj, and denote by Ω the set containing the points of
the problem in P. The ILBFP is equivalent to:

max{η − 1

α

T∑
t=1

πtdt}

st.

n∑
j=1

xj = 1,

dt ≥ η − yt, t = 1, ..., T,

yt =

n∑
j=1

rjtxj − (ϑ) , t = 1, ..., T,

T∑
t=1

πtyt ≥ µ0

xj ≥ 0, j = 1, ..., n,

dt ≥ 0, t = 1, ..., T,

ϑ ≥
∑
j∈B

Pint,jxj , Pint ∈ Ω.
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Discrete Pricing Portfolio. Investor-Broker model

Algorithm

Initialization:
1: Choose a feasible portfolio x0. Set CV aR0 = +∞.

Iteration: τ = 1, 2, . . .
2: Solve the Broker (follower) problem for xτ−1. Let pτ be an optimal

solution.
3: Solve the incomplete formulation ILBFP-Incompleteτ .
4: Let χτ = (xτ , yτ , ητ , dτ ), and let (χτ , ϑτ ) be an optimal solution and

CV aRτ the optimal value.
5: if (χτ , ϑτ ) is feasible then
6: (χτ−1, pτ ) are optimal solutions, and CV aRτ the optimal value.

END.
7: else if (χτ , ϑτ ) is not feasible in then
8: go to iteration τ := τ + 1.
9: end if
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Discrete Pricing Portfolio. Social Welfare model

max ξ
∑
j∈B

Pjxj + (1− ξ)

(
η − 1

α

T∑
t=1

πtdt

)
st.

Broker constraints

CVaR constraints

Linearising the product of variables ⇒ MILP formulation.

No linearising ⇒ Algorithm based on Benders cuts.
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Discrete Pricing Portfolio. Social welfare model

max
∑
j∈B

Pjxj +

(
η − 1

α

T∑
t=1

πtdt

)
st.

Broker constraints

CVaR constraints

Proposition

An optimal solution of the unweighted maximum social welfare model
induces an objective value that is greater than or equal to the sum of
the optimal returns of the two parties in any of the hierarchical models.
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Discrete Pricing Portfolio. Computational study

- Historical data from Dow Jones Industrial Average.

- Daily returns of the 30 assets during one year (T = 251 scenarios)

- Different type of instances and prices.

Comparing solution methods.

Comparing solutions and risk-profiles.

Comparing solutions across models.
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Discrete Pricing Portfolio. Comparing solutions and profiles within

models

K = 5 K = 15 K = 50

|B| = 30 A B C

|B| = 20 D E F

|B| = 10 G H I

Table: Types of instances for the sets of possible costs depending on the values of

|B| and K

Different risk profiles
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Discrete Pricing Portfolio. Comparing solutions and profiles within

models
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Figure: Values of the CVaR for BLIFP, for

different α and µ0 levels

- CVaR always increases
with the value of α (more
risk)

- When α increases, CVaR
for different µ0 becomes
closer

- CVaR for smaller µ0 is
higher (larger feasible
region)
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models
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Discrete Pricing Portfolio. Comparing solutions and profiles within

models
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Figure: Values of the broker-dealer profit for

BLIFP, for different values α and µ0 levels

- Higher profit for more
risk-averse investment
(smaller α)
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Discrete Pricing Portfolio. Comparing solutions and profiles within

models
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Discrete Pricing Portfolio. Comparing solutions and profiles within

models
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Figure: Values of the expected return for BLIFP,

for different α and µ0 levels

- Bigger expected return for
higher values of α
(considering a wider range
of values to compute
CVaR).
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Discrete Pricing Portfolio. Comparing solutions and profiles within

models
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Discrete Pricing Portfolio. Comparing solutions across models
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Figure: Values of the CVaR for BLIFP and ILBFP for α = 0.1 and µ0 = 0.05

(left) and for α = 0.5 and µ0 = 0.1 (right)
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Discrete Pricing Portfolio. Comparing solutions across models
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Figure: Values of the broker-dealer profit for BLIFP and ILBFP, for α = 0.1 and

µ0 = 0.05 (left) and for α = 0.5 and µ0 = 0.1 (right)

Marina Leal Palazón Hierarchies, prices and portfolios 33



Discrete Pricing Portfolio. Comparing solutions across models
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Figure: Values of the broker-dealer profit + CVaR for the three problems, for

α = 0.1 and µ0 = 0.05 (left) and for α = 0.5 and µ0 = 0.1 (right)
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Outline

1 Introduction

2 Bilevel Portfolio Selection Problem with DISCRETE Pricing
Decisions on Transaction Costs

3 Bilevel Portfolio Selection Problem with CONTINUOUS Pricing
Decisions on Transaction Costs

4 Bilevel Portfolio Selection Problem with ORDERED Pricing
Decisions on Transaction Costs
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Continuous Pricing Portfolio.

J. González, B. González, M. Leal and J. Puerto
“Global optimization for bilevel portfolio design: Economic insights
from the Dow Jones index”.
Omega, 2021.
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Continuous Pricing Portfolio. Contributions

Contributions:

Extension of the models to the case of continuous sets of prices.

Extension to several leader and followers.

More detailed economical case study
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Continuous Pricing Portfolio. Models

The broker-dealer has to decide a price 0 ≤ Pj ≤ bj , ∀j ∈ S, in a set P.

