On k-sum optimization

J. Puerto, A. Tamir and A.M. Rodríguez-Chía

Advances on logistics and transportation problems on complex networks: Evaluation and conclusions Fuengirola, June 23-26.

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola)

On *k*-sum optimization

Motivación:

Arie Tamir. Department of Statistics and Operations Research. School of Mathematical Sciences. Tel Aviv University.

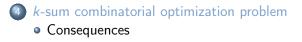
Motivación:

Arie Tamir. Department of Statistics and Operations Research. School of Mathematical Sciences. Tel Aviv University.

 J. Puerto, A.M. Rodríguez-Chía, A. Tamir. Revisiting k-sum Optimization. Mathematical Programming, 165(2):579-604, 2017.

k-sum optimization

• Consequences



Let *E* be a finite set of elements, where each $e \in E$ is associated with a pair of real weights (c_e, d_e) , where $d_e \ge 0$. Let *S* be a collection of subsets of *E*.

• The MINSUM problem is to find a subset $X \in S$ of minimum total weight, $c(X) + d(X) = \sum_{e \in X} (c_e + d_e)$.

Let *E* be a finite set of elements, where each $e \in E$ is associated with a pair of real weights (c_e, d_e) , where $d_e \ge 0$. Let *S* be a collection of subsets of *E*.

- The MINSUM problem is to find a subset $X \in S$ of minimum total weight, $c(X) + d(X) = \sum_{e \in X} (c_e + d_e)$.
- The MINMAX problem with respect to the *d* weights is to find a subset X ∈ S minimizing the sum of c(X) and the maximum element in {d_e : e ∈ X}.

Let *E* be a finite set of elements, where each $e \in E$ is associated with a pair of real weights (c_e, d_e) , where $d_e \ge 0$. Let *S* be a collection of subsets of *E*.

- The MINSUM problem is to find a subset $X \in S$ of minimum total weight, $c(X) + d(X) = \sum_{e \in X} (c_e + d_e)$.
- The MINMAX problem with respect to the *d* weights is to find a subset X ∈ S minimizing the sum of c(X) and the maximum element in {d_e : e ∈ X}.
- The *k*-SUM/*k*-CENTRUM problem with respect to the *d* weights is to find a subset $X \in S$ minimizing the sum of c(X) and the sum of the *k*-largest elements in the set $\{d_e : e \in X\}$.

Let *E* be a finite set of elements, where each $e \in E$ is associated with a pair of real weights (c_e, d_e) , where $d_e \ge 0$. Let *S* be a collection of subsets of *E*.

- The MINSUM problem is to find a subset $X \in S$ of minimum total weight, $c(X) + d(X) = \sum_{e \in X} (c_e + d_e)$.
- The MINMAX problem with respect to the *d* weights is to find a subset X ∈ S minimizing the sum of c(X) and the maximum element in {d_e : e ∈ X}.
- The *k*-SUM/*k*-CENTRUM problem with respect to the *d* weights is to find a subset $X \in S$ minimizing the sum of c(X) and the sum of the *k*-largest elements in the set $\{d_e : e \in X\}$.

Let *E* be a finite set of elements, where each $e \in E$ is associated with a pair of real weights (c_e, d_e) , where $d_e \ge 0$. Let *S* be a collection of subsets of *E*.

- The MINSUM problem is to find a subset $X \in S$ of minimum total weight, $c(X) + d(X) = \sum_{e \in X} (c_e + d_e)$.
- The MINMAX problem with respect to the *d* weights is to find a subset X ∈ S minimizing the sum of c(X) and the maximum element in {d_e : e ∈ X}.
- The *k*-SUM/*k*-CENTRUM problem with respect to the *d* weights is to find a subset $X \in S$ minimizing the sum of c(X) and the sum of the *k*-largest elements in the set $\{d_e : e \in X\}$.

Examples

assignment, shortest paths, matching, ...

