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Maximal Covering Location Problem

MCLP aims to maximise the covered demand locating p facilities.

R. Church and C. ReVelle.

The maximal covering location problem.

Papers of the Regional Science Association, 3:101–118, 1974.
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Upgrading edges MCLP

Upgrading MCLP aims to maximise the covered demand locating p
facilities and reducing the length of some edges within a budget.
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Applications

Public government: Locate p public services at the same time
that some roads are improved reducing travel times.

In shopping centres, airports, train stations: Locate services as
defibrillators, information posts while installing passenger
conveyors or escalators to reduce travel times.
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Formulations

(Flow-Cov)

3-index var.: if a path of length ≤ R from i to j traverses arc a.
2-index var.: if node i is assigned to a facility at node j
(assignment variables).

(Path)

2-index var.: if node j is the next node on a path of length
≤ R from i to a facility.

(Path-Cov)

2-index var.: if node j is the next node on a path of length
≤ R from i to a facility.
2-index var.: if node i is assigned to a facility at node j
(assignment variables).
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Preprocessing

Formulations: (Flow-Cov) and (Path-Cov).

Set the assignment variable to zero (remove) if:

d(i , j) > R even reducing the maximum amount allowed in all
edges.

d(i , j) > R even reducing the maximum budget.

Several procedures to find a balance between accuracy and
computational time.
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Valid inequalities

An adaptation of closest assignment constraints.

Strengthening several families of constraints.

Separation procedure.
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Computational Experiments

C++ using CPLEX 20.1.0 with Concert Technology.

Time limit 1800 seconds.

Intel(R) Xeon(R) W-2135 CPU 3.70 GHz 32 GB RAM.
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Data

Complete graphs

OR-Library: pmed

p ∈ {1, n/10, n/20},
R ∈ {50%DTMCLP, 60%DTMCLP, 70%DTMCLP},
ue ∈ (0, 30%`e),
B ∈ {5%Bmax , 1%Bmax , 0.5%Bmax}.

Bmax =

min(n−p,m)∑
t=1

ueσ(t)
ceσ(t)

,

where ρ is a permutation of set E such that

ceρ(1)
ueρ(1)

≥ ceρ(2)
ueρ(2)

≥ . . . ≥ ceρ(m)
ueρ(m)

.
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Performance of the preprocessing phase

Figure: Performance on graph40
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Figure: Performance profile graph of #solved instances using (Flow-Cov),
(Path-Cov), (Path-Cov) + VI formulations on graph100 and graph120.
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Figure: Performance profile graph of #solved instances using (Flow-Cov),
(Path-Cov), (Path-Cov) + VI formulations on pmedb
(|V | = 200, |E | = 777.8).
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Conclusions and future work

We present three MIP formulations for the upgrading maximal
covering location problem.

Future work:

Covering criteria: gradual covering, cooperative covering, etc.

Location criteria: p-median, p-center, etc.

M. Baldomero-Naranjo, J. Kalcsics, A. Maŕın, and A. M. Rodŕıguez-Ch́ıa.

Upgrading edges in the Maximal Covering Location Problem.

Submitted
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Uncertainty

A. Maŕın, L. I. Mart́ınez-Merino, A. M. Rodŕıguez-Ch́ıa, and F.
Saldanha-da-Gama.
Multi-period stochastic covering location problems: Modeling
framework and solution approach.
European Journal of Operational Research, 268(2):432–449,
2018.
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Introduction

Uncertainty
Single-facility location problem on a network.

The demand is distributed along the edges.

The demand is uncertain with only a known interval
estimation.

Aim: Minimise the worst-case of coverage loss.
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Criteria

Coverage criterion: Maximal Covering.
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Criteria

Coverage criterion: Maximal Covering. Let x ∈ G be a
facility:

z ∈ G is covered by x , if d(x , z) ≤ R.
C (x) := {z ∈ G | d(x , z) ≤ R} is the coverage area of x .

The covered demand on an edge e ∈ E by x for a specific
demand realisation w :

ge(x ,w) =

∫
y=(e,t)∈Ce(x)

we(t) dt. (1)

The total amount of covered demand on the network:

g(x ,w) =
∑
e∈E

ge(x ,w) . (2)
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Criteria

Coverage criterion: Maximal Covering.

max
x∈G

g(x) =
∑
e∈E

∫
y=(e,t)∈Ce(x)

we(t) dt. (1)

O. Berman, J. Kalcsics, and D. Krass.
On covering location problems on networks with edge
demand.
Computers & Operations Research, 74:214–227, 2016.
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Criteria

Coverage criterion: Maximal Covering.

