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Introd tion

MCLP aims to maximise the covered demand locating p facilities.

[3] R. Church and C. ReVelle.
The maximal covering location problem.
Papers of the Regional Science Association, 3:101-118, 1974.
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Introduction
Upgrading

Uncertainty

Upgrading MCLP aims to maximise the covered demand locating p
facilities and reducing the length of some edges within a budget.
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Intr n
Upgrading

Uncertainty

o Public government: Locate p public services at the same time
that some roads are improved reducing travel times.
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Introduction

Upgrading

Uncertainty

o Public government: Locate p public services at the same time
that some roads are improved reducing travel times.

o In shopping centres, airports, train stations: Locate services as
defibrillators, information posts while installing passenger
conveyors or escalators to reduce travel times.
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Introduction

Upgrading

Uncertainty

o (Flow-Cov)
o 3-index var.: if a path of length < R from / to j traverses arc a.
o 2-index var.: if node i is assigned to a facility at node j
(assignment variables).
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Upgrading

Uncertainty

o (Flow-Cov)
o 3-index var.: if a path of length < R from i to j traverses arc a.
o 2-index var.: if node i/ is assigned to a facility at node j
(assignment variables).
o (Path)
o 2-index var.: if node j is the next node on a path of length
< R from i to a facility.
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Introduction

Upgrading

Uncertainty

o (Flow-Cov)
o 3-index var.: if a path of length < R from / to j traverses arc a.
o 2-index var.: if node i is assigned to a facility at node j
(assignment variables).

o (Path)

o 2-index var.: if node j is the next node on a path of length
< R from i to a facility.

o (Path-Cov)
o 2-index var.: if node j is the next node on a path of length
< R from i to a facility.
o 2-index var.: if node i is assigned to a facility at node j
(assignment variables).
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Introduction

Upgrading

Uncertainty

Formulations: (Flow-Cov) and (Path-Cov).
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Introduction

Upgrading

Uncertainty

Formulations: (Flow-Cov) and (Path-Cov).
Set the assignment variable to zero (remove) if:

o d(i,j) > R even reducing the maximum amount allowed in all
edges.

e d(i,j) > R even reducing the maximum budget.
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Introduction

Upgrading

Uncertainty

Formulations: (Flow-Cov) and (Path-Cov).
Set the assignment variable to zero (remove) if:

o d(i,j) > R even reducing the maximum amount allowed in all
edges.

e d(i,j) > R even reducing the maximum budget.

Several procedures to find a balance between accuracy and
computational time.
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Upgrading

Uncertainty

o An adaptation of closest assignment constraints.
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o An adaptation of closest assignment constraints.
o Strengthening several families of constraints.
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Intr n
Upgrading

Uncertainty

o An adaptation of closest assignment constraints.
o Strengthening several families of constraints.
o Separation procedure.
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Upgrading

Uncertainty

o C++ using CPLEX 20.1.0 with Concert Technology.
o Time limit 1800 seconds.

o Intel(R) Xeon(R) W-2135 CPU 3.70 GHz 32 GB RAM.
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Introduction

Upgrading

Uncertainty

o Complete graphs
o OR-Library: pmed

p € {1,n/10,n/20},

R e {SO%DTMCLP76O%DTMCLP7YO%DTMCLP}-,
ue € (0,30%¢,),

B € {5%Bimxs 1%Bimax; 0.5% B )

© ©6 0 o

min(n—p,m)

Brax = § Ue, (s Cec,(t)a

t=1

where p is a permutation of set E such that

Ueyzy = -+ + = Cepm) Uey(m -
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Preprocessing
7
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v th (Path ih :
time #=oled instances

Performance on graph40
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Uncertaint
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Performance profile graph of #solved instances using (Flow-Cov),
(Path-Cov), (Path-Cov) + VI formulations on graph100 and graph120.
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Performance profile graph of #solved instances using (Flow-Cov),
(Path-Cov), (Path-Cov) + VI formulations on pmedb
(JV]| =200, |E| =777.8).
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Introduction

Upgrading

Uncertainty

o We present three MIP formulations for the upgrading maximal

covering location problem.

Future work:
o Covering criteria: gradual covering, cooperative covering, etc.

o Location criteria: p-median, p-center, etc.

B M. Baldomero-Naranjo, J. Kalcsics, A. Marin, and A. M. Rodriguez-Chfa.

Upgrading edges in the Maximal Covering Location Problem.

Submitted
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Upgrading

Uncertainty

[ A. Marin, L. I. Martinez-Merino, A. M. Rodriguez-Chia, and F.
Saldanha-da-Gama.
Multi-period stochastic covering location problems: Modeling
framework and solution approach.

