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Close Enough TSP

Gulczynski, Heath, Price (2006)

“Historically when a utility company measures the monthly usage of a customer, a
meter reader visits each customer and physically reads the usage value at each site.
Radio frequency identification (RFID) tags at customer locations can remotely provide
data if the tag reader is within a certain radius of the tag. This changes the routing
problem from one of a standard TSP to what we call a Close Enough TSP (CETSP).
Thus the route lengths of the meter readers can be drastically reduced by developing
heuristics that exploit this close enough feature.”

“We consider such a meter reading routing problem where each customer is modeled
as a point in the plane. Additionally there is a point that represents the depot for the
meter reader. A CETSP tour must begin and end at the depot and travel within the
required radius, r, of each customer. For simplicity in the cases tested here the meter
reader was not restricted to a road network. All distances are Euclidean and the
objective is to minimize the total distance traveled.”
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Close Enough TSP

Gulczynski, Heath, Price (2006)

(Left) An example of a supernode set on 100 nodes, with radius 9, and the depot
located at (50,10). The circles represent the customer nodes, and the asterisks are
the supernodes.

(Right) An example of tiling the plane with regular hexagons of side length r = 1.5
units. All customers (small circles) in a given tile are within r units of the center of that
tile (*).
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Close Enough TSP

Gulczynski, Heath, Price (2006)

(Left) An example CETSP tour on 100 nodes, with radius 9, and the depot located at
(50,10). The circles represent the customers, and the asterisks are the supernodes

(Right) An improved tour.
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Applications. Wireless Sensor Networks

Potdar, Sharif, and Chang (2009)

“WSNs are mostly used in applications ranging from civil and military to environmental
and healthcare monitoring”

“The wireless communication channel provides a medium to transfer the information
extracted from the sensor node to the exterior world which may be a computer network
and inter-node communication [5]. However, WSN using IEEE 802.15.4 Wireless
Personal Area Network protocol (WPAN) or Bluetooth is complicated and costly. Using
RFID to implement wireless communication is relatively simple and cheap.”
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Applications. Meter reading

Shuttelworth, Golden, Smith, Wasil (2008)

“With the widespread availability of radio frequency identification (RFID) technology in
the late 2000s, an RFID tag can be attached to a meter. A truck equipped with a
reading device traverses streets in the service area and collects data from the meters
automatically. It is not necessary to visit each meter individually because a meter can
be read from a predefined distance. In the automated meter reading (AMR) problem,
the utility seeks vehicle routes that cover all meters (customers) in the service area
and minimize the total distance traveled.”

A neighborhood on a route.
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Applications. Meter reading

Shuttelworth, Golden, Smith, Wasil (2008)

(Left) A traditional route through a neighborhood.
(Right) An AMR route.

Automatic Meter Reading is an arc routing problem
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Automatic Meter Reading Problem

Each meter has a transmitter.
A vehicle has a receiver than can read the meters located closer
than a given distance r .
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Automatic Meter Reading Problem
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Automatic Meter Reading Problem
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Automatic Meter Reading Problem
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Automatic Meter Reading Problem

The AMR Problem (as a CETSP) was first studied in:

Shuttleworth, Golden, Smith & Wasil, “Advances in Meter
Readings: Heuristic Solution of the Close Enough Traveling
Salesman problem over a Street Network” (2008).

It is equivalent to the following arc routing problem

the Generalized Directed Rural Postman Problem
introduced by Drexl (2007, 2014).

We will use the name Close Enough.
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Introduction

The Close Enough ARP (CEARP) and some variants have been
studied in

Hà, Bostel, Langevin & Rousseau (2012, 2014)
Ávila, Corberán, Plana & Sanchis (2016, 2017)
Aràoz, Fernández, Franquesa (2017)
Cerrone, Cerulli, Golden, Pentangelo (2017)
Renaud, Absi, Feillet (2017)
Russo, Cerrone, Di Placido (2019)
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Introduction

When the network is very large, a single vehicle is not able to perform
all the services, and several vehicles must be considered.

To balance the routes of the different vehicles we can:

limit the distance traveled by each vehicle: the
Distance-constrained CEARP,

use a min-max objective function: the Min-Max CEARP.
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DC-CEARP. Definition

G = (V ,A) strongly connected directed graph.
Vertex 1 is the depot.
There is a cost dij ≥ 0 associated with each arc (i , j) ∈ A.
There is a family H =

{
H1, ...,HL

}
, of arc sets, each Hc ⊆ A

(Hc are the arcs from which a “customer” c can be served).
There is a fleet of K vehicles, and
There is a limit Dmax on the length of the routes.

DC-CEARP is defined as to find a set of K routes of minimum total
length, such that for each customer c, at least one arc in Hc is
traversed, and each route length does not exceed Dmax .
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DC-CEARP. Notation

We use the following notation:

AR = H1 ∪ · · · ∪ HL; arcs that can service the customers.

ANR = A \ AR.

Given S ⊂ V , δ+(S) = {(i , j) ∈ A| i ∈ S, j /∈ S},
δ−(S) = {(i , j) ∈ A| i /∈ S, j ∈ S}, and δ(S) = δ+(S) ∪ δ−(S).
Given a set of variables xij indexed on the arcs (i , j) ∈ A, and
given F ⊂ A, x(F ) =

∑
(i,j)∈F

xij
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A new DC-CEARP formulation

Ávila, Corberán, Plana & Sanchis (2017) proposed 4 formulations. We
present here a new one combining the best characteristics of them.

For each arc (i , j) ∈ A and for each vehicle k ,

xk
ij = number of times that arc (i , j) is traversed by vehicle k .

For each customer c and each vehicle k ,

zk
c = 1, if c is served by vehicle k , 0, otherwise.

For each customer c, each vehicle k , and each required arc (i , j),

ykc
ij = 1, if c is served by vehicle k from (i , j), 0, otherwise

Note that
∑

(i,j)∈Hc

ykc
ij = zk

c
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Fxzy+ Formulation

Minimize
∑
k∈K

∑
(i,j)∈A

dij xk
ij

∑
(i,j)∈A

dij xk
ij ≤ Dmax ∀k ∈ K (1)

xk (δ+(i)) = xk (δ−(i)) ∀ i ∈ V , ∀k ∈ K (2)∑
k∈K

∑
(i,j)∈Hc

y kc
ij = 1 ∀c ∈ H (3)

xk
ij ≥ y kc

ij ∀(i, j) ∈ AR , ∀c ∈ H, ∀k ∈ K (4)∑
(i,j)∈Hc

y kc
ij = zk

c ∀c ∈ H, ∀k ∈ K (5)

xk (δ+(S)) ≥ zk
c − xk (Hc ∩ A(V \ S)) ∀S ⊂ V \{1}, ∀c ∈ H, ