From the Discrete Ordered Median Problem to other combinatorial optimization problems

Diego Ponce

Departamento de Estadística e Investigación Operativa, Universidad de Sevilla IMUS, Universidad de Sevilla Funded by Junta de Andalucía and ESF

Advances on logistics and transportation problems on complex networks: Evaluation and conclusions.

June 23-25, 2021.

(1) MILP for DOMP

- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation
(1) MILP for DOMP
- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation
(1) MILP for DOMP
- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation

- Let I be a set of clients. $|I|=n$.
- Let J be a set of facilities. $|J|=p$.
- Let C be the cost matrix.
$c_{i j}$ is the associated cost if client i is assigned to facility j.
- Let λ be the weighted ordered vector.

feasible solution

- J $\subseteq 1$
- $|J|=p$

$$
\begin{gathered}
c_{i}(J)=\min _{j \in J} c_{i j} . \\
c_{\leq}^{1}(J) \leq \cdots \leq c_{\leq}^{n}(J) \\
\min _{J} \sum_{k=1}^{n} \lambda_{k} c_{\leq}^{k}(J)
\end{gathered}
$$

λ-vector
$(1,1, \ldots, 1,1)$
$(0,0, \ldots, 0,1)$
$(0,0, \ldots, 0,0, \underbrace{1,1, \ldots, 1,1}_{k})$
$\underbrace{(0,0, \ldots, 0,0}_{k_{1}}, 1,1, \ldots, 1,1, \underbrace{0,0, \ldots, 0,0}_{k_{2}})$
$(0,1,0,1,0,1,0,1, \ldots)$
$(\ldots, 0,0,1,0,0,1)$
$(\alpha, \alpha, \ldots, \alpha, \alpha, 1)$

Name
 p-median p-center k-centrum

$\left(k_{1}+k_{2}\right)$-trimmed mean

Centdian
(1) MILP for DOMP

- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation
- Problem is NP-hard.
- Tight formulations for combinatorial problems.
- Problem is NP-hard
- Tight formulations for combinatorial problems.

(1) MILP for DOMP
- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation

DOMP P_{1} formulation (N. Boland, P. Domínguez-Marín, S.Nickel and J.Puerto, 2006)

Three-index formulations

$x_{i j}^{k}= \begin{cases}1 & \begin{array}{l}\text { if client } i \text { is served by facility } j \\ \text { and cost } c_{k}(J)=c_{i j} \text { is the } k \text {-th } \\ \text { smallest in the ordered sequence }\end{array} \\ y_{j} & = \begin{cases}c_{\leq} \leq(J) \\ 0 & \text { otherwise }\end{cases} \\ 0 & \text { if } j \in J \\ \text { if } j \notin J\end{cases}$
$D O M P_{1}$ formulation (N. Boland, P. Domínguez-Marín, S.Nickel and J.Puerto, 2006)

Three-index formulations

$x_{i j}^{k}=\left\{\begin{array}{ll}1 & \begin{array}{l}\text { if client } i \text { is served by facility } j \\ \text { and cost } c_{k}(J)=c_{i j} \text { is the } k \text {-th } \\ \text { smallest in the ordered sequence }\end{array} \\ y_{j} & = \begin{cases}c_{\leq}(J) \\ 0 & \text { otherwise }\end{cases} \\ \begin{array}{ll}1 & \text { if } j \in J \\ 0 & \text { if } j \notin J\end{array}\end{array} \$. \begin{array}{l}\end{array}\right.$
\min
$\begin{array}{lll} & \sum_{j=1}^{n} \sum_{k=1}^{n} x_{i j}^{k}=1 & \forall i \\ & \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j}^{k}=1 & \forall k\end{array}$

$$
\begin{array}{cc}
\sum_{k=1}^{n} x_{i j}^{k} \leq y_{j} & \forall i, j \\
\sum_{j=1}^{n} y_{j}=p & \\
\sum_{i}^{n} \sum_{j}^{n} c_{i j} x_{i j}^{k-1} \leq \sum_{i}^{n} \sum_{j}^{n} c_{i j} x_{i j}^{k} & k=2, \ldots, n
\end{array}
$$

$$
x_{i j}^{k}, y_{j} \in\{0,1\} \quad \forall i, j, k
$$

Scheme

Example

$C=\left(\begin{array}{llll}0 & 2 & 7 & 4 \\ 1 & 0 & 5 & 5 \\ 3 & 6 & 0 & 2 \\ 9 & 4 & 1 & 0\end{array}\right)$

