From the Discrete Ordered Median Problem to other combinatorial optimization problems

Diego Ponce

Departamento de Estadística e Investigación Operativa, Universidad de Sevilla IMUS, Universidad de Sevilla Funded by Junta de Andalucía and ESF

Advances on logistics and transportation problems on complex networks: Evaluation and conclusions. June 23–25, 2021.

- Problem definition and notation
- Motivations
- Formulations

A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

- Problem definition and notation
- Motivations
- Formulations

2 A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

3 Convergence of column generation

• Problem definition and notation

- Motivations
- Formulations

2 A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

Convergence of column generation

Problem definition and notation Motivations Formulations

Problem definition and notation Motivations Formulations

Problem definition and notation Motivations Formulations

Problem definition and notation Motivations Formulations

Problem definition and notation Motivations Formulations

Problem definition and notation Motivations Formulations

A Branch-and-Cut-and-Price procedure for DOMP Convergence of column generation Problem definition and notation Motivations Formulations

- Let *I* be a set of clients. |I| = n.
- Let J be a set of facilities. |J| = p.
- Let C be the cost matrix. c_{ij} is the associated cost if client *i* is assigned to facility *j*.
- Let λ be the weighted ordered vector.

feasible solution

$$egin{aligned} c_i(J) &= \min_{j\in J} c_{ij}.\ c_{\leq}(J) &\leq \cdots \leq c_{\leq}^n(J)\ \min_J \sum_{k=1}^n \lambda_k c_{\leq}^k(J) \end{aligned}$$

Problem definition and notation Motivations Formulations

$$\begin{array}{ccccc} \lambda \text{-vector} & \text{Name} \\ (1,1,\ldots,1,1) & p\text{-median} \\ (0,0,\ldots,0,0,1) & p\text{-center} \\ (0,0,\ldots,0,0,\underbrace{1,1,\ldots,1,1}_{k}) & k\text{-centrum} \\ (\underbrace{0,0,\ldots,0,0}_{k_1},1,\ldots,1,1,\underbrace{0,0,\ldots,0,0}_{k_2}) & (k_1+k_2)\text{-trimmed mean} \\ (\underbrace{0,1,0,1,0,1,0,1,\ldots,1}_{(\ldots,0,0,1,0,0,1)} & - \\ (\ldots,0,0,1,0,0,1) & - \\ (\alpha,\alpha,\ldots,\alpha,\alpha,1) & \text{Centdian} \\ \vdots \end{array}$$

• Problem definition and notation

Motivations

Formulations

2 A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

3 Convergence of column generation

Problem definition and notation Motivations Formulations

- Problem is NP-hard.
- Tight formulations for combinatorial problems.

Problem definition and notation Motivations Formulations

- Problem is NP-hard
- Tight formulations for combinatorial problems.

- Problem definition and notation
- Motivations

Formulations

2 A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

Convergence of column generation

Problem definition and notation Motivations Formulations

DOMP₁ formulation (N. Boland, P. Domínguez-Marín, S.Nickel and J.Puerto, 2006)

Three-index formulations

$x_{ii}^{k} = \begin{cases} 1 \\ 1 \end{cases}$	if client <i>i</i> is served by facility <i>j</i> and cost $c_k(J) = c_{ij}$ is the <i>k</i> -th smallest in the ordered sequence
Γ L ο	$c_{\leq}(J)$ otherwise
$y_j = \begin{cases} 1 \\ 0 \end{cases}$	$\begin{array}{l} \text{if } j \in J \\ \text{if } j \notin J \end{array}$

Problem definition and notation Motivations Formulations

DOMP₁ formulation (N. Boland, P. Domínguez-Marín, S.Nickel and J.Puerto, 2006)

min

s.t.

	Three-inde>	<pre> formulations </pre>
--	-------------	-----------------------------

$x_{ii}^{k} = \begin{cases} 1 \\ 1 \end{cases}$	if client <i>i</i> is served by facility <i>j</i> and cost $c_k(J) = c_{ij}$ is the <i>k</i> -th smallest in the ordered sequence
" [0	$c_{\leq}(J)$ otherwise
$y_j = \begin{cases} 1 \\ 0 \end{cases}$	$\begin{array}{l} \text{if } j \in J \\ \text{if } j \notin J \end{array}$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \lambda^{k} c_{ij} x_{ij}^{k}$ $\sum_{i=1}^{n} \sum_{k=1}^{n} x_{ii}^{k} = 1$

$$\sum_{j=1}^{n} \sum_{k=1}^{n} x_{ij}^{k} = 1 \qquad \forall k$$

$$\sum_{k=1}^{n} x_{ij}^{k} \le y_{j} \qquad \forall i, j$$

$$\sum_{j=1}^{n} y_j = p$$

$$\sum_{i}^{n} \sum_{j}^{n} c_{ij} x_{ij}^{k-1} \leq \sum_{i}^{n} \sum_{j}^{n} c_{ij} x_{ij}^{k} \quad k = 2, \dots, n$$
$$x_{ij}^{k}, y_{j} \in \{0, 1\} \qquad \forall i, j, k$$