Background:

- The name: Gupta and Punnen 1990.
- k-centrum problem on networks (Slater 1978, 1981).
- Partial sum problems (Gupta and Punnen ORL 1990, Punnen JORS 1992, Punnen and Aneja ORL 1996).
- *k*-centrum multifacility location (Tamir, DAM 2001; Tamir, Puerto, Perez, DAM 2002; Kalcsics, Nickel, Puerto , Networks 2003)
- Continuous k-centrum (Ogryczak, Tamir IFL 2003)
- Robust optimization (Bertsimas and Sim, Math. Prog. 2003)
- Locating k-centrum subtrees (strategical and tactical) (Puerto and Tamir, Math. Prog. 2005)
- The k-sum Shortest Path Problem, (Garfinkel, Fernandez, Lowe TOP, 2006)

Goal:

- To develop a new methodology applicable to the optimization of k-sum objective functions in great generality,
- To obtain new algorithms and complexity results for a number of problems, improving or getting similar bounds, but using the same approach in all cases.

Goal:

- To develop a new methodology applicable to the optimization of k-sum objective functions in great generality,
- To obtain new algorithms and complexity results for a number of problems, improving or getting similar bounds, but using the same approach in all cases.

General Idea:

Our methodology consists of solving a k-sum optimization problem by solving a polynomial number of minisum problems in the same or slightly modified feasible region.

Achievements in this paper...

Problem	Best known complexity	Our complexity
k-sum minimum cost network flow problem	Approximate	Strongly
	alg., Bertsimas & Sim 2003	polynomial
k-centrum path problem on trees	Unknown	$O(n^2 \log n)$
Continuous tactical k-centrum subree problem on trees	$O(n^{3} + n^{2,5}I)$, Puerto, Tamir 2005	$O(n \log n)$
Continuous tactical k-centrum path problem on trees	Unkonwn	$O(n(n\alpha(n) \log n)^2)$
Continuous strategic <i>k</i> -centrum subtree problem on trees Single facility <i>k</i> -centrum problem:	<i>O</i> (<i>kn</i> ⁷), Puerto, Tamir 2005	$O(n \log n)$
Undirected general networks	O(nm log n), Kalcsics et al. 2002	$O(mn^2 \log n)$
Continuous ℓ_1 -norm	<i>O</i> (<i>n</i>), Tamir 2003	$O(n \log n)$
k-sum Chinese Postman Problem	Unknown	Strongly polyn.
The k-centrum p-facility problem on trees	$O(pk^2n^2)$, Kalcsics 2011	0(pn ⁴)
The k-centrum p-facility problem on paths	Unknown	O(pn ³)
The discrete tactical k-centrum path problem on trees	Unknown	$O(n^3 \log n)$
The discrete strategic k-centrum subtree problem on trees	<i>O</i> (<i>kn</i> ³), Puerto & Tamir 2005	O(n ³)
The k-sum shortest path problem	$O(n^2 m^2)$, Garfinkel et al. 2006	$O(m^2 + mn \log n)$
The continuous multifacility OMP $\lambda = (a, , a, b, , b)$	$O(pn^9 s^2)$, Kalcsics et al 2003	O(pn ⁸ log ⁴ n)
The convex continuous OMP	Unknown	Polynomial

$$Z_X^* := \min_{x \in X} (cx + \max\{\sum_{j \in S_k} d_j x_j : S_k \subseteq \{1, ..., n\}, |S_k| = k\}),$$

where $X = \{x : Ax = b, x \in \mathcal{X}\}, \mathcal{X} = \mathbb{R}^n_+, \mathbb{N}^n, \{0, 1\}^n$.

$$Z_X^* := \min_{x \in X} (cx + \max\{\sum_{j \in S_k} d_j x_j : S_k \subseteq \{1, ..., n\}, |S_k| = k\}),$$

where $X = \{x : Ax = b, x \in \mathcal{X}\}$, $\mathcal{X} = \mathbb{R}^n_+, \mathbb{N}^n, \{0, 1\}^n$.