Uncertainty Demand: MinMax Regret. Minimise the
worst-case of coverage loss.

e

lbe

we

ube r∗ = min
x∈X

max
lb≤w≤ub

(
max
y∈G

g(y ,w) − g(x ,w)

)
.
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Applications

Locating AED, ATM, bus stops, automated parcel lockers, or
bicycle parking racks in cities.

Locating an aerosol dispenser in the air ducts of a building to
disinfect the conduits.
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Edge coverage functions

If x /∈ e = [i , j ]

s+
e (x) = min

{
1, max

{
0,

R − d(x , i)

`e

}}
s−e (x) = max

{
0, min

{
1, 1− R − d(x , j)

`e

}}
If x ∈ ex = [k, l ]

s+
ex (x) = max

{
0,

d(x , k)− R

`ex

}
s−ex (x) = min

{
1, 1− d(x , l)− R

`ex

}

i j

x

s+e (x) s−e (x)

R R k l
xs+ex(x)

s−ex(x)

R < R

M. Baldomero, J. Kalcsics, A. Maŕın, and A.M. Rodŕıguez-Ch́ıa Maximal Covering Location Problem
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Coverage area

The total coverage can now be written as

g(x ,w) =

∫ s−ex (x)

s+
ex (x)

wex (u) du +
∑

e∈E c (x)

∫ 1

0
we(u) du

+
∑

e∈Ep(x)

(∫ s+
e (x)

0
we(u) du +

∫ 1

s−e (x)
we(u) du

)
.
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Singularity points (PP)

PPe := {i , j} ∪ NPe ∪ BPe ∪ EPe

There are at most O(m) partition points on each e ∈ E .

PP :=
⋃

e∈E PPe

There are O(m2) on the whole network.

Lemma

s+
e (x) and s−e (x), e ∈ E, are continuous and piecewise linear

functions over x ∈ ex with a constant number of pieces.
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Edge coverage functions and singularity points

Theorem

Let ex ∈ E , x ∈ [z1, z2] such that z1, z2 ∈ PPex .

1 The sets E c(x), Eu(x), and Ep(x) are identical for
x ∈ [z1, z2].

2 s+
e (x) and s−e (x) have a unique linear representation for
x ∈ [z1, z2].

3 ge(x ,w), e ∈ E, have a unique representation, for x ∈ [z1, z2]
and w a non-negative continuous demand function.

M. Baldomero, J. Kalcsics, A. Maŕın, and A.M. Rodŕıguez-Ch́ıa Maximal Covering Location Problem



Introduction
Upgrading

Uncertainty

Problem Description
Resolution Method
Conclusions

Linear Demand realisation

Let lbe(t) = albe + blbe · t, ube(t) = aube + bube · t, and
we(t) = awe + bwe · t.

aw
e

bwe

a
w e
≥

lb
e
(0
)

a
we
≤

u
b
e (0

)

a w
e
+
b w
e ≤

ub
e (1)

a w
e
+
b w
e ≥

lb
e (1)

(1)

(2)

(3)

(4)

1 (albe , b
lb
e ),

2 (albe , a
ub
e + bube − albe ),

3 (aube , b
ub
e ),

4 (aube , a
lb
e + blbe − aube ).
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Worst-case demand realisation

Theorem

The worst-case demand realisation for a fixed x , y, and e such that
x , y ∈ G and e ∈ E can be obtained by solving the following linear
program:

max
lbe≤we≤ube

awe (ce(y)− ce(x)) +
1

2
bwe
(
c̄2
e (y)− c̄2

e (x)
)
, (1)

M. Baldomero, J. Kalcsics, A. Maŕın, and A.M. Rodŕıguez-Ch́ıa Maximal Covering Location Problem
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Worst-case demand realisation

Theorem

An optimal solution of (1), (aw∗e , bw∗e ), is given by the first column
of the following table whenever the conditions of columns 2-4 are
fulfilled.

(aw∗
e , bw∗

e )
Conditions

ce(y)− ce(x) c̄2
e (y)− c̄2

e (x) (c̄2
e (y)− c̄2

e (x))− 2(ce(y)− ce(x))

(albe , b
lb
e ) ≤ 0 ≤ 0 ≥ 0

(albe , a
ub
e + bube − albe )

≥ 0 ≥ 0 ≥ 0
≤ 0 ≥ 0 −

(aube , bube ) ≥ 0 ≥ 0 ≤ 0

(aube , albe + blbe − aube )
≤ 0 ≤ 0 ≤ 0
≥ 0 ≤ 0 −

M. Baldomero, J. Kalcsics, A. Maŕın, and A.M. Rodŕıguez-Ch́ıa Maximal Covering Location Problem
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Algorithm

Determine the set PP of
partition points.

