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A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Problem definition and notation
Motivations
Formulations

Let I be a set of clients. |I | = n.

Let J be a set of facilities. |J| = p.

Let C be the cost matrix.
cij is the associated cost if client i is assigned to facility j .

Let λ be the weighted ordered vector.

feasible solution

J ⊆ I

|J | = p

ci(J) = min
j∈J

cij .

c1
≤(J) ≤ · · · ≤ cn≤(J)

min
J

n∑
k=1

λkc
k
≤(J)
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Convergence of column generation

Problem definition and notation
Motivations
Formulations

λ-vector Name
(1, 1, . . . , 1, 1) p-median
(0, 0, . . . , 0, 1) p-center

(0, 0, . . . , 0, 0, 1, 1, . . . , 1, 1︸ ︷︷ ︸
k

) k-centrum

(0, 0, . . . , 0, 0︸ ︷︷ ︸
k1

, 1, 1, . . . , 1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
k2

) (k1 + k2)-trimmed mean

(0, 1, 0, 1, 0, 1, 0, 1, . . . ) –
(. . . , 0, 0, 1, 0, 0, 1) –
(α, α, . . . , α, α, 1) Centdian

...
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Problem is NP-hard.

Tight formulations for combinatorial problems.
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DOMP1 formulation (N. Boland, P. Doḿınguez-Maŕın, S.Nickel and J.Puerto, 2006)

Three-index formulations

xkij =


1 if client i is served by facility j

and cost ck (J) = cij is the k-th
smallest in the ordered sequence
c≤(J)

0 otherwise

yj =

{
1 if j ∈ J
0 if j /∈ J

min
n∑

i=1

n∑
j=1

n∑
k=1

λ
k cij x

k
ij

s.t.
n∑

j=1

n∑
k=1

xkij = 1 ∀i

n∑
i=1

n∑
j=1

xkij = 1 ∀k

n∑
k=1

xkij ≤ yj ∀i, j

n∑
j=1

yj = p

n∑
i

n∑
j

cij x
k−1
ij ≤

n∑
i

n∑
j

cij x
k
ij k = 2, . . . , n

xkij , yj ∈ {0, 1} ∀i, j, k

From the DOMP to other combinatorial optimization problems D. Ponce 6/29



MILP for DOMP
A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Problem definition and notation
Motivations
Formulations

DOMP1 formulation (N. Boland, P. Doḿınguez-Maŕın, S.Nickel and J.Puerto, 2006)
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Scheme

Example

C =


0 2 7 4
1 0 5 5
3 6 0 2
9 4 1 0


11 22 33 44 21 43 12 34 31 14 42 23 24 32 13 41

k = 4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
k = 3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
k = 2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
k = 1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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Problem definition and notation
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Formulations

Scheme

Example

J = {1, 3}

C =


0 2 7 4
1 0 5 5
3 6 0 2
9 4 1 0


11 22 33 44 21 43 12 34 31 14 42 23 24 32 13 41

k = 4 ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
k = 3 ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
k = 2 ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
k = 1 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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11 22 33 44 21 43 12 34 31 14 42 23 24 32 13 41
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

k • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
k − 1 ◦ ◦ ◦ ◦ ◦ • • • • • • • • • • •

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

11 22 33 44 21 43 12 34 31 14 42 23 24 32 13 41
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

k ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
k − 1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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DOMP3 formulation (strong order constraints)

Three-index formulations

xkij =


1 if client i is served by facility j

and cost ck (J) = cij is the k-th
smallest in the ordered sequence
c≤(J)

0 otherwise

yj =

{
1 if j ∈ J
0 if j /∈ J

min
n∑

i=1

n∑
j=1

n∑
k=1

λ
k cij x

k
ij

s.t.
n∑

j=1

n∑
k=1

xkij = 1 ∀i

n∑
i=1

n∑
j=1

xkij = 1 ∀k

n∑
k=1

xkij ≤ yj ∀i, j

n∑
j=1

yj = p

∑
ı̂̂�ij

xk−1
ı̂̂ +

∑
ı̂̂�ij

xkı̂̂ ≤ 1 ∀i, j ; k = 2, . . . , n

xkij , yj ∈ {0, 1} ∀i, j, k
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DOMP4 formulation (weak order constraints)