The inner maximization for a fixed $x \in X$ is $(d \ge 0)$:

$$\max \sum_{j=1}^{n} d_j x_j v_j$$

s.t.
$$\sum_{j=1}^{n} v_j = k$$

 $v_j \in \{0, 1\}, \quad \forall j = 1, \dots, n.$

$$Z_X^* := \min_{x \in X} (cx + \max\{\sum_{j \in S_k} d_j x_j : S_k \subseteq \{1, ..., n\}, |S_k| = k\}),$$

where $X = \{x : Ax = b, x \in \mathcal{X}\}$, $\mathcal{X} = \mathbb{R}^n_+, \mathbb{N}^n, \{0, 1\}^n$.

The inner maximization for a fixed $x \in X$ is $(d \ge 0)$:

$$\begin{array}{ll} \max & \sum_{j=1}^{n} d_j x_j v_j \\ s.t. & \sum_{j=1}^{n} v_j \leq k \\ & 0 \leq v_j \leq 1, \quad \forall j = 1, \dots, n. \end{array}$$

-sum optimization

FORMULATION k-SUM/k-CENTRUM:

$$Z_X^* := \min_{x \in X} (cx + \max\{\sum_{j \in S_k} d_j x_j : S_k \subseteq \{1, ..., n\}, |S_k| = k\}),$$

where $X = \{x : Ax = b, x \in \mathcal{X}\}$, $\mathcal{X} = \mathbb{R}^n_+, \mathbb{N}^n, \{0, 1\}^n$.

The inner maximization for a fixed $x \in X$ is $(d \ge 0)$:

$$\begin{array}{ll} \max & \sum_{j=1}^{n} d_{j} x_{j} v_{j} & \min_{(r,p)} & kr + \sum_{j=1}^{n} p_{j}, \\ s.t. & \sum_{j=1}^{n} v_{j} \leq k & s.t. & p_{j} \geq d_{j} x_{j} - r, j = 1, ..., n, \\ & 0 \leq v_{j} \leq 1, \quad \forall j = 1, ..., n. \end{array}$$

$$Z_X^* := \min_{x \in X} (cx + \max\{\sum_{j \in S_k} d_j x_j : S_k \subseteq \{1, ..., n\}, |S_k| = k\}),$$

where $X = \{x : Ax = b, x \in \mathcal{X}\}, \mathcal{X} = \mathbb{R}_+^n, \mathbb{N}^n, \{0, 1\}^n.$
The inner maximization for
a fixed $x \in X$ is $(d \ge 0)$:
The problem above is:
a fixed $x \in X$ is $(d \ge 0)$:
$$Z_X^* = \min_{r \ge 0} Z_X(r),$$

max
$$\sum_{j=1}^n d_j x_j v_j$$
$$Z_X(r) = kr + \min_{(x,p)} (cx + \sum_{j=1}^n p_j),$$

s.t.
$$\sum_{j=1}^n v_j \le k$$
$$p_j \ge d_j x_j - r, j = 1, ..., n,$$

 $0 \le v_j \le 1, \quad \forall j = 1, ..., n.$

-sum optimization

FORMULATION *k*-SUM/*k*-CENTRUM:

$$Z_X^* := \min_{x \in X} (cx + \max\{\sum_{j \in S_k} d_j x_j : S_k \subseteq \{1, ..., n\}, |S_k| = k\}),$$
where $X = \{x : Ax = b, x \in \mathcal{X}\}, \mathcal{X} = \mathbb{R}^n_+, \mathbb{N}^n, \{0, 1\}^n$.
The inner maximization for
a fixed $x \in X$ is $(d \ge 0)$:

$$Z_X^* = \min_{r \ge 0} Z_X(r),$$
max

$$\sum_{j=1}^n d_j x_j v_j$$
 $S.t.$

$$\sum_{j=1}^n v_j \le k$$
 $p_j \ge d_j x_j - r, j = 1, ..., n,$
 $p_j \ge 0, j = 1, ..., n,$
 $p_j \ge 0, j = 1, ..., n,$
 $Z_X(r) = kr + \min_{x \in X} \left(cx + \sum_{j=1}^n \max\{d_j x_j - r, 0\} \right)$

