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Covering Problems

• Covering Location Problem: Locate a set of facilities to give service to a
finite set of users provided that the facilities are allowed to satisfy the
demand of the users within certain coverage distance.

• Full Covering Problem: all customers are served at minimum cost, or

• Maximal Covering Problem: the (weighted) number of covered customers is

maximized.

• Discrete (potential positions of the services are provided) or Continuous

(the services are allowed to be located in the whole space -mostly on the

plane-)

• Useful in cases in which facilities can serve only customers within a certain

coverage area: Emergency vehicles, Wifi routers, Mobile phones antennas.
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Covering Problems - Literature

• First mentions to covering problems in Berge (1957).

• First application: Police patroling in Hakimi (1965).

• First formulations:

• Non-location context: Roth (1969).

• Location set covering problem: Toregas et al. (1971).

• Maximal covering problem (discrete): Church and Revelle (1974).

• Maximal covering problem on the plane: Church (1984) (Euclidean),

Younies and Wessolowsky (2004) (inclined parallelograms and block norms).
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New Advances in Covering Location Problem

1. Continuous maximal covering location problem with interconnected

facilities (MCLPIF). Done and published.

2. Fair maximal covering location problems. In progress, joint work with

Blanco.

3. Discrete-Continuous maximal covering location under uncertainty. In

progress, joint work with Blanco and Saldanha-da-Gama.

4. Pure IP formulations for continuous MCLP.
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Interconnected Facilities

In many situations when locating facilities, it is desirable that they are

interconnected: linked if the distance between them does not exceed a given

limit.

• Optimal design of forest fire-fighters centers that have to communicate a

central server at a give radius (Demaine et al., 2009).

• Location of sensors that have to be connected to each others (Romich et

al., 2015).

Cherlesky, Landete & Laporte (2019): p-median and the p-maximal discrete

covering location problems with tree-shaped interconnected facilities.
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MCLPIF
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A B S T R A C T

In this paper we analyze a continuous version of the maximal covering location problem, in which the facilities
are required to be linked by means of a given graph structure (provided that two facilities are allowed to be
linked if a given distance is not exceed). We propose a mathematical programming framework for the problem
and different resolution strategies. First, we provide a Mixed Integer Non Linear Programming formulation
for the problem and derive some geometrical properties that allow us to reformulate it as an equivalent
pure integer linear programming problem. We propose two branch-&-cut approaches by relaxing some sets
of constraints of the former formulation. We also develop a math-heuristic algorithm for the problem capable
to solve instances of larger sizes. We report the results of an extensive battery of computational experiments
comparing the performance of the different approaches.

1. Introduction

The goal of Covering Location problems is to find the position of a
set of facilities to give service to a finite set of users provided that the
demand of each user is served just in case a facility is located within its
coverage area. The most popular covering location problems are the 𝑝-
center (Hakimi, 1964) and the maximal covering location (Church and
ReVelle, 1974) problems. In particular, the Maximal Covering Location
Problem (MCLP) consists of locating a fixed number of facilities in order
to maximize the covered demand of a set of users. This problem has
proven to be a seminal contribution in logistics and network design, in
terms of both technical merit and practical interest. The MCLP is known
to be useful in the geographic location of warehouses, health-care
centers, fire stations, etc. (Church and ReVelle, 1974) and also in other
non-logistic problems, as in data abstraction, statistical classification,
selection of stocks or grouping problems (Chung, 1986). The interested
readers are referred to the recent book by Church and Murray (2018)
or the chapter by García-Quiles and Marín (2020) for further details on
covering location problems.

Covering Location problems have been analyzed in both the discrete
and the continuous frameworks. In the discrete case, a finite set of
potential facilities is provided, and the goal is to choose, among them,
the optimal ones. These problems are useful in the location of physical
services (ATMs, stores, hospitals, etc.) in which a finite set of potential

∗ Corresponding author.
E-mail addresses: vblanco@ugr.es (V. Blanco), rgazquez@ugr.es (R. Gázquez).

locations can be previously determined by the decision maker. How-
ever, in telecommunication networks, the positions of routers, alarms
or sensors, can be more flexibly positioned if the facilities are allowed
to be located in the whole space, being the continuous framework more
adequate. This framework is also useful to determine the set of potential
facilities that serves as input for a discrete version of the problem. The
main difference between these two families of problems is that in the
discrete case the costs/distances between the facilities and the users are
given as input data (or can be preprocessed before solving the problem)
while in the continuous case, the costs/distances are part of the decision
and they have to be incorporated to the decision problem.