Three-index formulations

xkij =


1 if client i is served by facility j

and cost ck (J) = Cij is the k-th
smallest in the ordered sequence
c≤(J)

0 otherwise

yj =

{
1 if j ∈ J
0 if j /∈ J

min
n∑

i=1

n∑
j=1

n∑
k=1

λ
k cij x

k
ij

s.t.
n∑

j=1

n∑
k=1

xkij = 1 ∀i

n∑
i=1

n∑
j=1

xkij = 1 ∀k

n∑
k=1

xkij ≤ yj ∀i, j

n∑
j=1

yj = p

n∑
i=1

n∑
j=1


n∑

i′=1
:i′ j′

n∑
j′=1
�ij

xki′ j′ +
n∑

i′=1
:i′ j′

n∑
j′=1
�ij

xk−1
i′ j′

 ≤ n2 k = 2, . . . , n

xkij , yj ∈ {0, 1} ∀i, j, k
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Remarks

Achievements

3 We have developed several tighter formulations.

3 We have found interesting valid inequalities.

M. Labbé, D. Ponce, and J.Puerto
A comparative study of formulations and solution methods
for the discrete ordered p-median problem.
Computers & Operations Research, 78 (2017) 230–242
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A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Master Problem

Restricted MP

Relaxed RMP

Is it necessary to 
add new variables?*

Is the solution integer?

The problem is solved!

Branching
Yes

Yes

No

No

*Subproblem
Pricing Problem

Branch & Price
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Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

S =

{
(i , k) : costumer i ’s cost is ranked at position k and

all costumers allocated to the same facility

}

y j
S =


1 if set S is in the solution and it is allocated

to facility j that must be open.
0 otherwise.

xkij =
∑

S3(i ,k)

y j
S

c jS =
∑

(i ,k)∈S

λkcij
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A Branch-and-Cut-and-Price procedure for DOMP
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Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Example

C =

 1 5 9
4 2 7
6 8 3

 λ = (2 1 0.5)

S1 = {(1, 1)}
S2 = {(1, 2)}
S3 = {(1, 3)}
S4 = {(2, 1)}
S5 = {(2, 2)}
S6 = {(2, 3)}
S7 = {(3, 1)}
S8 = {(3, 2)}
S9 = {(3, 3)}
S10 = {(1, 1), (2, 2)}
S11 = {(1, 1), (2, 3)}

S12 = {(1, 1), (3, 2)}
S13 = {(1, 1), (3, 3)}
S14 = {(1, 2), (2, 1)}
S15 = {(1, 2), (2, 3)}
S16 = {(1, 2), (3, 1)}
S17 = {(1, 2), (3, 3)}
S18 = {(1, 3), (2, 1)}
S19 = {(1, 3), (2, 2)}
S20 = {(1, 3), (3, 1)}
S21 = {(1, 3), (3, 2)}
S22 = {(2, 1), (3, 2)}

S23 = {(2, 1), (3, 3)}
S24 = {(2, 2), (3, 1)}
S25 = {(2, 2), (3, 3)}
S26 = {(2, 3), (3, 1)}
S27 = {(2, 3), (3, 2)}
S28 = {(1, 1), (2, 2), (3, 3)}
S29 = {(1, 1), (2, 3), (3, 2)}
S30 = {(1, 2), (2, 1), (3, 3)}
S31 = {(1, 2), (2, 3), (3, 1)}
S32 = {(1, 3), (2, 1), (3, 2)}
S33 = {(1, 3), (2, 1), (3, 2)}

Associated cost to variable y3
18: c3

18 = λ3c13 + λ1c23 = 9 · 0.5 + 7 · 2 = 18.5
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A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

min
n∑

j=1

∑
S

c jSy
j
S

s.t.
n∑

j=1

∑
S3(i,·)

y j
S = 1 ∀ i

n∑
j=1

∑
S3(·,k)

y j
S = 1 ∀ k∑

S

y j
S ≤ 1 ∀ j

n∑
j=1

∑
S

y j
S ≤ p

n∑
i=1

n∑
j=1

 ∑
S3(̂ı,k)
:Ĉı̂≤Cij

y ̂
S +

∑
S3(̂ı,k−1)