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola)

On k-sum optimization

I. X a polytope in \mathbb{R}^r

$$Z_X(r) = kr + \min_{x \in X} \left(cx + \sum_{j=1}^n \max\{d_j x_j - r, 0\} \right)$$

$$\min_{p,x} \left\{ cx + \sum_{j=1}^{n} p_j \right\} \qquad \max_{\alpha,\beta} \left\{ -r \sum_{j=1}^{n} \alpha_j + \sum_{i=1}^{m} b_i \beta_i \right\}$$

$$s.t. \quad p_j - d_j x_j \ge -r, \ j = 1, \dots, n, \qquad s.t. \quad \alpha_j \ge 1, \quad j = 1, \dots, n,$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \ i = 1, \dots, m, \qquad -\alpha_j d_j + \sum_{i=1}^{m} a_{ij} \beta_i \ge c_j, \ \forall j.$$

$$x_j, p_j \ge 0, \quad j = 1, \dots, n.$$

I. X a polytope in \mathbb{R}^n

Let $X_L := \{x : Ax = b, x \ge 0\}$ be the region X for this particular case

Theorem

Z_{XL}(r) is a piecewise linear convex function. Use duality from the previous reformulation!

Suppose that there is a combinatorial algorithm of O(T(n, m)) complexity to compute Z_{XL}(r) for any given r. Then, Z^{*}_{XL} can be computed in O((T(n, m))²) time. Moreover, if T(n, m) = O(n) then Z^{*}_{XL} can be computed in O(n log n) time. Use Megiddo's parametric approach on Z_{XL}(r).

• *k*-sum optimization

• Consequences

Consequences

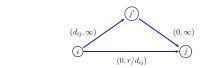
J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola)

CONSEQUENCES:

1.1 Robust minimum cost network flow problem in Bertismas and Sim (2003). (Only approximately solved!)

$$Z_X(r) = kr + \min_{x \in X} \left(cx + \sum_{i,j=1}^n \max\{d_{ij}x_{ij} - r, 0\} \right)$$

$$Z_X(r) = kr + \min_{x \in X} \left(cx + \sum_{i,j=1}^n \max\{d_{ij}(x_{ij} - r/d_{ij}), 0\} \right)$$



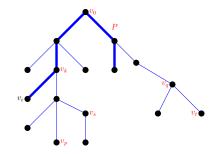
Theorem

k-sum flow is strongly polynomial solvable.

$$T(n,m) = O((m \log n)(m + n \log n)).$$

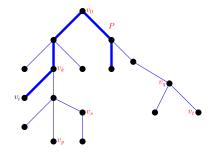
 d_{ii}

I.2 The *k*-centrum path problem on trees.



I.2 The *k*-centrum path problem on trees.

A path containing v_0 minimizing the weighted sum of distances can be found in O(n) time, Averbakh and Berman (1999).



I.2 The *k*-centrum path problem on trees.

A path containing v_0 minimizing the weighted sum of distances can be found in O(n) time, Averbakh and Berman (1999).

Using the reformulation

$$\begin{array}{ll} \min & \sum_{k=1}^{n-1} w_k \sum_{j:e_j \in P[v_k,v_0)} \ell_j(1-x_j) \\ s.t. & \sum_{k \in ES(e_i)} x_k \le x_i, \quad \forall i = 1, \dots, n-1 \\ & 0 < x_i < 1, \quad \forall j = 1, \dots, n-1. \end{array}$$

Theorem

The k-centrum path problem on a tree can be solved in $O(n^2 \log n)$ time.