∀i

Problem definition and notation Motivations Formulations

Scheme

Example

					C	_	$\begin{pmatrix} 0 \\ 1 \\ 3 \\ 9 \end{pmatrix}$	2 0 6 4	7 5 0 1	4 5 2 0						
	11	22	33	44	21	43	12	34	31	14	42	23	24	32	13	41
k = 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
k = 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
k = 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
k = 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Problem definition and notation Motivations Formulations

Scheme

Example

$J = \{1$, 3 }				С	_	$\begin{pmatrix} 0\\1\\3\\9 \end{pmatrix}$	2 0 6 4	7 5 0 1	4 5 2 0)							
	11	22	33	44	21	43	12	34	31	14	42	23	24	32	13	41	
k = 4	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	
k = 3	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	
k = 2	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	
k = 1	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

A Branch-and-Cut-and-Price procedure for DOMP Convergence of column generation Problem definition and notation Motivations Formulations

	11	22	33	44	21	43	12	34	31	14	42	23	24	32	13	41
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
k	٠	٠	٠	٠	•	•	0	0	0	0	0	0	0	0	0	0
k-1	0	0	0	0	0	•	•	•	•	•	•	•	•	•	•	٠
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11	22	33	44	21	43	12	34	31	14	42	23	24	32	13	41
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
k	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0
k-1	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Formulations

DOMP₃ formulation (strong order constraints)

s.t

Three-index formulations								
$x_{ij}^k = \begin{cases} 1 \\ 0 \end{bmatrix}$	if client <i>i</i> is served by facility <i>j</i> and cost $c_k(J) = c_{ij}$ is the <i>k</i> -th smallest in the ordered sequence $c \leq (J)$ otherwise							
$y_j = \begin{cases} 1 \\ 0 \end{cases}$	$\begin{array}{l} \text{if } j \in J \\ \text{if } j \notin J \end{array}$							

$$\begin{array}{ll} \min & \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{k=1}^{n} \lambda^{k} c_{ij} x_{ij}^{k} \\ \text{s.t.} & \sum\limits_{j=1}^{n} \sum\limits_{k=1}^{n} x_{ij}^{k} = 1 & \forall i \\ & \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} x_{ij}^{k} = 1 & \forall k \\ & \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} x_{ij}^{k} \leq y_{j} & \forall i, j \\ & \sum\limits_{j=1}^{n} y_{j} = p \\ & \sum\limits_{\substack{i \geq ij \\ i j \geq ij}} x_{ij}^{k-1} + \sum\limits_{\substack{i \leq ij \\ i j \leq ij}} x_{ij}^{k} \leq 1 & \forall i, j; k = 2, \dots, n \\ & x_{ij}^{k}, y_{j} \in \{0, 1\} & \forall i, j, k \end{array}$$

Problem definition and notation Motivations Formulations

*DOMP*₄ formulation (*weak order constraints*)

	min	$\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\lambda_{i}^{k}c_{ii}x_{ii}^{k}$	
Three-index formulations		$\sum_{i=1}^{2} \sum_{j=1}^{2} k=1$	
$ \begin{cases} 1 & \text{if client } i \text{ is served by facility } j \\ & \text{and cost } c_k(J) = C_{ij} \text{ is the } k\text{-t} \\ & \text{smallest in the ordered sequence} \end{cases} $	h ^{s.t.}	$\sum_{j=1}^n \sum_{k=1}^n x_{ij}^k = 1$	$\forall i$
$\begin{bmatrix} c_{\leq}(J) \\ 0 & \text{otherwise} \end{bmatrix}$		$\sum_{i=1}^{n}\sum_{j=1}^{n}x_{ij}^{k}=1$	$\forall k$
$\gamma_j = \begin{cases} 1 & \text{if } j \in J \\ 0 & \text{if } j \notin J \end{cases}$		$\sum_{i=1}^{n} \sum_{j=1}^{k} x_{ij}^{k} < y_{i}$	$\forall i, j$
		$\sum_{k=1}^{n} y = y$	
		$\sum_{j=1}^n y_j = p$	
	$\sum_{i=1}^{n}$	$\sum_{i,j=1}^{n} \left(\sum_{\substack{i'=1\\i'j'\\ \exists i'j'}}^{n} \sum_{\substack{j'=1\\ \leq ij}}^{n} x_{i'j'}^{k} + \sum_{\substack{i'=1\\i'j'}}^{n} \sum_{\substack{j'=1\\ \leq ij}}^{n} x_{i'j'}^{k-1} \right)$	$\leq n^2 k = 2, \ldots, n$
		$x_{ii}^k, y_i \in \{0, 1\}$	$\forall i, j, k$

Problem definition and notation Motivations Formulations

Remarks

Achievements

✓ We have developed several tighter formulations.