1 2

3

1

23

Let R = 1,

lb[1,2](t) = 3− 3t, ub[1,2](t) = 15 + 7t,

lb[2,3](t) = 3t, ub[2,3](t) = 7 + 3t,

lb[1,3](t) = 2 + 3t, ub[1,3](t) = 8 + 10t.
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Algorithm

For e = [i , j ] ∈ E :

Sort the partition
PPe = {z1, . . . , z |PPe |−1} in
non-decreasing distance
from node i .

Derive the representation of
the edge coverage functions
over each sub-edge
[zq, zq+1], for
q ∈ Ie := {1, . . . , |PPe |−1}.

For x1 ∈ ([1, 2], t1) the edge
coverage functions are given by

s+
[1,2](x1) = 0, s−[1,2](x1) = 1,

s+
[2,3](x1) =

t1

2
, s−[2,3](x1) = 1,

s+
[1,3](x1) =

1− t1

3
, s−[1,3](x1) = 1.

1 2

3

1

23
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Algorithm

1: for ex ∈ E do
2: for i ∈ Iex do
3: for ey ∈ E do
4: for j ∈ Iey do
5: Generate the subdivision in the

rectangle [z i , z i+1]× [z j , z j+1] by
the arcs defining the conditions
of the worst case demand
realisation for any e ∈ E .

For (x , y) ∈ [1, 2]× [2, 3].
Cells for r[1,2](x , y) :

0.0 0.2 0.4 0.6 0.8 1.0
tx

0.2

0.4

0.6

0.8

1.0

ty
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1: for ex ∈ E do
2: for i ∈ Iex do
3: for ey ∈ E do
4: for j ∈ Iey do
5: Let C ijexey be the family of arcs

defined by:
-boundaries of the cells
previously obtained.
-For any cell where r(x , y) is
concave, the intersection of the
curve ∂r

∂y (x , y) = 0 with that cell.

For (x , y) ∈ [1, 2]× [2, 3].
Cells for r(x , y)
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1: for ex ∈ E do
2: for i ∈ Iex do
3: Obtain the upper envelope, hiex (x), of r(x , y(x)) of the arcs

contained in
⋃

ey∈E ,j∈Iey
C ijexey .

Find the minimum x∗i of hiex (x) over [z i , z i+1].
4: if hiex (x∗i ) < r(x∗) then
5: set x∗ := x∗i , r(x∗) = hiex (x∗i ).
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Figure: r(x , y(x)), x ∈ [1, 2], and y ∈ [2, 3].

M. Baldomero, J. Kalcsics, A. Maŕın, and A.M. Rodŕıguez-Ch́ıa Maximal Covering Location Problem



Introduction
Upgrading

Uncertainty

Problem Description
Resolution Method
Conclusions

Algorithm

0.0 0.2 0.4 0.6 0.8 1.0
tx

2

4

6

8
r

0

y=([1,2],ty)
y=([1,3],ty)
y=([2,3],ty)

Figure: Upper envelope of r(x , y(x)), x ∈ [1, 2].

The minimum value of r is 6.3055, where x∗[1,3] = ([1, 3], 0.0533).

This should be repeated for each x ∈ [z i , z i+1], where i ∈ Iex and
ex ∈ E .
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Theorem

The single facility MinMax Regret Maximal Covering Location
Problem on a network with edge linear demand realisations can be
solved exactly in O(m4 log∗m) time using the previous Algorithm.
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Conclusions

Although the majority of problems become NP-hard in the
minmax regret version, we propose a polynomial time
algorithm for solving the single-facility MinMax Regret MCLP
on a network where the demand is

distributed along the edges,

constant or linear functions,
uncertain with only a known interval estimation.

M. Baldomero-Naranjo, J. Kalcsics, and A. M. Rodŕıguez-Ch́ıa.

Minmax regret maximal covering location problems with edge demands.

Computers & Operations Research, 130:105181, 2021.
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Future work

Potential avenues for future research:

Other kind of demand realisation functions.

Multi-facility location version of the problem.

Apply a different criterion of coverage, e.g. the gradual
covering.
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