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola)

I.3 The continuous tactical *k*-centrum subtree/path problem on trees Median version of the problem:

$$\min_{Y\subseteq A(T)} \quad \sum_{i=1}^{n} w_i d(v_i, Y)$$

s.t. $L(Y) \leq L.$

Median subtree version: O(n), Tamir 1998.

k-centrum subtree: Puerto and Tamir (2005): $O(n^3 + n^{2,5}I))$ where *I* is the total number of bits needed to represent the input. Nestedness property.

I.3 The continuous tactical *k*-centrum subtree/path problem on trees Median version of the problem:

$$\min_{Y\subseteq A(T)} \quad \sum_{i=1}^{n} w_i d(v_i, Y)$$

s.t. $L(Y) \leq L.$

Median subtree version: O(n), Tamir 1998.

k-centrum subtree: Puerto and Tamir (2005): $O(n^3 + n^{2,5}I))$ where *I* is the total number of bits needed to represent the input. Nestedness property.

Theorem

The continuous tactical k-centrum subtree problem on trees can be solved in O(n log n) time.

I.3 The continuous tactical *k*-centrum subtree/path problem on trees Median version of the problem:

$$\min_{Y \subseteq A(T)} \sum_{i=1}^{n} w_i d(v_i, Y)$$

s.t. $L(Y) \leq L.$

Median subtree version: O(n), Tamir 1998. Path Median: $O(n\alpha(n) \log n)$, Alstrup et al. 1997.

k-centrum subtree: Puerto and Tamir (2005): $O(n^3 + n^{2,5}I))$ where *I* is the total number of bits needed to represent the input. Nestedness property.

Theorem

- The continuous tactical k-centrum subtree problem on trees can be solved in O(n log n) time.
- The continuous tactical k-centrum path problem on trees can be solved in O(n(nα(n) log n)²) time, where α(n) is the inverse of the Ackermann function.)

I.4 The continuous strategic *k*-centrum subtree problem on trees Median version of the problem:

$$\min_{Y\subseteq A(T)} \sum_{i=1}^{n} w_i d(v_i, Y) + \delta L(Y), \text{ with } \delta \in \mathbb{R}.$$

Median subtree: O(n), Kim et al. (1996). k centrum subtree: $O(kn^7)$, Puerto y Tamir (2011). (Nestedness property).

Theorem

The continuous strategic k-centrum subtree problem on trees is solvable in $O(n \log n)$ time.

• *k*-sum optimization

Consequences

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola)

II. k-sum integer optimization

$$X \longrightarrow X_I = \{x \in \mathbb{R}^n : Ax = b, x_j \in \{0, 1, 2, \ldots\}, j = 1, \ldots, n\}.$$

Some negative results

Unlike the linear case, even for the binary case, the function $Z_{X_l}(r)$ is not generally convex, and is not generally unimodal.

II. k-sum integer optimization

$$X \longrightarrow X_I = \{x \in \mathbb{R}^n : Ax = b, x_j \in \{0, 1, 2, \ldots\}, j = 1, \ldots, n\}.$$

Some negative results

Unlike the linear case, even for the binary case, the function $Z_{X_l}(r)$ is not generally convex, and is not generally unimodal.

Positive results

If all the integer variables are bounded by M = M(n, m), where M(n, m) is a polynomial in m, n, the integer model is polynomially solvable.

$$Z_{X_l}(r) = kr + \min_{x \in X_l} \Big(cx + \sum_{j=1}^n \max\{d_j x_j - r, 0\} \Big).$$

 $\mathcal{I} = [pd_s, qd_t] \text{ con } p, q \in \{0, \ldots, M\} \text{ y } s, t \in \{1, \ldots, n\}.$

$$Z_{X_l}(r) = kr + \min_{x \in X_l} \left(cx + \sum_{\substack{j=1 \\ x_j > h_j}}^n (d_j x_j - r) \right) \text{ is concave for } r \in \mathcal{I}.$$

Hence, we may conclude that without loss of generality $r^* \in \{pd_s, qd_t\}$.