We have found interesting valid inequalities.

 M. Labbé, D. Ponce, and J.Puerto
 A comparative study of formulations and solution methods for the discrete ordered *p*-median problem.
 Computers & Operations Research, 78 (2017) 230–242

- Problem definition and notation
- Motivations
- Formulations

A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

- Problem definition and notation
- Motivations
- Formulations

A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

Convergence of column generation

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

$$S = \begin{cases} (i, k) : & \text{costumer } i \text{'s cost is ranked at position } k \text{ and } \\ & \text{all costumers allocated to the same facility} \end{cases}$$

$$y_{S}^{j} = \begin{cases} 1 & \text{if set } S \text{ is in the solution and it is allocated} \\ & \text{to facility } j \text{ that must be open.} \\ 0 & \text{otherwise.} \end{cases}$$

$$x_{ij}^{k} = \sum_{S \ni (i,k)} y_{S}^{j}$$
$$c_{S}^{j} = \sum_{(i,k) \in S} \lambda^{k} c_{ij}$$

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Example

$C = \left(egin{array}{ccc} 1 & 5 & 9 \ 4 & 2 & 7 \ 6 & 8 & 3 \end{array} ight) \lambda =$	(2 1 0.5)	
$S_{1} = \{(1,1)\}$ $S_{2} = \{(1,2)\}$ $S_{3} = \{(1,3)\}$ $S_{4} = \{(2,1)\}$ $S_{5} = \{(2,2)\}$ $S_{6} = \{(2,3)\}$ $S_{7} = \{(3,1)\}$ $S_{8} = \{(3,2)\}$ $S_{9} = \{(3,3)\}$ $S_{9} = \{(1,1), (2,2)\}$	$\begin{split} S_{12} &= \{(1,1),(3,2)\}\\ S_{13} &= \{(1,1),(3,3)\}\\ S_{14} &= \{(1,2),(2,1)\}\\ S_{15} &= \{(1,2),(2,3)\}\\ S_{16} &= \{(1,2),(3,1)\}\\ S_{17} &= \{(1,2),(3,3)\}\\ S_{18} &= \{(1,3),(2,1)\}\\ S_{19} &= \{(1,3),(2,2)\}\\ S_{20} &= \{(1,3),(3,1)\}\\ S_{21} &= \{(1,3),(3,2)\}\\ S_{22} &= \{(1,3),(3,2)\}\\ S_{23} &= \{(1,3),$	$S_{23} = \{(2, 1), (3, 3)\}$ $S_{24} = \{(2, 2), (3, 1)\}$ $S_{25} = \{(2, 2), (3, 3)\}$ $S_{26} = \{(2, 3), (3, 1)\}$ $S_{27} = \{(2, 3), (3, 2)\}$ $S_{28} = \{(1, 1), (2, 2), (3, 3)\}$ $S_{29} = \{(1, 1), (2, 3), (3, 2)\}$ $S_{30} = \{(1, 2), (2, 1), (3, 3)\}$ $S_{31} = \{(1, 2), (2, 1), (3, 2)\}$ $S_{31} = \{(1, 2), (2, 1), (3, 2)\}$
$S_{11} = \{(1,1), (2,3)\}$	$S_{22} = \{(2,1), (3,2)\}$	$S_{33} = \{(1,3), (2,1), (3,2)\}$