Scheme

Example

$$
\begin{aligned}
& J=\{1,3\} \\
& C=\left(\begin{array}{llll}
0 & 2 & 7 & 4 \\
1 & 0 & 5 & 5 \\
3 & 6 & 0 & 2 \\
9 & 4 & 1 & 0
\end{array}\right)
\end{aligned}
$$

	11	22	33	44	21	43	12	34	31	14	42	23	24	32	13	41
	\circ															
k	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\circ									
$k-1$	\circ	\circ	\circ	\circ	\circ	\bullet										
	\circ															
	11	22	33	44	21	43	12	34	31	14	42	23	24	32	13	41
	\circ															
k	\circ	\circ	\circ	\circ	\bullet	\circ										
$k-1$	\circ	\bullet	\circ	\circ	\circ	\circ	\circ									
	\circ															

$D O M P_{3}$ formulation (strong order constraints)

Three-index formulations

$x_{i j}^{k}= \begin{cases}1 & \begin{array}{l}\text { if client } i \text { is served by facility } j \\ \text { and cost } c_{k}(J)=c_{i j} \text { is the } k \text {-th } \\ \text { smallest in the ordered sequence }\end{array} \\ c_{\leq}(J) \\ 0 & \text { otherwise }\end{cases}$
$y_{j}= \begin{cases}1 & \text { if } j \in J \\ 0 & \text { if } j \notin J\end{cases}$
$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \lambda^{k} c_{i j} x_{i j}^{k}$
s.t. $\quad \sum_{j=1}^{n} \sum_{k=1}^{n} x_{i j}^{k}=1 \quad \forall i$ $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j}^{k}=1 \quad \forall k$
$\sum_{k=1}^{n} x_{i j}^{k} \leq y_{j} \quad \forall i, j$

$$
\sum_{j=1}^{n} y_{j}=p
$$

$$
\sum_{\hat{\imath} \succeq i j} x_{i j}^{k-1}+\sum_{\hat{1} \preceq i j} x_{\tilde{i j}}^{k} \leq 1 \quad \forall i, j ; k=2, \ldots, n
$$

$$
x_{i j}^{k}, y_{j} \in\{0,1\} \quad \forall i, j, k
$$

DOMP ${ }_{4}$ formulation (weak order constraints)

Three-index formulations

$$
\int 1 \quad \text { if client } i \text { is served by facility } j
$$

$$
\text { and cost } c_{k}(J)=C_{i j} \text { is the } k \text {-th }
$$

smallest in the ordered sequence

$$
c_{\leq}(J)
$$

otherwise

$$
y_{j}= \begin{cases}1 & \text { if } j \in J \\ 0 & \text { if } j \notin J\end{cases}
$$

$$
\begin{aligned}
& \min \\
& \min \\
& \text { s.t. } \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \lambda^{k} c_{i j} x_{i j}^{k} \\
& \sum_{j=1}^{n} \sum_{k=1}^{n} x_{i j}^{k}=1 \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j}^{k}=1 \\
& \sum_{k=1}^{n} x_{i j}^{k} \leq y_{j} \\
& \sum_{j=1}^{n} y_{j}=p
\end{aligned}
$$

$$
\begin{aligned}
& x_{i j}^{k}, y_{j} \in\{0,1\} \\
& \forall i, j, k
\end{aligned}
$$

Remarks

Achievements

\checkmark We have developed several tighter formulations.
\checkmark We have found interesting valid inequalities.
图 M. Labbé, D. Ponce, and J.Puerto
A comparative study of formulations and solution methods for the discrete ordered p-median problem.
Computers \& Operations Research, 78 (2017) 230-242
(2) A Branch-and-Cut-and-Price procedure for DOMP

- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation

Branch \& Price

(1) MILP for DOMP

- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation

$S=\left\{\begin{array}{ll}(i, k): & \text { costumer } i \text { 's cost is ranked at position } k \text { and } \\ \text { all costumers allocated to the same facility }\end{array}\right\}$

