
On k-sum optimization

J. Puerto, A. Tamir and A.M. Rodríguez-Chía

Advances on logistics and transportation problems on complex
networks: Evaluation and conclusions

Fuengirola, June 23-26.

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola) On k-sum optimization



Motivación:

1 Arie Tamir. Department of Statistics and Operations Research. School
of Mathematical Sciences. Tel Aviv University.

2 J. Puerto, A.M. Rodríguez-Chía, A. Tamir. Revisiting k-sum
Optimization. Mathematical Programming, 165(2):579-604, 2017.

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola) On k-sum optimization



Motivación:

1 Arie Tamir. Department of Statistics and Operations Research. School
of Mathematical Sciences. Tel Aviv University.

2 J. Puerto, A.M. Rodríguez-Chía, A. Tamir. Revisiting k-sum
Optimization. Mathematical Programming, 165(2):579-604, 2017.

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola) On k-sum optimization



1 Introduction
k-sum optimization

2 Linear k-sum optimization
Consequences

3 k-sum integer optimization
Consequences

4 k-sum combinatorial optimization problem
Consequences

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola) On k-sum optimization



Introduction

The raw problem:

Let E be a finite set of elements, where each e ∈ E is associated with a
pair of real weights (ce , de), where de ≥ 0. Let S be a collection of subsets
of E .

The MINSUM problem is to find a subset X ∈ S of minimum total
weight, c(X ) + d(X ) =

∑
e∈X (ce + de).

The MINMAX problem with respect to the d weights is to find a
subset X ∈ S minimizing the sum of c(X ) and the maximum element
in {de : e ∈ X}.
The k-SUM/k-CENTRUM problem with respect to the d weights is to
find a subset X ∈ S minimizing the sum of c(X ) and the sum of the
k-largest elements in the set {de : e ∈ X}.

Examples
assignment, shortest paths, matching, ...
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Introduction

Background:
The name: Gupta and Punnen 1990.
k-centrum problem on networks (Slater 1978, 1981).
Partial sum problems (Gupta and Punnen ORL 1990, Punnen JORS
1992, Punnen and Aneja ORL 1996).
k-centrum multifacility location (Tamir, DAM 2001; Tamir, Puerto,
Perez, DAM 2002; Kalcsics, Nickel, Puerto , Networks 2003)
Continuous k-centrum (Ogryczak, Tamir IFL 2003)
Robust optimization (Bertsimas and Sim, Math. Prog. 2003)
Locating k-centrum subtrees (strategical and tactical) (Puerto and
Tamir, Math. Prog. 2005)
The k-sum Shortest Path Problem, (Garfinkel, Fernandez, Lowe TOP,
2006)
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Introduction

Goal:
1 To develop a new methodology applicable to the optimization of

k-sum objective functions in great generality,
2 To obtain new algorithms and complexity results for a number of

problems, improving or getting similar bounds, but using the same
approach in all cases.

General Idea:
Our methodology consists of solving a k-sum optimization problem by
solving a polynomial number of minisum problems in the same or slightly
modified feasible region.
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Achievements in this paper...

Problem Best known complexity Our complexity
k-sum minimum cost network flow problem Approximate Strongly

alg., Bertsimas & Sim 2003 polynomial
k-centrum path problem on trees Unknown O(n2 log n)

Continuous tactical k-centrum subree problem on trees O(n3 + n2,5I ),Puerto, Tamir 2005 O(n log n)

Continuous tactical k-centrum path problem on trees Unkonwn O(n(nα(n) log n)2)
Continuous strategic k-centrum subtree problem on trees O(kn7), Puerto, Tamir 2005 O(n log n)
Single facility k-centrum problem:

Undirected general networks O(nm log n), Kalcsics et al. 2002 O(mn2 log n)
Continuous `1-norm O(n), Tamir 2003 O(n log n)

k-sum Chinese Postman Problem Unknown Strongly polyn.
The k-centrum p-facility problem on trees O(pk2n2), Kalcsics 2011 O(pn4)
The k-centrum p-facility problem on paths Unknown O(pn3)
The discrete tactical k-centrum path problem on trees Unknown O(n3 log n)