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Example

$C = \left(egin{array}{ccc} 1 & 5 & 9 \\ 4 & 2 & 7 \\ 6 & 8 & 3 \end{array} ight) \lambda =$	(2 1 0.5)	
$\begin{array}{l} S_1 = \{(1,1)\}\\ S_2 = \{(1,2)\}\\ S_3 = \{(1,3)\}\\ S_4 = \{(2,1)\}\\ S_5 = \{(2,2)\}\\ S_6 = \{(2,3)\}\\ S_7 = \{(3,1)\}\\ S_8 = \{(3,2)\}\\ S_9 = \{(3,3)\}\\ S_{10} = \{(1,1),(2,2)\} \end{array}$	$\begin{split} S_{12} &= \{(1,1),(3,2)\}\\ S_{13} &= \{(1,1),(3,3)\}\\ S_{14} &= \{(1,2),(2,1)\}\\ S_{15} &= \{(1,2),(2,3)\}\\ S_{16} &= \{(1,2),(3,3)\}\\ S_{16} &= \{(1,2),(3,3)\}\\ S_{18} &= \{(1,3),(2,1)\}\\ S_{19} &= \{(1,3),(2,2)\}\\ S_{20} &= \{(1,3),(3,1)\}\\ S_{21} &= \{(1,3),(3,2)\} \end{split}$	$\begin{split} S_{23} &= \{(2,1),(3,3)\}\\ S_{24} &= \{(2,2),(3,1)\}\\ S_{25} &= \{(2,2),(3,3)\}\\ S_{26} &= \{(2,3),(3,1)\}\\ S_{27} &= \{(2,3),(3,2)\}\\ S_{28} &= \{(1,1),(2,2),(3,3)\}\\ S_{29} &= \{(1,1),(2,3),(3,2)\}\\ S_{30} &= \{(1,2),(2,1),(3,3)\}\\ S_{31} &= \{(1,2),(2,3),(3,1)\}\\ S_{32} &= \{(1,3),(2,1),(3,2)\} \end{split}$
$S_{11} = \{(1,1), (2,3)\}$	$S_{22} = \{(2,1), (3,2)\}$	$S_{33} = \{(1,3), (2,1), (3,2)\}$

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Example

$C = \left(\begin{array}{rrr} 1 & 5 & 9 \\ 4 & 2 & 7 \\ 6 & 8 & 3 \end{array}\right) \lambda =$	= (2 1 0.5)	
$S_{1} = \{(1, 1)\}$ $S_{2} = \{(1, 2)\}$ $S_{3} = \{(1, 3)\}$ $S_{4} = \{(2, 1)\}$ $S_{5} = \{(2, 2)\}$ $S_{6} = \{(2, 3)\}$ $S_{7} = \{(3, 1)\}$ $S_{8} = \{(3, 2)\}$ $S_{9} = \{(3, 3)\}$ $S_{10} = \{(1, 1), (2, 2)\}$	$\begin{split} S_{12} &= \{(1,1),(3,2)\}\\ S_{13} &= \{(1,1),(3,3)\}\\ S_{14} &= \{(1,2),(2,1)\}\\ S_{15} &= \{(1,2),(2,3)\}\\ S_{16} &= \{(1,2),(3,1)\}\\ S_{17} &= \{(1,2),(3,3)\}\\ \mathbf{S}_{18} &= \{(1,3),(2,1)\}\\ S_{19} &= \{(1,3),(2,2)\}\\ S_{20} &= \{(1,3),(3,1)\}\\ S_{21} &= \{(1,3),(3,2)\}\\ \end{split}$	$S_{23} = \{(2, 1), (3, 3)\}$ $S_{24} = \{(2, 2), (3, 1)\}$ $S_{25} = \{(2, 2), (3, 3)\}$ $S_{26} = \{(2, 3), (3, 1)\}$ $S_{27} = \{(2, 3), (3, 2)\}$ $S_{28} = \{(1, 1), (2, 2), (3, 3)\}$ $S_{29} = \{(1, 1), (2, 3), (3, 2)\}$ $S_{30} = \{(1, 2), (2, 1), (3, 3)\}$ $S_{31} = \{(1, 2), (2, 3), (3, 1)\}$ $S_{32} = \{(1, 3), (2, 1), (3, 2)\}$
$S_{11} = \{(1,1), (2,3)\}$	$S_{22} = \{(2,1), (3,2)\}$	$S_{33} = \{(1,3), (2,1), (3,2)\}$

Associated cost to variable $y_{18}^3: \ c_{18}^3 = \lambda^3 c_{13} + \lambda^1 c_{23} = 9 \cdot 0.5 + 7 \cdot 2 = 18.5$