$y_{S}^{j}= \begin{cases}1 & \text { if set } S \text { is in the solution and it is allocated } \\ \text { to facility } j \text { that must be open. }\end{cases}$

$$
\begin{aligned}
x_{i j}^{k} & =\sum_{S \ni(i, k)} y_{S}^{j} \\
c_{S}^{j} & =\sum_{(i, k) \in S} \lambda^{k} c_{i j}
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
C=\left(\begin{array}{lll}
1 & 5 & 9 \\
4 & 2 & 7 \\
6 & 8 & 3
\end{array}\right) & \lambda=(210.5) & \\
& & \\
S_{1} & =\{(1,1)\} & S_{12}=\{(1,1),(3,2)\} & S_{23}=\{(2,1),(3,3)\} \\
S_{2} & =\{(1,2)\} & S_{13}=\{(1,1),(3,3)\} & S_{24}=\{(2,2),(3,1)\} \\
S_{3} & =\{(1,3)\} & S_{14}=\{(1,2),(2,1)\} & S_{25}=\{(2,2),(3,3)\} \\
S_{4} & =\{(2,1)\} & S_{15}=\{(1,2),(2,3)\} & S_{26}=\{(2,3),(3,1)\} \\
S_{5} & =\{(2,2)\} & S_{16}=\{(1,2),(3,1)\} & S_{27}=\{(2,3),(3,2)\} \\
S_{6} & =\{(2,3)\} & S_{17}=\{(1,2),(3,3)\} & S_{28}=\{(1,1),(2,2),(3,3)\} \\
S_{7} & =\{(3,1)\} & S_{18}=\{(1,3),(2,1)\} & S_{29}=\{(1,1),(2,3),(3,2)\} \\
S_{8} & =\{(3,2)\} & S_{19}=\{(1,3),(2,2)\} & S_{30}=\{(1,2),(2,1),(3,3)\} \\
S_{9} & =\{(3,3)\} & S_{20}=\{(1,3),(3,1)\} & S_{31}=\{(1,2),(2,3),(3,1)\} \\
S_{10} & =\{(1,1),(2,2)\} & S_{21}=\{(1,3),(3,2)\} & S_{32}=\{(1,3),(2,1),(3,2)\} \\
S_{11} & =\{(1,1),(2,3)\} & S_{22}=\{(2,1),(3,2)\} & S_{33}=\{(1,3),(2,1),(3,2)\}
\end{array}
$$

Example

$$
\begin{array}{rlrl}
C=\left(\begin{array}{lll}
1 & 5 & 9 \\
4 & 2 & 7 \\
6 & 8 & 3
\end{array}\right) & \lambda=(210.5) & \\
& & \\
S_{1} & =\{(1,1)\} & S_{12}=\{(1,1),(3,2)\} & S_{23}=\{(2,1),(3,3)\} \\
S_{2} & =\{(1,2)\} & S_{13}=\{(1,1),(3,3)\} & S_{24}=\{(2,2),(3,1)\} \\
S_{3} & =\{(1,3)\} & S_{14}=\{(1,2),(2,1)\} & S_{25}=\{(2,2),(3,3)\} \\
S_{4} & =\{(2,1)\} & S_{15}=\{(1,2),(2,3)\} & S_{26}=\{(2,3),(3,1)\} \\
S_{5} & =\{(2,2)\} & S_{16}=\{(1,2),(3,1)\} & S_{27}=\{(2,3),(3,2)\} \\
S_{6} & =\{(2,3)\} & S_{17}=\{(1,2),(3,3)\} & S_{28}=\{(1,1),(2,2),(3,3)\} \\
S_{7} & =\{(3,1)\} & S_{18}=\{(1,3),(2,1)\} & S_{29}=\{(1,1),(2,3),(3,2)\} \\
S_{8} & =\{(3,2)\} & S_{19}=\{(1,3),(2,2)\} & S_{30}=\{(1,2),(2,1),(3,3)\} \\
S_{9} & =\{(3,3)\} & S_{20}=\{(1,3),(3,1)\} & S_{31}=\{(1,2),(2,3),(3,1)\} \\
S_{10} & =\{(1,1),(2,2)\} & S_{21}=\{(1,3),(3,2)\} & S_{32}=\{(1,3),(2,1),(3,2)\} \\
S_{11} & =\{(1,1),(2,3)\} & S_{22}=\{(2,1),(3,2)\} & S_{33}=\{(1,3),(2,1),(3,2)\}
\end{array}
$$