The discrete strategic k-centrum subtree problem on trees O(kn3), Puerto & Tamir 2005 O(n3)
The k-sum shortest path problem O(n2m2), Garfinkel et al. 2006 O(m2 + mn log n)

The continuous multifacility OMP λ = (a, s. . ., a, b, n−s. . ., b) O(pn9s2), Kalcsics et al 2003 O(pn8 log4 n)
The convex continuous OMP Unknown Polynomial



Introduction k-sum optimization

FORMULATION k-SUM/k-CENTRUM:

Z ∗X := min
x∈X

(cx +max{
∑
j∈Sk

djxj : Sk ⊆ {1, ...., n}, |Sk | = k}),

where X = {x : Ax = b, x ∈ X}, X = Rn
+,Nn, {0, 1}n.

The inner maximization for
a fixed x ∈ X is (d ≥ 0):

max
n∑

j=1

djxjvj

s.t.

n∑
j=1

vj = k
n∑

j=1

vj ≤ k

vj ∈ {0, 1}, ∀j = 1, . . . , n.0 ≤ vj ≤ 1, ∀j = 1, . . . , n.

The problem above is:

Z ∗X = min
r≥0

ZX (r),

ZX (r) = kr + min
(x ,p)

(cx +
n∑

j=1

pj),min(r ,p) kr +
n∑

j=1

pj ,

s.t. pj ≥ djxj − r , j = 1, ..., n,
pj ≥ 0, j = 1, ..., n,

x ∈ X .

ZX (r) = kr +min
x∈X

cx +
n∑

j=1

max{djxj − r , 0}


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Linear k-sum optimization

I. X a polytope in Rn

ZX (r) = kr +min
x∈X

cx +
n∑

j=1

max{djxj − r , 0}



minp,x

cx +
n∑

j=1

pj


s.t. pj − djxj ≥ −r , j = 1, . . . , n,

n∑
j=1

aijxj = bi , i = 1, . . . ,m,

xj , pj ≥ 0, j = 1, . . . , n.

maxα,β

−r
n∑

j=1

αj +
m∑
i=1

biβi


s.t. αj ≥ 1, j = 1, . . . , n,

−αjdj +
m∑
i=1

aijβi ≥ cj , ∀j .
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Linear k-sum optimization

I. X a polytope in Rn

Let XL := {x : Ax = b, x ≥ 0} be the region X for this particular case

Theorem

1 ZXL
(r) is a piecewise linear convex function.

Use duality from the previous reformulation!
2 Suppose that there is a combinatorial algorithm of O(T (n,m))

complexity to compute ZXL
(r) for any given r . Then, Z ∗XL

can be
computed in O((T (n,m))2) time. Moreover, if T (n,m) = O(n) then
Z ∗XL

can be computed in O(n log n) time.
Use Megiddo’s parametric approach on ZXL

(r).!
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Linear k-sum optimization Consequences
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Linear k-sum optimization Consequences

CONSEQUENCES:
I.1 Robust minimum cost network flow problem in Bertismas and Sim
(2003). (Only approximately solved!)

ZX (r) = kr +min
x∈X

(
cx +

n∑
i ,j=1

max{dijxij − r , 0}
)

ZX (r) = kr +min
x∈X

(
cx +

n∑
i ,j=1

max{dij(xij − r/dij), 0}
)

i j i j

j′

dij

(dij,∞) (0,∞)

(0, r/dij)

1

Theorem
k-sum flow is strongly polynomial solvable.

T (n,m) = O((m log n)(m + n log n)).
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Linear k-sum optimization Consequences

I.2 The k-centrum path problem on trees.

A path containing v0 minimizing the
weighted sum of distances can be
found in O(n) time, Averbakh and
Berman (1999).

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

vq

vk

v0

vp

P

vs vt

vi

Using the reformulation

min
n−1∑
k=1

wk

∑
j :ej∈P[vk ,v0)

`j(1− xj)

s.t.
∑

k∈ES(ei )
xk ≤ xi , ∀i = 1, . . . , n − 1

0 ≤ xj ≤ 1, ∀j = 1, . . . , n − 1.

Theorem
The k-centrum path problem on a tree can be solved in O(n2 log n) time.