- Problem definition and notation
- Motivations
- Formulations

A Branch-and-Cut-and-Price procedure for DOMP

• Set partitioning formulation for DOMP

Master Problem

- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

3 Convergence of column generation

MILP for DOMP A Branch-and-Cut-and-Price procedure for DOMP Master Problem

$$\begin{array}{lll} \min & & \sum_{j=1}^{n} \sum_{S} c_{S}^{j} y_{S}^{j} \\ \text{s.t.} & & \sum_{j=1}^{n} \sum_{S \ni (i,\cdot)} y_{S}^{j} &= 1 & \forall i \\ & & \sum_{j=1}^{n} \sum_{S \ni (i,\cdot)} y_{S}^{j} &= 1 & \forall k \\ & & \sum_{s \ni (i,\cdot)} y_{S}^{j} &= 1 & \forall k \\ & & \sum_{s \ni (i,\cdot)} y_{S}^{j} &\leq 1 & \forall j \\ & & \sum_{s \ni (i,\cdot)} \sum_{s \ni (i,\cdot)} y_{S}^{j} &\leq p \\ & & \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{\substack{S \ni (i,k) \\ : C_{ij} \leq C_{ij}}} y_{S}^{j} + \sum_{\substack{S \ni (i,k-1) \\ : C_{ij} \geq C_{ij}}} y_{S}^{j} &\leq n^{2} & k = 2, \dots, n \\ & & y_{S}^{j} &\in \{0,1\} & \forall S, j. \end{array}$$

- Problem definition and notation
- Motivations
- Formulations

A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
 Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

3 Convergence of column generation

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Relaxed Restricted Master Problem

 $\sum_{j=1}^{n} \sum_{S \in (i,\cdot)} c_{S}^{j} y_{S}^{j}$ $\sum_{j=1}^{n} \sum_{S \ni (i,\cdot)} y_{S}^{j}$ min $=1 \quad \forall i$ s.t. = . ≥ −1 > . $\sum_{j=1}^{n} \sum_{S \ni (\cdot,k)} y_{S}^{j}$ $= 1 \qquad \forall k$ $-\sum_{j=1}^{n} \sum_{s} y_{s}^{j}$ $-\sum_{j=1}^{n} \sum_{s} y_{s}^{j}$ ∀i $\geq -p$ $-\sum_{i=1}^{n}\sum_{j=1}^{n} \left(\sum_{\substack{S \ni (\hat{n},k) \\ :C_{ij} \le C_{ij}}} y_{S}^{\hat{i}} + \sum_{\substack{S \ni (\hat{n},k-1) \\ :C_{ij} \ge C_{ij}}} y_{S}^{\hat{i}}\right) \ge -n^{2} \quad k = 2, \dots, n$ $> 0 \quad \forall S, j$

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Relaxed Restricted Master Problem

min	$\sum_{j=1}^n \sum_S c_S^j y_S^j$			Dual Multipliers
s.t.	$\sum_{j=1}^{n} \sum_{S \ni (i,\cdot)} y_{S}^{j}$	=1	$\forall i$	α_i
	$\sum_{i=1}^{n}\sum_{S \supset (-i)} y_{S}^{i}$	= 1	$\forall k$	β_k
	$-\sum_{S}^{j-1} y_{S}^{j}$	≥ -1	$\forall j$	$\gamma_j \geq 0$
	$-\sum_{i=1}^{n}\sum_{S}y_{S}^{i}$	$\geq -p$		$\delta \geq 0$
	$-\sum_{i=1}^{n}\sum_{j=1}^{n}\left(\sum_{\substack{S\ni(\hat{i},k)\\:C_{\hat{n}}\leq C_{ij}}}y_{\hat{s}}^{\hat{j}}+\sum_{\substack{S\ni(\hat{i},k-1)\\:C_{\hat{n}}\leq C_{ij}}}y_{\hat{s}}^{\hat{j}}\right)$	$\geq -n^2$	$k=2,\ldots,n$	$\epsilon_k \ge 0$
	y_{s}^{j}	\geq 0	$\forall S, j$	

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Dual Problem

$$(DP) \max \qquad \sum_{i=1}^{n} \alpha_i + \sum_{k=1}^{n} \beta_k - \sum_{j=1}^{n} \gamma_j - p\delta - \sum_{k=2}^{n} n^2 \epsilon_k$$

$$s.t. \qquad \sum_{i=1}^{n} \alpha_i + \sum_{k=1}^{n} \beta_k - \gamma_j - \delta - \sum_{k=2}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{\substack{(i,k) \in S \\ :C_{ij} \ge C_{ij}}} \epsilon_k + \sum_{\substack{(i,k-1) \in S \\ :C_{ij} \ge C_{ij}}} \epsilon_k \right) \le c_5^j \quad \forall j, S$$