Example

$$
\begin{array}{rlrl}
C=\left(\begin{array}{lll}
1 & 5 & 9 \\
4 & 2 & 7 \\
6 & 8 & 3
\end{array}\right) & \lambda=(210.5) & \\
& & \\
& S_{1}=\{(1,1)\} & S_{12}=\{(1,1),(3,2)\} & \\
S_{2}=\{(1,2)\} & S_{23}=\{(2,1),(3,3)\} \\
S_{3}=\{(1,3)\} & S_{14}=\{(1,1),(3,3)\} & (2,1)\} & S_{24}=\{(2,2),(3,1)\} \\
S_{4} & =\{(2,1)\} & S_{15}=\{(1,2),(2,3)\} & S_{25}=\{(2,2),(3,3)\} \\
S_{5}=\{(2,2)\} & S_{16}=\{(1,2),(3,1)\} & S_{27}=\{(2,3),(3,1)\} \\
S_{6} & =\{(2,3)\} & S_{17}=\{(1,2),(3,3)\} & S_{28}=\{(1,1),(2,2),(3,3)\} \\
S_{7} & =\{(3,1)\} & S_{18}=\{(1,3),(2,1)\} & S_{29}=\{(1,1),(2,3),(3,2)\} \\
S_{8} & =\{(3,2)\} & S_{19}=\{(1,3),(2,2)\} & S_{30}=\{(1,2),(2,1),(3,3)\} \\
S_{9} & =\{(3,3)\} & S_{20}=\{(1,3),(3,1)\} & S_{31}=\{(1,2),(2,3),(3,1)\} \\
S_{10} & =\{(1,1),(2,2)\} & S_{21}=\{(1,3),(3,2)\} & S_{32}=\{(1,3),(2,1),(3,2)\} \\
S_{11} & =\{(1,1),(2,3)\} & S_{22}=\{(2,1),(3,2)\} & S_{33}=\{(1,3),(2,1),(3,2)\}
\end{array}
$$

Associated cost to variable $y_{18}^{3}: c_{18}^{3}=\lambda^{3} c_{13}+\lambda^{1} c_{23}=9 \cdot 0.5+7 \cdot 2=18.5$
(1) MILP for DOMP

- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation

$$
\begin{aligned}
& \min \\
& \text { s.t. } \\
& \sum_{j=1}^{n} \sum_{S} c_{S}^{j} y_{S}^{j} \\
& \sum_{j=1}^{n} \sum_{S \ni(i, \cdot)} y_{S}^{j}=1 \quad \forall i \\
& \sum_{j=1}^{n} \sum_{S \ni(, k)} y_{S}^{j}=1 \quad \forall k \\
& \sum_{S} y_{S}^{j} \leq 1 \\
& \forall j \\
& \sum_{j=1}^{n} \sum_{S} y_{S}^{j} \leq p \\
& \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\sum_{\substack{S \ni(\hat{\imath}, k) \\
: C_{\hat{\jmath}} \leq C_{i j}}} y_{S}^{\hat{\jmath}}+\sum_{\substack{S \ni(\hat{1}, k-1) \\
: C_{\hat{\imath}} \geq C_{i j}}} y_{S}^{\hat{\jmath}}\right) \leq n^{2} \quad k=2, \ldots, n \\
& y_{S}^{j} \in\{0,1\} \quad \forall S, j \text {. }
\end{aligned}
$$