Theorem

Consider the k-sum integer optimization problem $Z_{X_l}^*$, and assume that the matrix A is totally unimodular. Suppose further that all integer variables are bounded by some polynomial M(n, m). Then, $Z_{X_l}^*$ can be computed in strongly polynomial time.

Proof. $Z_{X_l}^*$ can be computed by evaluating $Z_{X_l}(r)$ for O(nM(n, m)) values of the parameter r. For a fixed value of r, solve:

min
$$cx + \sum_{j=1}^{n} \max\{d_j x_j - r, 0\},$$

s.t. $x \in X_I.$

The above can be solved in strongly polynomial time by substituting $x_j = u_j + v_j + z_j$, j = 1, ..., n, and solving the respective integer program, defined by a totally unimodular system,

$$\begin{array}{ll} \min & c(u+v+z) + \sum_{j=1}^{n} (d_{j}(\lceil r/d_{j} \rceil - r/d_{j})v_{j} + d_{j}z_{j}), \\ s.t. & A(u+v+z) = b, \\ & u_{j} \in \{0,1,...,\lfloor r/d_{j} \rfloor\}, \quad j = 1,...,n, \\ & v_{j} \in \{0,1\}, \quad j = 1,...,n, \\ & z_{i} \in \{0,1,2,...\}, \quad j = 1,...,n. \end{array}$$

Since A is totally unimodular this problem is an LP with $\{0, \pm 1\}$ -matrix and therefore, by Tardos (1985), it is solvable by a strongly polynomial algorithm.

Theorem

Consider the k-sum integer optimization problem $Z_{X_l}^*$, and assume that the matrix A is totally unimodular. Suppose further that all integer variables are bounded by some polynomial M(n, m). Then, $Z_{X_l}^*$ can be computed in strongly polynomial time.

Conjecture Closed:

This result gives a positive answer to a conjecture in Punnen (1992), since it proves that k-sum optimization problem is polynomially solvable assuming that the constraint matrix is totally unimodular and the variables are bounded.

Theorem

Consider the k-sum integer optimization problem $Z_{X_l}^*$, and assume that the matrix A is totally unimodular. Suppose further that all integer variables are bounded by some polynomial M(n, m). Then, $Z_{X_l}^*$ can be computed in strongly polynomial time.

Conjecture Closed:

This result gives a positive answer to a conjecture in Punnen (1992), since it proves that k-sum optimization problem is polynomially solvable assuming that the constraint matrix is totally unimodular and the variables are bounded.

Applications

The *k*-sum Chinese Postman Problem defined on undirected connected graphs and on strongly connected directed graphs is solvable in strongly polynomial time.

• *k*-sum optimization

Consequences

Consequences

III. Combinatorial case: $\mathcal{X} = \{0, 1\}^n$.

Therefore, given a finite set of elements E, where each $e \in E$ is associated with a pair of real weights (c_e, d_e) and X_C be a collection of subsets of E; MINSUM problem is to find a subset $x \in X_C$ of minimum total weight, $c(x) + d(x) = \sum_{e \in x} (c_e + d_e)$.

k-sum optimization problem with respect to the d weights

Find a subset $S \in S$ minimizing the sum of c(S) and the sum of the *k*-largest elements in the set $\{d_e : e \in S\}$.

Theorem (Punnen & Aneja (1996), Bertsimas & Sim (2005))

Suppose that for each real r the MINSUM problem with respect to the weights $(c_e, \max(0, d_e - r))$, $e \in E$, is solvable in T(m) time, where m = |E|. Then, the k-centrum problem with respect to the d weights can be solved in O(m'T(m)) time, where m' is the number of distinct elements in the set $\{d_e : e \in E\}$.

Remark

The supposition that $d_e \ge 0$, for each $e \in E$, which is made in the papers by Punnen & Aneja is used extensively in the proofs. Based on this nonnegativity supposition, they can relax the formulation and introduce the constraint that at most k elements are selected, i.e., $\sum_{e \in E} u_e \le k$. From the proof of the above result we note that it actually holds also for some specific linear functions as stated in the next theorem.