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Dual Problem

$$(DP) \max \qquad \sum_{i=1}^{n} \alpha_i + \sum_{k=1}^{n} \beta_k - \sum_{j=1}^{n} \gamma_j - p\delta - \sum_{k=2}^{n} n^2 \epsilon_k$$
s.t.
$$\sum_{\substack{i=1\\ :(i,\cdot) \in S}}^{n} \alpha_i + \sum_{\substack{k=1\\ :(\cdot,k) \in S}}^{n} \beta_k - \gamma_j - \delta - \sum_{k=2}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{\substack{(i,k) \in S\\ :C_{ij} \geq C_{ij}}} \epsilon_k + \sum_{\substack{(i,k-1) \in S\\ :C_{ij} \geq C_{ij}}} \epsilon_k \right) \leq c_S^i \quad \forall j, S$$

$$\overline{c}_{S}^{i} = c_{S}^{i} + \gamma_{j}^{*} + \delta^{*} + \sum_{k=2}^{n} \sum_{\hat{\imath}=1}^{n} \sum_{\hat{\jmath}=1}^{n} \left(\sum_{\substack{(i,k) \in S \\ :C_{ij} \geq C_{ij}}} \epsilon_{k}^{*} + \sum_{\substack{(i,k-1) \in S \\ :C_{ij} \leq C_{ij}}} \epsilon_{k}^{*} \right) - \sum_{\substack{i=1 \\ :(i,\cdot) \in S}}^{n} \alpha_{i}^{*} - \sum_{\substack{k=1 \\ :(\cdot,k) \in S}}^{n} \beta_{k}^{*}$$

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Pricing subproblem

$$\overline{c}_{S}^{j} = c_{S}^{j} + \gamma_{j}^{*} + \delta^{*} + \sum_{k=2}^{n} \sum_{\hat{i}=1}^{n} \sum_{\hat{j}=1}^{n} \left(\sum_{\substack{(i,k) \in S \\ :C_{ij} \geq C_{ij}}} \epsilon_{k}^{*} + \sum_{\substack{(i,k-1) \in S \\ :C_{ij} \leq C_{ij}}} \epsilon_{k}^{*} \right) - \sum_{\substack{i=1 \\ :(i,\cdot) \in S}}^{n} \alpha_{i}^{*} - \sum_{\substack{k=1 \\ :(\cdot,k) \in S}}^{n} \beta_{k}^{*}.$$

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Pricing subproblem

$$\overline{c}_{S}^{i} = c_{S}^{j} + \gamma_{j}^{*} + \delta^{*} + \sum_{k=2}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{\substack{(i,k) \in S \\ (i,k) \in S \\ :C_{ij} \geq C_{ij}}} \epsilon_{k}^{*} + \sum_{\substack{(i,k-1) \in S \\ :C_{ij} \leq C_{ij}}} \epsilon_{k}^{*} \right) - \sum_{\substack{i=1 \\ :(i,\cdot) \in S}}^{n} \alpha_{i}^{*} - \sum_{\substack{k=1 \\ :(i,\cdot) \in S}}^{n} \beta_{k}^{*}.$$

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Pricing subproblem

$$\overline{c}_{S}^{j} = c_{S}^{j} + \gamma_{j}^{*} + \delta^{*} + \sum_{k=2}^{n} \sum_{\hat{i}=1}^{n} \sum_{\hat{j}=1}^{n} \left(\sum_{\substack{(i,k) \in S \\ :C_{ij} \geq C_{ij}}} \epsilon_{k}^{*} + \sum_{\substack{(i,k-1) \in S \\ :C_{ij} \leq C_{ij}}} \epsilon_{k}^{*} \right) - \sum_{\substack{i=1 \\ :(i,\cdot) \in S}}^{n} \alpha_{i}^{*} - \sum_{\substack{k=1 \\ :(\cdot,k) \in S}}^{n} \beta_{k}^{*}.$$

$$\overline{c}_{S}^{j} = \sum_{\substack{(i,k) \in S \\ ij}} d_{ij}^{k} + \gamma_{j} + \delta.$$

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Pricing subproblem

$$\begin{aligned} \overline{c}_{S}^{j} &= c_{S}^{j} + \gamma_{j}^{*} + \delta^{*} + \sum_{k=2}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \left(\sum_{\substack{(i,k) \in S \\ :C_{ij} \geq C_{ij}}} \epsilon_{k}^{*} + \sum_{\substack{(i,k-1) \in S \\ :C_{ij} \geq C_{ij}}} \epsilon_{k}^{*} \right) - \sum_{\substack{i=1 \\ :(i,\cdot) \in S}}^{n} \alpha_{i}^{*} - \sum_{\substack{k=1 \\ :(\cdot,k) \in S}}^{n} \beta_{k}^{*}. \end{aligned}$$
$$\overline{c}_{S}^{j} &= \sum_{\substack{(i,k) \in S \\ (i,k) \in S}} d_{ij}^{k} + \gamma_{j} + \delta. \end{aligned}$$
$$D_{j} = \begin{pmatrix} d_{i_{j}j}^{1} & d_{i_{j}j}^{2} & \cdots & d_{i_{1}j}^{n} \\ d_{i_{2}j}^{1} & & \ddots \\ \vdots & \ddots & \vdots \\ d_{i_{n}j}^{1} & & d_{i_{n}j}^{n} \end{pmatrix}$$

where $C_{i_1j} \leq C_{i_2j} \leq \cdots \leq C_{i_nj}$.