(1) MILP for DOMP

- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation

Relaxed Restricted Master Problem

$$
\begin{aligned}
& \min \\
& \text { s.t. } \\
& \sum_{j=1}^{n} \sum_{S} c_{S}^{j} y_{S}^{j} \\
& \sum_{j=1}^{n} \sum_{S \ni(i, \cdot)} y_{S}^{j} \\
& =1 \quad \forall i \\
& \sum_{j=1}^{n} \sum_{S \ni(\cdot, k)} y_{S}^{j} \quad=1 \quad \forall k \\
& -\sum_{S} y_{S}^{j} \quad \geq-1 \quad \forall j \\
& -\sum^{n} \sum y_{S}^{j} \quad \geq-p \\
& -\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\sum_{\substack{s \ni(\hat{1}, k) \\
: C_{\hat{\jmath}} \leq C_{i j}}} y_{S}^{\hat{\jmath}}+\sum_{\substack{S \ni(\hat{1}, k-1) \\
: C_{\imath j} \geq c_{i j}}} y_{S}^{\hat{\jmath}}\right) \geq-n^{2} \quad k=2, \ldots, n \\
& y_{S}^{j} \quad \geq 0 \quad \forall S, j
\end{aligned}
$$

Relaxed Restricted Master Problem

$$
\begin{aligned}
& \text { min } \\
& \sum_{j=1}^{n} \sum_{S} c_{S}^{j} y_{S}^{j} \\
& \text { s.t. } \\
& \sum_{j=1}^{n} \sum_{S \ni(i, \cdot)} y_{S}^{j} \\
& \sum_{j=1}^{n} \sum_{S \ni(\cdot, k)} y_{S}^{j} \\
& -\sum_{S} y_{S}^{j} \\
& =1 \quad \forall k \\
& \beta_{k} \\
& \geq-1 \quad \forall j \\
& \gamma_{j} \geq 0 \\
& -\sum_{j=1}^{n} \sum_{S} y_{S}^{j} \\
& \geq-p \\
& \delta \geq 0 \\
& -\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\sum_{\substack{S \ni(\hat{i}, k) \\
: C_{\hat{\eta}} \leq C_{i j}\\
}} y_{\substack{\hat{\jmath}}}+\sum_{\substack{S \ni(\hat{i}, k-1) \\
: C_{\hat{\eta}} \geq c_{i j}}} y_{S}^{\hat{\jmath}}\right) \geq-n^{2} \quad k=2, \ldots, n \quad \epsilon_{k} \geq 0 \\
& y_{s}^{j} \quad \geq 0 \quad \forall S, j \\
& =1 \quad \forall i \\
& \alpha_{i} \\
& \geq 0 \\
& \forall S, j
\end{aligned}
$$

Dual Problem

(DP) max $\sum_{i=1}^{n} \alpha_{i}+\sum_{k=1}^{n} \beta_{k}-\sum_{j=1}^{n} \gamma_{j}-p \delta-\sum_{k=2}^{n} n^{2} \epsilon_{k}$

Dual Problem

(DP) max $\sum_{i=1}^{n} \alpha_{i}+\sum_{k=1}^{n} \beta_{k}-\sum_{j=1}^{n} \gamma_{j}-p \delta-\sum_{k=2}^{n} n^{2} \epsilon_{k}$

$$
\bar{c}_{S}^{j}=c_{S}^{j}+\gamma_{j}^{*}+\delta^{*}+\sum_{k=2}^{n} \sum_{\hat{\imath}=1}^{n} \sum_{\hat{\jmath}=1}^{n}\left(\sum_{\substack{(i, k) \in S \\: C_{\tilde{\jmath}} \geq C_{i j}}} \epsilon_{k}^{*}+\sum_{\substack{(i, k-1) \in S \\: C_{\tilde{\jmath}} \leq C_{i j}}} \epsilon_{k}^{*}\right)-\sum_{\substack{i=1 \\:(i, \cdot) \in S}}^{n} \alpha_{i}^{*}-\sum_{\substack{:(\cdot, k) \in S}}^{n} \beta_{k}^{*}
$$

Pricing subproblem

$$
\bar{C}_{S}^{j}=c_{S}^{j}+\gamma_{j}^{*}+\delta^{*}+\sum_{k=2}^{n} \sum_{\hat{\imath}=1}^{n} \sum_{\hat{\jmath}=1}^{n}\left(\sum_{\substack{(i, k) \in S \\: C_{\tilde{\imath} \geq C_{i j}}}} \epsilon_{k}^{*}+\sum_{\substack{(i, k-1) \in S \\: C_{\tilde{1}} \leq C_{i j}}} \epsilon_{k}^{*}-\sum_{\substack{i=1 \\:(i, \cdot) \in S}}^{n} \alpha_{i}^{*}-\sum_{\substack{k=1 \\:(\cdot, k) \in S}}^{n} \beta_{k}^{*}\right.
$$