In many practical situations in Location Analysis, the facilities to be
located are required to be interconnected. This is the case of the optimal
design of forest fire-fighters centers that must be communicated to
a central server at a give radius (Demaine et al., 2009) or in the
location of sensors that have to be connected to each others (Romich
et al., 2015). Some facility location problems have been analyzed with
some kind of interconnection between facilities (see, e.g., Blanco et al.,
2016), although interconnection between services has been mostly
studied in the context of hub location, in which the routing costs induce
such a connectivity between the hub nodes (see Contreras and O’Kelly,
2019 and the references therein). Another possibility is to consider
that an interconnection graph for the centers has to be constructed

https://doi.org/10.1016/j.cor.2021.105310
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MCLPIF

(a) MCLP

(b) Complete Graph (c) Cycle Graph. (d) Line Graph.
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MCLPIF

(a) MCLP

(b) Star Graph. (c) Ring-Star Graph. (d) Matching Graph.

rgazquez@ugr.es New advances in Cov Location June 25th, 2021



New Advances in Covering Location Problem

1. Continuous maximal covering location problem with interconnected

facilities (MCLPIF). Done and published.

2. Fair maximal covering location problems. In progress, joint work with

Blanco.

3. Discrete-Continuous maximal covering location under uncertainty. In

progress, joint work with Blanco and Saldanha-da-Gama.

4. Pure IP formulations for continuous MCLP.

rgazquez@ugr.es New advances in Cov Location June 25th, 2021



Fair MCLP

Definition.- Fairness

The quality of treating people equally or in a way that is right or reasonable

(Cambridge Dictionary).
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Fair MCLP

Definition.- Fairness

The quality of treating people equally or in a way that is right or reasonable

(Cambridge Dictionary).

Fairness from a facility point of view

Equitable positions for the p services to be located in the way that the

difference between the facilities with maximum and minimum covering, would

be reasonable.

• In some situations is preferable to slightly loss some covered demand in order to

equalize the different covered demands among the open services.

• For example, in locating schools where we want to equalize attendance at each

of them.

• Another example would be in the location of servers with high capacities where

we want the demand to be distributed homogeneously.
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Fair MCLP

Definition.- Fairness

The quality of treating people equally or in a way that is right or reasonable

(Cambridge Dictionary).

[391]

[198]

[466]

(a) MCLP.

[313]
[354]

[299]

(b) Fairer MCLP.

• MCLP : [198, 391, 466] (33.46%)

• Fairer MCLP: [299, 313, 354] (30.64%)
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Fair MCLP

Tools.- Ordered Weighted Averaging (OWA)

OWA operators were introduced by Yager (1988) as a powerful tool to deal with

the problem of aggregating multicriteria to form an overall decision function.

• The use of OWA operators in Facility Location is not new and several authors

have studied the generalization of the classical p-median, p-Weber or p-hub

location problems to the so-called Ordered Median Problem (Puerto and

Fernández, 1994).

Fairness Measure.- Orness

The fairness of λ = (λ1, . . . , λp), the associated weighting vector, can be

measured by using the orness of the OWA operator (Ogryczak et al., 2014).

This orness measure is defined as:

orness(λ) =

p∑
j=1

p − i

p − 1
λi
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Fair MCLP

Relationship of Fairness and Orness

• When orness(λ) −→ 1 fairer solutions (Ogryczak et al., 2014).

• Moreover, OWA operators in which λ are monotone non increasing define

an or-like OWA operator and therefore, fairer solutions (Ogryczak and

Śliwiński, 2007).

OWA λ orness

Average λj = 1
p

1
2

Minimum λ1 = 1, λj = 0 (j ≥ 2) 1

k-Average λj = 1
k

(j ≤ k), λj = 0 (j > k) 1− k−1
2(p−1)

α-Min-Average λ1 = 1
1+(p−1)α

, λj = 1−α
1+(p−1)α

(j ≥ 2) −pα+p+2α
2pα−2α+2

Gini λj = 2(n−i)+1

p2 for all j 4p+1
6p

Harmonic λj = 1
p

(H(p)− H(j − 1)) (H(k) =
k∑
`=1

1

`
) 3

4

Table 1: Fair OWA operators.

rgazquez@ugr.es New advances in Cov Location June 25th, 2021



Fair MCLP

Relationship of Fairness and Orness

• When orness(λ) −→ 1 fairer solutions (Ogryczak et al., 2014).