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Pricing subproblem

$$\begin{aligned} \overline{c}_{S}^{j} &= c_{S}^{j} + \gamma_{j}^{*} + \delta^{*} + \sum_{k=2}^{n} \sum_{\hat{i}=1}^{n} \sum_{\hat{j}=1}^{n} \left(\sum_{\substack{(i,k) \in S \\ :C_{ij} \geq C_{ij}}} \epsilon_{k}^{*} + \sum_{\substack{(i,k-1) \in S \\ :C_{ij} \geq C_{ij}}} \epsilon_{k}^{*} \right) - \sum_{\substack{i=1 \\ :(i,\cdot) \in S}}^{n} \alpha_{i}^{*} - \sum_{\substack{k=1 \\ :(\cdot,k) \in S}}^{n} \beta_{k}^{*}. \end{aligned}$$

$$\begin{aligned} \overline{c}_{S}^{j} &= \sum_{\substack{(i,k) \in S \\ (i,k) \in S}} d_{ij}^{k} + \gamma_{j} + \delta. \end{aligned}$$

$$\begin{aligned} D_{j} &= \begin{pmatrix} d_{i_{1}j}^{1} & d_{i_{1}j}^{2} & \cdots & d_{i_{1}j} \\ d_{i_{2}j}^{1} & & \\ \vdots & & \ddots \\ d_{i_{n}j}^{1} & & & d_{i_{n}j}^{n} \end{pmatrix}$$

where $C_{i_1j} \leq C_{i_2j} \leq \cdots \leq C_{i_nj}$. Dynamic programming: $O(n^3)$!!!

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Lower bound

$$z_{ReLRMP} + p \cdot \min_{j \in I, S \in S(j)} \overline{c}_{S}^{j} \le z_{LRMP} \le z_{ReLRMP}, \qquad (1)$$
$$z_{ReLRMP} + \sum_{j \in I} \min_{S \in S(j)} \overline{c}_{S}^{j} \le z_{LRMP} \le z_{ReLRMP}, \qquad (2)$$

where z_{ReLRMP} and z_{LRMP} denote the optimal value of *ReLRMP* and *LRMP* respectively.

- Problem definition and notation
- Motivations
- Formulations

A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem

• Branching

Valid inequalities

3 Convergence of column generation

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Branching on original variables $x_{ij}^k = \sum y_{S}^j$

Proposition

If
$$x_{ij}^k \in \{0,1\}$$
 for $i, j, k = 1, ..., n$, then $y_S^j \in \{0,1\}$.

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Branching on original variables $x_{ij}^k = \sum_{S \ni (i,k)} y_S^j$

Proposition

If
$$x_{ij}^k \in \{0,1\}$$
 for $i, j, k = 1, \dots, n$, then $y_S^j \in \{0,1\}$.

$$0 < \sum_{S
i (i,k)} y_S^j < 1$$
 for some $i, j, k = 1, \dots, n$?

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Branching on original variables $x_{ij}^k = \sum_{S \ni (i,k)} y_S^j$

Proposition

If
$$x_{ij}^k \in \{0,1\}$$
 for $i, j, k = 1, ..., n$, then $y_S^j \in \{0,1\}$.

$$0 < \sum_{S
i (i,k)} y_S^j < 1$$
 for some $i, j, k = 1, \dots, n$?

- Problem definition and notation
- Motivations
- Formulations

A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities

3 Convergence of column generation

MILP for DOMP A Branch-and-Cut-and-Price procedure for DOMP Convergence of column generation Convergence of column generation Convergence of column generation

Order constraints

$$\sum_{\substack{S \ni (\hat{n},k) \\ : C_{ij} \le C_{ij}}} y_S^{\hat{j}} + \sum_{\substack{S \ni (\hat{n},k-1) \\ : C_{ij} \ge C_{ij}}} y_S^{\hat{j}} \le 1, \ i,j = 1, \dots, n, k = 2, \dots, n. \quad (\zeta_{ij}^k)$$

MILP for DOMP A Branch-and-Cut-and-Price procedure for DOMP Convergence of column generation Master Problem Convergence of column generation Convergence of column generation

Order constraints

$$\sum_{\substack{S \ni (\hat{\mathbf{n}}, k) \\ : C_{\hat{\mathbf{i}}} \leq C_{ij}}} y_{S}^{\hat{\mathbf{j}}} + \sum_{\substack{S \ni (\hat{\mathbf{n}}, k-1) \\ : C_{\hat{\mathbf{i}}} \geq C_{ij}}} y_{S}^{\hat{\mathbf{j}}} \leq 1, \ i, j = 1, \dots, n, k = 2, \dots, n. \quad (\zeta_{ij}^{k})$$

Figure: Number of solved problems per time using different cut strategies.