Pricing subproblem

$$
\bar{c}_{S}^{j}=c_{S}^{j}+\gamma_{j}^{*}+\delta^{*}+\sum_{k=2}^{n} \sum_{\hat{\imath}=1}^{n} \sum_{\hat{\jmath}=1}^{n}\left(\sum_{\substack{(i, k) \in S \\: C_{\hat{\imath} \geq} \geq C_{i j}}} \epsilon_{k}^{*}+\sum_{\substack{(i, k-1) \in S \\: C_{\hat{i}} \leq C_{i j}}} \epsilon_{k}^{*}-\sum_{i=1}^{n} \alpha_{i}^{*}-\sum_{i(i, \cdot) \in S}^{n} \beta_{k}^{*}\right.
$$

Pricing subproblem

$$
\begin{aligned}
\bar{c}_{S} & =c_{S}+\gamma_{j}^{*}+\delta^{*}+\sum_{k=2}^{n} \sum_{\hat{\imath}=1}^{n} \sum_{\hat{\jmath}=1}^{n}\left(\sum_{\substack{(i, k) \in S \\
: C_{\hat{\imath} \geq} \geq C_{i j}}} \epsilon_{k}^{*}+\sum_{\substack{(i, k-1) \in S \\
: C_{i j} \leq C_{i j}}} \epsilon_{k}^{*}-\sum_{i=1}^{n} \alpha_{i}^{*}-\sum_{i(i, \cdot) \in S}^{n} \beta_{k}^{*}\right. \\
\quad \bar{c}_{S}^{j} & =\sum_{\substack{k=1 \\
(i, k) \in S}} d_{i j}^{k}+\gamma_{j}+\delta
\end{aligned}
$$

Pricing subproblem

$$
\begin{aligned}
& \bar{c}_{S}^{j}=c_{S}^{j}+\gamma_{j}^{*}+\delta^{*}+\sum_{k=2}^{n} \sum_{\hat{\imath}=1}^{n} \sum_{\hat{\jmath}=1}^{n}\left(\sum_{\substack{(i, k) \in S \\
: C_{\hat{\jmath}} \geq C_{i j}}} \epsilon_{k}^{*}+\sum_{\substack{(i, k-1) \in S \\
: C_{i \hat{j}} \leq C_{i j}}} \epsilon_{k}^{*}-\sum_{\substack{i=1 \\
:(i, \cdot) \in S}}^{n} \alpha_{i}^{*}-\sum_{\substack{k=1 \\
:(\cdot, k) \in S}}^{n} \beta_{k}^{*} .\right. \\
& \bar{c}_{S}^{j}=\sum_{(i, k) \in S} d_{i j}^{k}+\gamma_{j}+\delta \\
& D_{j}=\left(\begin{array}{cccc}
d_{i_{1} j}^{1} & d_{i_{1} j}^{2} & \cdots & d_{i_{1} j}^{n} \\
d_{i_{2} j}^{1} & & & \\
\vdots & & \ddots & \\
d_{i_{n} j}^{1} & & & d_{i_{n} j}^{n}
\end{array}\right)
\end{aligned}
$$