European Journal of Operational Research, 268(2):432-449,
2018.
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Uncertainty

o Single-facility location problem on a network.
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Uncertainty

Uncertainty
o Single-facility location problem on a network.
o The demand is distributed along the edges.

o The demand is uncertain with only a known interval
estimation.
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Uncertainty

o Single-facility location problem on a network.

o The demand is distributed along the edges.

o The demand is uncertain with only a known interval
estimation.

o Aim: Minimise the worst-case of coverage loss.
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Uncertainty

o Coverage criterion: Maximal Covering.
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o Coverage criterion: Maximal Covering. Let x € G be a
facility:
o z € G is covered by x, if d(x,z) <R.
o C(x):={z€ G|d(x,z) <R} is the coverage area of x.
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L

Uncertainty

o Coverage criterion: Maximal Covering. Let x € G be a
facility:

o z € G is covered by x, if d(x,z) <R.

o C(x):={z€ G|d(x,z) <R} is the coverage area of x.

The covered demand on an edge e € E by x for a specific
demand realisation w:

ge(x,w) = / we(t) dt. (1)
y=(e,t)eCe(x)

The total amount of covered demand on the network:

glx,w) = Z ge(x, w). (2)

ecE
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Introduction
Upgr ng

Uncertainty

o Coverage criterion: Maximal Covering.

max g(x) => / we(t) dt. (1)

ecE (e,t)eCe(x)

@ O. Berman, J. Kalcsics, and D. Krass.
On covering location problems on networks with edge
demand.
Computers & Operations Research, 74:214-227, 2016.
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o Coverage criterion: Maximal Covering.

o Uncertainty Demand: MinMax Regret. Minimise the
worst-case of coverage loss.

ube * .

r = min max maxXx ,w) — , .
We x€X Ib<w<ub (yeG gly,w) — g(x W))
1be
e
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Uncertainty

o Locating AED, ATM, bus stops, automated parcel lockers, or
bicycle parking racks in cities.

o Locating an aerosol dispenser in the air ducts of a building to
disinfect the conduits.
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If x ¢ e = [i,]]
si(x) = min{L max{o,

se (x) max {0, min {17 1-—

R—Z(x,i)}}

R - d(Xv./)

Uncertainty

Le
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If x € ex = [k, ]
sH(x) = max{07 W}
g 1) — R}

_ o 1
Se, (X) min {1, .




Uncertainty

The total coverage can now be written as

Sex (%)
g(x,w):/s+ we, (U) du + Z / we(u

e (X) ecE<(x)
s3(x) 1
+ Z / we(u) du —|—/
ecEr(x) \" 0 Se.
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Uncertainty

o PP, := {i,j} UNP,U BP. U EP,

There are at most O(m) partition points on each e € E.
o PP := U..r PP.

There are O(m?) on the whole network.

s+ (x) and s (x), e € E, are continuous and piecewise linear
functions over x € e, with a constant number of pieces.
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Uncertainty

Let e, € E,x € [z}, 2%] such that 2!, 2> € PP,,.
Q The sets E€(x), EY(x), and EP(x) are identical for
x € [z}, 2?].
Q st (x) and s; (x) have a unique linear representation for
x € [2%, Z2].
Q ge(x,w), e € E, have a unique representation, for x € [z}, 2%
and w a non-negative continuous demand function.
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Let Ibe(t) = a'® + bP - t, ube(t) = al? + b¥> - t, and
we(t) = al + bl - t.
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Uncertainty

Let Ibe(t) = a'® + bP - t, ube(t) = al? + b¥> - t, and
we(t) = al + bl - t.

by
b
n
S
\ ®
() _
N @

M. Baldomero, J. Kalcsics, A. Marin, and A.M. Rodriguez-Chia



Let Ibe(t) = a'® + b - t, ube(t) =
we(t) = al + bl - t.

be

N

(2)

L

[

. (0)

ad > Ib,
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Uncertainty

Theorem

The worst-case demand realisation for a fixed x, y, and e such that
x,y € G and e € E can be obtained by solving the following linear
program:

% ¥ ()~ ) + 30 (N = 200), ()
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Uncertainty

Theorem

An optimal solution of (1), (al*,bl*), is given by the first column
of the following table whenever the conditions of columns 2-4 are

fulfilled.
(a2, ") Conditions
ce(y) — ce()[E2(y) — EM[(CE(y) — G (%)) — 2(ce(y) — ce(x))

(aP, bP) <0 <0 >0

ath | pub _ glb >0 >0 >0
(a + be — ae ) S 0 2 0 —
(al®, biP) >0 >0 <0

alb 4 plb _ gub <0 <0 <0
(a + be —ae ) >0 <0 —
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Introduction
Upgrading

Uncertainty

o Determine the set PP of

artition points.
P P et R=1,

Iby () =3 —3t, ubyyo(t) =15+ Tt,
/b[273](t) = 3t7 ub[273](t) =7+ 31’,
I 3)(t) = 2+ 3t, uby 5(t) = 8+ 10t.
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For x; € ([1,2], t1) the edge

Fore=[i,j] € E: coverage functions are given by

o Sort the partition + _ — .