• Moreover, OWA operators in which λ are monotone non increasing define

an or-like OWA operator and therefore, fairer solutions (Ogryczak and
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Fair MCLP
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• With λ-weights solving optimization-based methods with given orness ∈ [0, 1]

degree (Filev and Yager, 1995; Fullér and Majlender, 2001; Liu and Chen, 2004).
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New Advances in Covering Location Problem
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Discrete-Continuous MCLP under uncertainty

• p discrete facilities here-and-now.

• r possible continuous facilities in the future

• Objective: Model which gives the exact position of the discrete server

taking account the possible number of opened continuous facilities.

This model is useful in telecommunication networks in which p of the servers (sensors,

antennas, routers, etc) must be located inside adequately prepared infrastructures

(buildings, offices, air-conditioned cabins, roofs, etc) while additional r servers can be

located at any place in the given space, but both with the same functions and trying

to capture as much demand as possible.

Berman and Drezner (2008): p-median problem under uncertainty consisting of

locating p initial facilities plus an uncertain number of extra additional ones (q).
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Discrete-Continuous MCLP under uncertainty

(a) (D − C) (b) (C − D) (c) Optimal
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Discrete-Continuous MCLP under uncertainty

• Our scenarios are ω ∈ Ω = {0, 1, . . . , r} where r is the number of possible

continuous facilities which can be opened in the future.

• The objective is maximize the covered demand taking account the uncertainty.

• Our objective is provide different models to deal with this particular type of

uncertainty, as well as suitable mathematical programming formulations and

solution methods.
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Discrete-Continuous MCLP under uncertainty

• Our scenarios are ω ∈ Ω = {0, 1, . . . , r} where r is the number of possible

continuous facilities which can be opened in the future.

• The objective is maximize the covered demand taking account the uncertainty.

• Our objective is provide different models to deal with this particular type of

uncertainty, as well as suitable mathematical programming formulations and

solution methods.

(a) Scenario 0 (b) Scenario 1 (c) Scenario 2 (d) Scenario 3
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Discrete-Continuous MCLP under uncertainty

• Our scenarios are ω ∈ Ω = {0, 1, . . . , r} where r is the number of possible

continuous facilities which can be opened in the future.

• The objective is maximize the covered demand taking account the uncertainty.

• Our objective is provide different models to deal with this particular type of

uncertainty, as well as suitable mathematical programming formulations and

solution methods.

Different models

Robust Optimization

Robust Worst-Case Model Min-Max Regret

Stochastic Optimization

Expected Coverage Model ... and with Regret Thresholds

α-Reliable Min-max Regret ... and with Regret Thresholds

α-CVaR

rgazquez@ugr.es New advances in Cov Location June 25th, 2021



New Advances in Covering Location Problem

1. Continuous maximal covering location problem with interconnected

facilities (MCLPIF). Done and published.

2. Fair maximal covering location problems. In progress, joint work with

Blanco.

3. Discrete-Continuous maximal covering location under uncertainty. In

progress, joint work with Blanco and Saldanha-da-Gama.

4. Pure IP formulations for continuous MCLP.

rgazquez@ugr.es New advances in Cov Location June 25th, 2021



Pure IP for continuous MCLP
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Pure IP for continuous MCLP

1

2

z1 + z2 ≤ 1
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1

2

3

z1 + z2 ≤ 1

z1 + z2 + z3 ≤ 2
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Pure IP for continuous MCLP

1

2

3

4

z1 + z2 ≤ 1

z1 + z2 + z3 ≤ 2

z1 + z2 + z3 + z4 ≤ 3
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Pure IP for continuous MCLP

z1 + z2 ≤ 1

z1 + z2 + z3 ≤ 2 =⇒
∑
i∈S

zi ≤ |S | − 1,∀S ⊆ N :
⋂
i∈S

BR(i) = ∅

z1 + z2 + z3 + z4 ≤ 3

...
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Thank you!
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