Solves also discrete version: property of k-centrum path
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Linear k-sum optimization Consequences

I.3 The continuous tactical k-centrum subtree/path problem on trees
Median version of the problem:

minY⊆A(T )

n∑
i=1

wid(vi ,Y )

s.t. L(Y ) ≤ L.

Median subtree version: O(n), Tamir 1998.

Path Median: O(nα(n) log n), Alstrup et al. 1997.

k-centrum subtree: Puerto and Tamir (2005): O(n3 + n2,5I )) where I is the
total number of bits needed to represent the input. Nestedness property.

Theorem

1 The continuous tactical k-centrum subtree problem on trees can be
solved in O(n log n) time.

2 The continuous tactical k-centrum path problem on trees can be
solved in O(n(nα(n) log n)2) time, where α(n) is the inverse of the
Ackermann function.)
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Linear k-sum optimization Consequences

I.4 The continuous strategic k-centrum subtree problem on trees
Median version of the problem:

minY⊆A(T )

n∑
i=1

wid(vi ,Y ) + δL(Y ), with δ ∈ R.

Median subtree: O(n), Kim et al. (1996).
k centrum subtree:O(kn7), Puerto y Tamir (2011). (Nestedness property).

Theorem
The continuous strategic k-centrum subtree problem on trees is solvable in
O(n log n) time.
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k-sum integer optimization

II. k-sum integer optimization

X −→ XI = {x ∈ Rn : Ax = b, xj ∈ {0, 1, 2, ...}, j = 1, ..., n}.

Some negative results
Unlike the linear case, even for the binary case, the function ZXI

(r) is not
generally convex, and is not generally unimodal.

Positive results
If all the integer variables are bounded by M = M(n,m), where M(n,m) is
a polynomial in m, n, the integer model is polynomially solvable.
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k-sum integer optimization

ZXI
(r) = kr + min

x∈XI

(
cx +

n∑
j=1

max{djxj − r , 0}
)
.

I = [pds , qdt ] con p, q ∈ {0, . . . ,M} y s, t ∈ {1, . . . , n}.

| || | | | | | | |

0

pds qdt

M max
j

dj

ZXI
(r) = kr + min

x∈XI

(
cx +

n∑
j=1

xj>hj

(djxj − r)
)
is concave for r ∈ I.

Hence, we may conclude that without loss of generality r∗ ∈ {pds , qdt}.
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k-sum integer optimization

Theorem

Consider the k-sum integer optimization problem Z ∗XI
, and assume that the

matrix A is totally unimodular. Suppose further that all integer variables
are bounded by some polynomial M(n,m). Then, Z ∗XI

can be computed in
strongly polynomial time.

Proof. Z ∗XI
can be computed by evaluating ZXI

(r) for O(nM(n,m)) values
of the parameter r . For a fixed value of r , solve:

min cx +
n∑

j=1

max{djxj − r , 0},

s.t. x ∈ XI .
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k-sum integer optimization

The above can be solved in strongly polynomial time by substituting
xj = uj + vj + zj , j = 1, . . . , n, and solving the respective integer program,
defined by a totally unimodular system,

min c(u + v + z) +
n∑

j=1

(dj(dr/dje − r/dj)vj + djzj),

s.t. A(u + v + z) = b,

uj ∈ {0, 1, ..., br/djc}, j = 1, ..., n,
vj ∈ {0, 1}, j = 1, ..., n,
zj ∈ {0, 1, 2, ...}, j = 1, ..., n.

Since A is totally unimodular this problem is an LP with {0,±1}-matrix
and therefore, by Tardos (1985), it is solvable by a strongly polynomial
algorithm.

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola) On k-sum optimization



k-sum integer optimization

Theorem

Consider the k-sum integer optimization problem Z ∗XI
, and assume that the

matrix A is totally unimodular. Suppose further that all integer variables
are bounded by some polynomial M(n,m). Then, Z ∗XI

can be computed in
strongly polynomial time.

Conjecture Closed:
This result gives a positive answer to a conjecture in Punnen (1992), since
it proves that k-sum optimization problem is polynomially solvable
assuming that the constraint matrix is totally unimodular and the variables
are bounded.