⇓
Product of continuous variables

(given by Pjxj and by duality)
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Continuous Pricing Portfolio. Models
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Continuous Pricing Portfolio. Case study

Dow Jones Index

Risk profiles for the investors: α = 0.05, 0.25, 0.5, 0.99

Minimum expected return: 32 problems for different values of
µ0 ∈ [−0.1, 0.72] (the highest expected return of any security).

P :=

∑
j∈S

Pj ≤ 0.3, 0 ≤ Pj ≤ 0.1 ∀j ∈ S
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Continuous Pricing Portfolio. Case study
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Figure: Expected return and variance for the Dow Jones securities.
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Continuous Pricing Portfolio. Case study
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Figure: Objective function for each risk profile and each value of µ0 for
Broker-leader model.
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Continuous Pricing Portfolio. Case study
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Figure: Comparison of CVaR levels (CVaR0.25 left, CVaR0.99 right) at the
optimal solutions of the different risk profiles for Broker-leader model.
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Continuous Pricing Portfolio. Case study
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Figure: Comparison of CVaR (CVaR0.50 left, CVaR0.99 right)for one vs
several investors for Broker-leader model.
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Continuous Pricing Portfolio. Case study
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Figure: Profit of the broker for the Broker-leader model with one follower and
multiple followers.
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Continuous Pricing Portfolio. Case study
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Continuous Pricing Portfolio. Case study
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Outline

1 Introduction

2 Bilevel Portfolio Selection Problem with DISCRETE Pricing
Decisions on Transaction Costs

3 Bilevel Portfolio Selection Problem with CONTINUOUS Pricing
Decisions on Transaction Costs

4 Bilevel Portfolio Selection Problem with ORDERED Pricing
Decisions on Transaction Costs
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Ordered Pricing Portfolio.

S. Benati, M. Leal and J. Puerto
“Bilevel portfolio selection with ordered pricing models”.
Work in progress.
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Ordered Pricing Portfolio. Contributions

Contributions:

We study PRICES POLICIES

Broker optimizes a utility function given as an ordered weighted
average of the investment.

The monetary value charged to the investor and the broker’s
utility function may be different.

Comparison between discrete and continuous sets of prices.
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Ordered Pricing Portfolio. Models

Broker problem:

max
∑
i∈S

λi(px)(i) (BP0)

s.t.(px)(i) ≥ (px)(i+1) ∀i ∈ S,

P ∈ P.
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Ordered Pricing Portfolio. Models

Investor problem:

max η − 1

α

T∑
t=1

πtdt (IP0)

s.t.

n∑
j∈S

xj = 1,

dt ≥ η − yt, t = 1, ..., T,

yt =

n∑
j=1

rjtxj −
∑
i∈S

λ′
i(px)(i), t = 1, ..., T,

T∑
t=1

πtyt ≥ µ0

xj ≥ 0, j ∈ S,

dt ≥ 0, t = 1, ..., T.
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Ordered Pricing Portfolio. Models

Broker problem:

max
∑
i∈S

λi(px)(i) (BP0)

s.t.(px)(i) ≥ (px)(i+1) ∀i ∈ S,

P ∈ P.

max
∑
i,j∈S

λipjxjzij

s.t.
∑
i∈S

zij ≤ 1, j ∈ S,∑
j∈S

zij ≤ 1, i ∈ S,

0 ≤ zij ≤ 1, i, j ∈ S,

P ∈ P.
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Ordered Pricing Portfolio. Models

Theorem

Problem (IP0) can be rewritten as the following LP:

max η −
1

α

T∑
t=1

πtdt

s.t.
∑
j∈S

xj = 1,

dt ≥ η − yt, t = 1, ..., T,

yt =
n∑

j=1

rjtxj −

∑
j∈S

uj +
∑
i∈S

vi

 , t = 1, ..., T,

T∑
t=1

ptyt ≥ µ0,

uj + vi ≥ λ′
ipjxj , i, j ∈ S,

uj ≥ 0, j ∈ S,

vi ≥ 0, i ∈ S,

xj ≥ 0, j ∈ S,

dt ≥ 0, t = 1, ..., T.
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Ordered Pricing Portfolio. Numerical study

Dow Jones Index

Risk profiles for the investors: α = 0.01

Minimum expected return: 20 problems for different values of
µ0 ∈ [−0.1, 0.72] (the highest expected return of any security).

P :=

∑
j∈S

Pj ≤ 0.3, 0 ≤ Pj ≤ 0.1∀j ∈ S
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Ordered Pricing Portfolio. Numerical study

Compare charging strategies. Considering the following vectors for
λs and λ′s:

(1, 0, . . . , 0). Best security.
(1, 1, . . . , 1). All securities.
(1, 1, 1, 0, . . . , 0). 3 best securities.
(1, 1, 1, 1, 1, 0, . . . , 0). 5 best securities.
(1, 0.5, 0.25, . . . , 0). 1 × 1st + 0 .5 × 2nd + . . ..

Compare discrete and continuous families of prices.
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Ordered Pricing Portfolio. Numerical study

Figure: CVaR for µ0 ∈ [−0.1, 0.72], and different λ
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Ordered Pricing Portfolio. Numerical study

Figure: Broker profit for µ0 ∈ [−0.1, 0.72], and different λ.
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