:Ĉı̂≥Cij

y ̂
S

 ≤ n2 k = 2, . . . , n

y j
S ∈ {0, 1} ∀S , j .
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MILP for DOMP
A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Relaxed Restricted Master Problem

min
n∑

j=1

∑
S

c jSy
j
S

s.t.
n∑

j=1

∑
S3(i,·)

y j
S = 1 ∀ i

n∑
j=1

∑
S3(·,k)

y j
S = 1 ∀ k

−
∑
S

y j
S ≥ −1 ∀ j

−
n∑

j=1

∑
S

y j
S ≥ −p

−
n∑

i=1

n∑
j=1

 ∑
S3(̂ı,k)
:Ĉı̂≤Cij

y ̂
S +

∑
S3(̂ı,k−1)

:Ĉı̂≥Cij

y ̂
S

 ≥ −n2 k = 2, . . . , n

y j
S ≥ 0 ∀S, j
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MILP for DOMP
A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Relaxed Restricted Master Problem

min
n∑

j=1

∑
S

c jSy
j
S Dual Multipliers

s.t.
n∑

j=1

∑
S3(i,·)

y j
S = 1 ∀ i αi

n∑
j=1

∑
S3(·,k)

y j
S = 1 ∀ k βk

−
∑
S

y j
S ≥ −1 ∀ j γj ≥ 0

−
n∑

j=1

∑
S

y j
S ≥ −p δ ≥ 0

−
n∑

i=1

n∑
j=1

 ∑
S3(̂ı,k)
:Ĉı̂≤Cij

y ̂
S +

∑
S3(̂ı,k−1)

:Ĉı̂≥Cij

y ̂
S

 ≥ −n2 k = 2, . . . , n εk ≥ 0

y j
S ≥ 0 ∀S , j
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MILP for DOMP
A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Dual Problem

(DP) max
n∑

i=1

αi +
n∑

k=1

βk −
n∑

j=1

γj − pδ −
n∑

k=2

n2
εk

s.t.
n∑

i=1
:(i,·)∈S

αi +
n∑

k=1
:(·,k)∈S

βk − γj − δ −
n∑

k=2

n∑
ı̂=1

n∑
̂=1


∑

(i,k)∈S
:Ĉı̂≥Cij

εk +
∑

(i,k−1)∈S
:Ĉı̂≤Cij

εk

 ≤ c
j
S
∀ j, S

γj , δ, εk ≥ 0 ∀ i, j, k.

c
j
S

= c
j
S

+ γ
∗
j + δ

∗ +
n∑

k=2

n∑
ı̂=1

n∑
̂=1


∑

(i,k)∈S
:Ĉı̂≥Cij

ε
∗
k +

∑
(i,k−1)∈S

:Ĉı̂≤Cij

ε
∗
k

−
n∑

i=1
:(i,·)∈S

α
∗
i −

n∑
k=1

:(·,k)∈S

β
∗
k .
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:Ĉı̂≥Cij

ε
∗
k +

∑
(i,k−1)∈S
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MILP for DOMP
A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Pricing subproblem

c jS = c jS + γ∗j + δ∗ +
n∑

k=2

n∑
ı̂=1

n∑
̂=1

 ∑
(i,k)∈S
:Ĉı̂≥Cij

ε∗k +
∑

(i,k−1)∈S
:Ĉı̂≤Cij

ε∗k

−
n∑

i=1
:(i,·)∈S

α∗i −
n∑

k=1
:(·,k)∈S

β∗k .

c jS =
∑

(i,k)∈S
dk
ij + γj + δ.

Dj =


d1
i1j

d2
i1j

· · · dn
i1j

d1
i2j

...
. . .

d1
in j

dn
in j


where Ci1j ≤ Ci2j ≤ · · · ≤ Cin j . Dynamic programming:O(n3)!!!
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MILP for DOMP
A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Lower bound

zReLRMP + p · min
j∈I ,S∈S(j)

c jS ≤ zLRMP ≤ zReLRMP , (1)

zReLRMP +
∑
j∈I

min
S∈S(j)

c jS ≤ zLRMP ≤ zReLRMP , (2)

where zReLRMP and zLRMP denote the optimal value of
ReLRMP and LRMP respectively.
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MILP for DOMP
A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Branching on original variables xkij =
∑

S3(i ,k)

y jS

Proposition

If xkij ∈ {0, 1} for i , j , k = 1, . . . , n, then y j
S ∈ {0, 1}.