Set partitioning formulation for DOMP Master Problem Restricted relaxed MP and Pricing problem Branching Valid inequalities

Achievements

✓ Set partitioning formulation with sets of pairs.

Cutting planes added to the model.

 S. Deleplanque, M. Labbé, D. Ponce, and J.Puerto A Branch-Price-and-Cut Procedure for the Discrete Ordered Median Problem.
 INFORMS Journal on Computing, 32 (2020) 582–599

- Problem definition and notation
- Motivations
- Formulations
- 2 A Branch-and-Cut-and-Price procedure for DOMP
 - Set partitioning formulation for DOMP
 - Master Problem
 - Restricted relaxed MP and Pricing problem
 - Branching
 - Valid inequalities

3 Convergence of column generation

Du Merle, Villeneuve, Desrosiers, and Hansen (1999)

The classical column generation algorithm performs poorly, as degeneracy occurs at two levels: when solving the current linear program and also during several successive major iterations for which the added columns do not suffice to modify the objective function value.

Pessoa, Uchoa, Poggi, and Rodrigues (2010)

Du Merle et al. (1999) proposed a dual stabilization technique to alleviate the convergence difficulties in column generation, based on a simple observation: the columns that will be part of the final solution are only generated in the last iterations, when the dual variables are already close to their optimal values.

Algorithm 1 Stabilization in *ReLRMP*.

1:
$$\Delta = \Delta_{init}$$
; $\overline{\pi} = 0$; $LB(\overline{\pi}) = 0$; $GAP = 1$;
2: while $GAP > \epsilon$ do
3: Solve ReLRMP, obtaining z_{ReLRMP} and π_{ReLRMP} ; $\pi_{st} = \Delta \pi_{ReLRMP} + (1 - \Delta)\overline{\pi}$;
4: for $j = 1, ..., n$ do
5: Solve the pricing using π_{st} , obtaining S ;
6: if $\overline{c}_{S}^{i}(\pi_{ReLRMP}) < 0$ then Add variable y_{S}^{i} ; end if
7: end for
8: $LB(\pi_{st}) = z(\pi_{st}^{t}) + \sum_{S,j:y_{S}^{i}added} \overline{c}_{S}^{j}(\pi_{st})$;
9: if At least one variable was added then
10: if $LB(\pi_{st}) > LB(\overline{\pi})$ then
11: $\overline{\pi} = \pi_{st}$; $LB(\overline{\pi}) = LB(\pi_{st})$;
12: end if
13: else
14: $\overline{\pi} = \pi_{st}$; $LB(\overline{\pi}) = LB(\pi_{st})$;
15: end if
16: $GAP = \frac{Z_{ReLRMP} - LB(\overline{\pi})}{Z_{ReLRMP}}$;
17: if $GAP < 1 - \Delta$ then $\Delta = 1 - GAP$; end if
18: end while

Figure: Performance profile graph with different combination of Δ_{init} , #solved instances / *n*.

V. Blanco, A. Japón, D. Ponce, and J. Puerto On the multisource hyperplanes location problem to fitting set of points.

Computers and Operations Research, 128 (2021) 105124

S. Benati, D. Ponce, J. Puerto, and A. M. Rodríguez-Chía A branch-and-price procedure for clustering data that are graph connected.

European Journal of Operational Research, (2021)

V. Blanco, R. Gázquez, D. Ponce, and J. Puerto A Branch-and-Price approach for the Continuous Multifacility Monotone Ordered Median Problem. *Almost submitted*

n	Heurvar	Iterations		Vars	Time
		Exact	Total		
20	FALSE	13	13	2189	64.92
	TRUE	4	23	2219	18.02
30	FALSE	15	15	2827	1034.97
	TRUE	3	60	2856	191.84
40	FALSE	50	50	4713	9086.33
	TRUE	13	136	4511	2229.21

Table: Average number of pricer iterations, variables and time using the combined heuristic and exact pricers or only using the exact pricer

MUCHAS GRACIAS POR SU ATENCIÓN