Applications
The k-sum Chinese Postman Problem defined on undirected connected
graphs and on strongly connected directed graphs is solvable in strongly
polynomial time.
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k-sum combinatorial optimization problem

III. Combinatorial case: X = {0, 1}n.

Therefore, given a finite set of elements E , where each e ∈ E is associated
with a pair of real weights (ce , de) and XC be a collection of subsets of E ;
MINSUM problem is to find a subset x ∈ XC of minimum total weight,
c(x) + d(x) =

∑
e∈x(ce + de).

k-sum optimization problem with respect to the d weights
Find a subset S ∈ S minimizing the sum of c(S) and the sum of the
k-largest elements in the set {de : e ∈ S}.

J. Puerto, A. Tamir and A.M Rodríguez-Chía (Fuengirola) On k-sum optimization



k-sum combinatorial optimization problem

Theorem (Punnen & Aneja (1996), Bertsimas & Sim (2005))
Suppose that for each real r the MINSUM problem with respect to the
weights (ce ,max(0, de − r)), e ∈ E , is solvable in T (m) time, where
m = |E |. Then, the k-centrum problem with respect to the d weights can
be solved in O(m′T (m)) time, where m′ is the number of distinct elements
in the set {de : e ∈ E}.

Remark
The supposition that de ≥ 0, for each e ∈ E , which is made in the papers
by Punnen & Aneja is used extensively in the proofs. Based on this
nonnegativity supposition, they can relax the formulation and introduce the
constraint that at most k elements are selected, i.e.,

∑
e∈E ue ≤ k .
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k-sum combinatorial optimization problem

From the proof of the above result we note that it actually holds also for
some specific linear functions as stated in the next theorem.

Consider the case of arbitrary {de}. For the general case we need to impose
the constraint

∑
e∈E ue = k . We will then obtain that the parameter r is

unrestricted in sign and we will get the following result for general {de}:

Theorem
Suppose that for any real r the MINSUM problem with respect to the
weights (ce ,max(0, de − r)), e ∈ E , is solvable in T (m) time, where
m = |E |. Then, the k-centrum problem with respect to the d weights can
be solved in O(m′T (m) + T ′(m)) time, where m′ is the number of distinct
elements in the set {de : e ∈ E}, and T ′(m) is the time to solve the
original MINISUM problem with respect to the weights (ce , de), e ∈ E .
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k-sum combinatorial optimization problem Consequences

III.1 The k-centrum p-facility problem on trees and paths
Xmed(p) the lattice points defined by p-median polytope.
The p-median version: solvable in polynomial time provided that cij are
distances induced by the metric of shortest paths on a tree Hassin and
Tamir (2002). (It is NP-hard for a general linear objective function.)
k-sum: requires to solve O(G ) problems of the form:

min
n∑

i=1

n∑
j=1

max{dij − d(`), 0}xij

s.t. x ∈ Xmed(p)

p-median on a path: O(pn), Hassin and Tamir (1991).
p-median on a tree: O(pn2), Tamir (1996).

Teorema
The k-centrum p-facility on a path is solvable in O(pn3) and on trees is
solvable in O(pn4).

This improves upon the O(min(k , p)kpn5) bound in Tamir (2000) and
equals the complexity reported in Kalcsics (2011).
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k-sum combinatorial optimization problem Consequences

III.2 The discrete tactical k-centrum path/subtree problem on trees
Discrete median subtree: NP-hard, Hakimi et al. (1993).
Discrete median path: O(n log n), Alstrup et al 1997).

Theorem
The k-centrum version of this model can be solve in O(n3 log n) time.

III.3. The discrete strategic k-centrum subtree problem on trees
Median subtree: O(n), Kim et al. (1996).
K-centrum subtree: O(kn3) (Puerto & Tamir 2005).

Teorema
The complexity of this problem is O(n3) time.
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k-sum combinatorial optimization problem Consequences

III.4 The k-centrum shortest path problem
K -centrum can be solved in O(n2m2) time provided that any simple
s − t-path there are at least k arcs, otherwise this problem is NP-hard, see
Garfinkel, Fernández, Lowe (2006).

Theorem
We improve the bound to O(m2 +mn log n) time.

Corollary:
The k-centrum minimum weight matching problem is also solvable in
polynomial time applying the above theorem.
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