0 <
∑

S3(i ,k)

y j
S < 1 for some i , j , k = 1, . . . , n?

ZERO-branch∑
S3(i ,k)

y j
S = 0

ONE-branch∑
S3(i ,k)

y j
S = 1
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Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Order constraints∑
S3(̂ı,k)
:Ĉı̂≤Cij

y ̂
S +

∑
S3(̂ı,k−1)

:Ĉı̂≥Cij

y ̂
S ≤ 1, i , j = 1, . . . , n, k = 2, . . . , n. (ζkij )
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Figure: Number of solved problems per time using different cut strategies.
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MILP for DOMP
A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Set partitioning formulation for DOMP
Master Problem
Restricted relaxed MP and Pricing problem
Branching
Valid inequalities

Remarks

Achievements

3 Set partitioning formulation with sets of pairs.

3 Cutting planes added to the model.

S. Deleplanque, M. Labbé, D. Ponce, and J.Puerto
A Branch-Price-and-Cut Procedure for the Discrete
Ordered Median Problem.
INFORMS Journal on Computing, 32 (2020) 582–599
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A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Du Merle, Villeneuve, Desrosiers, and Hansen (1999)

The classical column generation algorithm performs poorly, as
degeneracy occurs at two levels: when solving the current
linear program and also during several successive major
iterations for which the added columns do not suffice to
modify the objective function value.

Pessoa, Uchoa, Poggi, and Rodrigues (2010)

Du Merle et al. (1999) proposed a dual stabilization technique
to alleviate the convergence difficulties in column generation,
based on a simple observation: the columns that will be part of
the final solution are only generated in the last iterations, when
the dual variables are already close to their optimal values.

From the DOMP to other combinatorial optimization problems D. Ponce 24/29



MILP for DOMP
A Branch-and-Cut-and-Price procedure for DOMP

Convergence of column generation

Algorithm 1 Stabilization in ReLRMP .
1: ∆ = ∆init ; π = 0; LB(π) = 0; GAP = 1;
2: while GAP > ε do
3: Solve ReLRMP, obtaining zReLRMP and πReLRMP ; πst = ∆πReLRMP +(1−∆)π;
4: for j = 1, . . . , n do
5: Solve the pricing using πst , obtaining S ;

6: if c jS (πReLRMP) < 0 then Add variable y j
S ; end if

7: end for
8: LB(πst) = z(πt

st) +
∑

S,j :y
j
S
added

c jS (πst);

9: if At least one variable was added then
10: if LB(πst) > LB(π) then
11: π = πst ; LB(π) = LB(πst);
12: end if
13: else
14: π = πst ; LB(π) = LB(πst);
15: end if
16: GAP = zReLRMP−LB(π)

zReLRMP
;

17: if GAP < 1−∆ then ∆ = 1− GAP; end if
18: end while
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Figure: Performance profile graph with different combination of
∆init , #solved instances / n.
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Master Problem

Restricted MP

Relaxed RMP

Is it necessary to 
add new variables?*

Is the solution integer?

The problem is solved!

Branching
Yes

Yes

No

No

*Subproblem
Pricing Problem

Branch & Price
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Convergence of column generation

V. Blanco, A. Japón, D. Ponce, and J. Puerto
On the multisource hyperplanes location problem to fitting
set of points.
Computers and Operations Research, 128 (2021) 105124

S. Benati, D. Ponce, J. Puerto, and A. M. Rodŕıguez-Ch́ıa
A branch-and-price procedure for clustering data that are
graph connected.
European Journal of Operational Research, (2021)

V. Blanco, R. Gázquez, D. Ponce, and J. Puerto
A Branch-and-Price approach for the Continuous
Multifacility Monotone Ordered Median Problem.
Almost submitted
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Convergence of column generation

n Heurvar Iterations Vars Time

Exact Total

20
FALSE 13 13 2189 64.92
TRUE 4 23 2219 18.02

30
FALSE 15 15 2827 1034.97
TRUE 3 60 2856 191.84

40
FALSE 50 50 4713 9086.33
TRUE 13 136 4511 2229.21

Table: Average number of pricer iterations, variables and time
using the combined heuristic and exact pricers or only using the
exact pricer
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