Consider the case of arbitrary $\{d_e\}$. For the general case we need to impose the constraint $\sum_{e \in E} u_e = k$. We will then obtain that the parameter r is unrestricted in sign and we will get the following result for general $\{d_e\}$:

Theorem

Suppose that for any real r the MINSUM problem with respect to the weights $(c_e, \max(0, d_e - r))$, $e \in E$, is solvable in T(m) time, where m = |E|. Then, the k-centrum problem with respect to the d weights can be solved in O(m'T(m) + T'(m)) time, where m' is the number of distinct elements in the set $\{d_e : e \in E\}$, and T'(m) is the time to solve the original MINISUM problem with respect to the weights (c_e, d_e) , $e \in E$.

• *k*-sum optimization

Consequences

Consequences

III.1 The *k*-centrum *p*-facility problem on trees and paths

 $X_{med(p)}$ the lattice points defined by *p*-median polytope.

The *p*-median version: solvable in polynomial time provided that c_{ij} are distances induced by the metric of shortest paths on a tree Hassin and Tamir (2002). (It is NP-hard for a general linear objective function.) *k*-sum: requires to solve O(G) problems of the form:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \max\{d_{ij} - d_{(\ell)}, 0\} x_{ij}$$

$$s.t. \quad x \in X_{med(p)}$$

p-median on a path: O(pn), Hassin and Tamir (1991). *p*-median on a tree: $O(pn^2)$, Tamir (1996).

Teorema

The k-centrum p-facility on a path is solvable in $O(pn^3)$ and on trees is solvable in $O(pn^4)$.

III.1 The *k*-centrum *p*-facility problem on trees and paths

 $X_{med(p)}$ the lattice points defined by *p*-median polytope.

The *p*-median version: solvable in polynomial time provided that c_{ij} are distances induced by the metric of shortest paths on a tree Hassin and Tamir (2002). (It is NP-hard for a general linear objective function.) *k*-sum: requires to solve O(G) problems of the form:

$$\begin{array}{ll} \min & \sum_{i=1}^n \sum_{j=1}^n \max\{d_{ij} - d_{(\ell)}, 0\} x_{ij} \\ s.t. & x \in X_{med(p)} \end{array}$$

p-median on a path: O(pn), Hassin and Tamir (1991). *p*-median on a tree: $O(pn^2)$, Tamir (1996).

Teorema

The k-centrum p-facility on a path is solvable in $O(pn^3)$ and on trees is solvable in $O(pn^4)$.

This improves upon the $O(\min(k, p)kpn^5)$ bound in Tamir (2000) and equals the complexity reported in Kalcsics (2011).

III.2 The discrete tactical *k*-centrum path/subtree problem on trees Discrete median subtree: NP-hard, Hakimi et al. (1993). Discrete median path: $O(n \log n)$, Alstrup et al 1997).

Theorem

The k-centrum version of this model can be solve in $O(n^3 \log n)$ time.

III.2 The discrete tactical *k*-centrum path/subtree problem on trees Discrete median subtree: NP-hard, Hakimi et al. (1993). Discrete median path: $O(n \log n)$, Alstrup et al 1997).

Theorem

The k-centrum version of this model can be solve in $O(n^3 \log n)$ time.

III.3. The discrete strategic *k*-centrum subtree problem on trees Median subtree: O(n), Kim et al. (1996). K-centrum subtree: $O(kn^3)$ (Puerto & Tamir 2005).

Teorema

The complexity of this problem is $O(n^3)$ time.

III.4 The k-centrum shortest path problem

K-centrum can be solved in $O(n^2m^2)$ time provided that any simple s - t-path there are at least k arcs, otherwise this problem is NP-hard, see Garfinkel, Fernández, Lowe (2006).

Theorem

We improve the bound to $O(m^2 + mn \log n)$ time.

Corollary:

The *k*-centrum minimum weight matching problem is also solvable in polynomial time applying the above theorem.