PP, = {21’ o ,Z"DP9|_1} in 5[1,2](X1) =0, 5[172](X1) =1,
. . t
non-decreasing distance 5[J2r’3](xl) = 51, 5[573](x1) =1,
from node i.
. : + -t
o Derive the representation of 5[1,3](X1) = 3 5[1,3](X1) =1

the edge coverage functions
over each sub-edge

[29, 2911, for
g€Ze:={1,...,|PPc|—1}.
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For (x,y) € [1,2] x [2,3].

1: for e, € E do Cells for rpy 51(x, y) :
2 for i € Z,, do o

3 for e, € E do

4 for j € 7., do °er

5 Generate the subdivision in the 06l

rectangle [z, z/1] x [/, Zt1] by
the arcs defining the conditions

of the worst case demand 02|
realisation for any e € E.
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1: for e, € E do

2 foricZ,, do

3: for e, € E do

4 for j € 7., do

5 Generate the subdivision in the

rectangle [z, z/+1] x [2/, Zt!] by
the arcs defining the conditions
of the worst case demand
realisation for any e € E.
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For (x,y) € [1,2] x [2,3].
Cells for rpp 3)(x, y) :
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1: for e, € E do

2 foricZ,, do

3: for e, € E do

4 for j € 7., do

5 Generate the subdivision in the

rectangle [z, z/+1] x [2/, Zt!] by
the arcs defining the conditions
of the worst case demand
realisation for any e € E.
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For (x,y) € [1,2] x [2,3].

Cells for riy 35(x, y) :

04F

0.2

0.0]

0.0 0.2 0.4 0.6 0.8



1. for e, € E do

2 foricZ, do

3 for e, € E do

4 for j€Z,, do

5 Let Cd . be the family of arcs
defined by:
-boundaries of the cells
previously obtained.
-For any cell where r(x,y) is
concave, the intersection of the

curve g—;(x,y) = 0 with that cell.
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For (x,y) € [1,2] x [2,3].

Cells for r(x, y)

0.0]




1: for e, € E do
for i € Z, do
Obtain the upper envelope, h;X(X), of r(x, y(x)) of the arcs
contained in U Cg;ey_
e €E,jel,,
Find the minimum x; of hgx(x) over [2/, z1*1].

w N

: if hl (x7) < r(x*) then
5: set x* 1= x7, r(x*) = h, (x*

M. Baldomero, J. Kalcsics, A. Marin, and A.M. Rodriguez-Chia
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Uncertainty

r(x,y(x)), x € [1,2], and y € [2,3].
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Introduction

Upgr ng

Uncertainty

y=([1,2].t;)
o y=([1,3].1)

— y=([2.3].t))

| \ \ \ Lt
0.0 0.2 04 0.6 08 10 °

Upper envelope of r(x, y(x)), x € [1,2].

The minimum value of r is 6.3055, where X} 5 = ([1,3],0.0533).
This should be repeated for each x € [z/, z/*1], where i € Z,_ and

ex € E.
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Uncertainty

Theorem

The single facility MinMax Regret Maximal Covering Location
Problem on a network with edge linear demand realisations can be
solved exactly in O(m*log* m) time using the previous Algorithm.
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Upgr ng

Uncertainty

o Although the majority of problems become NP-hard in the
minmax regret version, we propose a polynomial time
algorithm for solving the single-facility MinMax Regret MCLP
on a network where the demand is

o distributed along the edges,
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o Although the majority of problems become NP-hard in the
minmax regret version, we propose a polynomial time
algorithm for solving the single-facility MinMax Regret MCLP
on a network where the demand is

o distributed along the edges,
o constant or linear functions,
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o Although the majority of problems become NP-hard in the
minmax regret version, we propose a polynomial time
algorithm for solving the single-facility MinMax Regret MCLP
on a network where the demand is

o distributed along the edges,
o constant or linear functions,
o uncertain with only a known interval estimation.
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Uncertainty

o Although the majority of problems become NP-hard in the
minmax regret version, we propose a polynomial time
algorithm for solving the single-facility MinMax Regret MCLP
on a network where the demand is

o distributed along the edges,

o constant or linear functions,
o uncertain with only a known interval estimation.

B M. Baldomero-Naranjo, J. Kalcsics, and A. M. Rodriguez-Chia.
Minmax regret maximal covering location problems with edge demands.
Computers & Operations Research, 130:105181, 2021.
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Uncertainty

Potential avenues for future research:

@ Other kind of demand realisation functions.
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Uncertainty

Potential avenues for future research:
@ Other kind of demand realisation functions.

o Multi-facility location version of the problem.
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Uncertainty

Potential avenues for future research:
o Other kind of demand realisation functions.
o Multi-facility location version of the problem.

o Apply a different criterion of coverage, e.g. the gradual
covering.
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