where $C_{i_{1} j} \leq C_{i_{2} j} \leq \cdots \leq C_{i_{n} j}$

Pricing subproblem

$$
\begin{aligned}
& \bar{c}_{S}^{j}=c_{S}^{j}+\gamma_{j}^{*}+\delta^{*}+\sum_{k=2}^{n} \sum_{\hat{\imath}=1}^{n} \sum_{\hat{\jmath}=1}^{n}\left(\sum_{\substack{(i, k) \in S \\
: C_{\hat{\jmath}} \geq C_{i j}}} \epsilon_{k}^{*}+\sum_{\substack{(i, k-1) \in S \\
: C_{i \hat{j}} \leq C_{i j}}} \epsilon_{k}^{*}-\sum_{\substack{i=1 \\
:(i, \cdot) \in S}}^{n} \alpha_{i}^{*}-\sum_{\substack{k=1 \\
:(\cdot, k) \in S}}^{n} \beta_{k}^{*} .\right. \\
& \bar{c}_{S}^{j}=\sum_{(i, k) \in S} d_{i j}^{k}+\gamma_{j}+\delta \\
& D_{j}=\left(\begin{array}{cccc}
d_{i_{1} j}^{1} & d_{i_{1} j}^{2} & \cdots & d_{i_{1} j}^{n} \\
d_{i_{2} j}^{1} & & & \\
\vdots & & \ddots & \\
d_{i_{n} j}^{1} & & & d_{i_{n} j}^{n}
\end{array}\right)
\end{aligned}
$$

where $C_{i_{1} j} \leq C_{i_{2} j} \leq \cdots \leq C_{i_{n} j}$. Dynamic programming: $O\left(n^{3}\right)$!!!

Lower bound

$$
\begin{align*}
z_{R e L R M P}+p \cdot \min _{j \in I, S \in \mathcal{S}(j)} \bar{\tau}_{S}^{j} & \leq z_{L R M P} \leq z_{R e L R M P} \tag{1}\\
z_{R e L R M P}+\sum_{j \in I} \min _{S \in \mathcal{S}(j)} \bar{c}_{S}^{j} & \leq z_{L R M P} \leq z_{R e L R M P} \tag{2}
\end{align*}
$$

where $z_{\text {ReLRMP }}$ and $z_{\text {LRMP }}$ denote the optimal value of ReLRMP and $L R M P$ respectively.
(1) MILP for DOMP

- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation

Branching on original variables
 $$
x_{i j}^{k}=\sum_{S \ni(i, k)} y_{S}^{j}
$$

Proposition

$$
\text { If } x_{i j}^{k} \in\{0,1\} \text { for } i, j, k=1, \ldots, n, \text { then } y_{s}^{j} \in\{0,1\} \text {. }
$$

Branching on original variables
 $$
x_{i j}^{k}=\sum_{S \ni(i, k)} y_{S}^{j}
$$

Proposition

$$
\text { If } x_{i j}^{k} \in\{0,1\} \text { for } i, j, k=1, \ldots, n \text {, then } y_{S}^{j} \in\{0,1\}
$$

$$
0<\sum_{S \ni(i, k)} y_{S}^{j}<1 \text { for some } i, j, k=1, \ldots, n ?
$$

Branching on original variables
 $$
x_{i j}^{k}=\sum_{S \ni(i, k)} y_{S}^{j}
$$

Proposition

$$
\text { If } x_{i j}^{k} \in\{0,1\} \text { for } i, j, k=1, \ldots, n \text {, then } y_{s}^{j} \in\{0,1\} \text {. }
$$

$$
0<\sum_{S \ni(i, k)} y_{S}^{j}<1 \text { for some } i, j, k=1, \ldots, n ?
$$

ZERO-branch

ONE-branch

$$
\sum_{S \ni(i, k)} y_{S}^{j}=0
$$

$$
\sum_{S \ni(i, k)} y_{S}^{j}=1
$$

(1) MILP for DOMP

- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation

Order constraints

$$
\sum_{\substack{S \ni(i, k) \\ C_{i j} \leq C_{i j}}} y_{S}^{\hat{\jmath}}+\sum_{\substack{S \ni(i, k-1) \\: C_{i} \geq C_{i j}}} y_{S}^{\hat{\jmath}} \leq 1, i, j=1, \ldots, n, k=2, \ldots, n . \quad\left(\zeta_{i j}^{k}\right)
$$

Order constraints

$$
\sum_{\substack{S \ni(\hat{\imath}, k) \\: C_{\overparen{i j}} \leq C_{i j}}} y_{S}^{\hat{\jmath}}+\sum_{\substack{S \ni(\hat{1}, k-1) \\: C_{\hat{\imath}} \geq C_{i j}}} y_{S}^{\hat{\jmath}} \leq 1, i, j=1, \ldots, n, k=2, \ldots, n . \quad\left(\zeta_{i j}^{k}\right)
$$

Figure: Number of solved problems per time using different cut strategies.

Remarks

Achievements

\checkmark Set partitioning formulation with sets of pairs.
\checkmark Cutting planes added to the model.
围 S. Deleplanque, M. Labbé, D. Ponce, and J.Puerto A Branch-Price-and-Cut Procedure for the Discrete Ordered Median Problem. INFORMS Journal on Computing, 32 (2020) 582-599
(1) MILP for DOMP

- Problem definition and notation
- Motivations
- Formulations
(2) A Branch-and-Cut-and-Price procedure for DOMP
- Set partitioning formulation for DOMP
- Master Problem
- Restricted relaxed MP and Pricing problem
- Branching
- Valid inequalities
(3) Convergence of column generation

Du Merle, Villeneuve, Desrosiers, and Hansen (1999)

The classical column generation algorithm performs poorly, as degeneracy occurs at two levels: when solving the current linear program and also during several successive major iterations for which the added columns do not suffice to modify the objective function value.

Pessoa, Uchoa, Poggi, and Rodrigues (2010)

Du Merle et al. (1999) proposed a dual stabilization technique to alleviate the convergence difficulties in column generation, based on a simple observation: the columns that will be part of the final solution are only generated in the last iterations, when the dual variables are already close to their optimal values.

Algorithm 1 Stabilization in ReLRMP.

```
    1: \(\Delta=\Delta_{\text {init }} ; \bar{\pi}=0 ; L B(\bar{\pi})=0 ; G A P=1\);
    while \(G A P>\epsilon\) do
        Solve ReLRMP, obtaining \(z_{\text {ReLRMP }}\) and \(\pi_{\text {ReLRMP }} ; \pi_{s t}=\Delta \pi_{\text {ReLRMP }}+(1-\Delta) \bar{\pi}\);
        for \(j=1, \ldots, n\) do
        Solve the pricing using \(\pi_{s t}\), obtaining \(S\);
        if \(\bar{c}_{S}^{j}\left(\pi_{\text {ReLRMP }}\right)<0\) then Add variable \(y_{S}^{j}\); end if
        end for
    \(L B\left(\pi_{s t}\right)=z\left(\pi_{s t}^{t}\right)+\sum \quad \bar{c}_{S}^{j}\left(\pi_{s t}\right) ;\)
                        \(s, j: y_{s}^{j}\) added
    if At least one variable was added then
        if \(L B\left(\pi_{s t}\right)>L B(\bar{\pi})\) then
            \(\bar{\pi}=\pi_{s t} ; L B(\bar{\pi})=L B\left(\pi_{s t}\right) ;\)
        end if
    else
        \(\bar{\pi}=\pi_{\text {st }} ; L B(\bar{\pi})=L B\left(\pi_{s t}\right) ;\)
    end if
    \(G A P=\frac{z_{\text {ReLRMP }}-L B(\bar{\pi})}{z_{\text {ReLRMP }}}\);
    if \(G A P<1-\Delta\) then \(\Delta=1-G A P\); end if
    end while
```


Figure: Performance profile graph with different combination of $\Delta_{\text {init }}$, \#solved instances / n.

Branch \& Price

Branch \& Price

國 V．Blanco，A．Japón，D．Ponce，and J．Puerto
On the multisource hyperplanes location problem to fitting set of points．
Computers and Operations Research， 128 （2021） 105124
囯 S．Benati，D．Ponce，J．Puerto，and A．M．Rodríguez－Chía A branch－and－price procedure for clustering data that are graph connected．
European Journal of Operational Research，（2021）
目 V．Blanco，R．Gázquez，D．Ponce，and J．Puerto A Branch－and－Price approach for the Continuous Multifacility Monotone Ordered Median Problem．
Almost submitted

n	Heurvar	Iterations		Vars	Time
		Exact	Total		
20	FALSE	13	13	2189	64.92
	TRUE	4	23	2219	18.02
30	FALSE	15	15	2827	1034.97
	TRUE	3	60	2856	191.84
40	FALSE	50	50	4713	9086.33
	TRUE	13	136	4511	2229.21

Table: Average number of pricer iterations, variables and time using the combined heuristic and exact pricers or only using the exact pricer

MUCHAS GRACIAS POR SU ATENCIÓN

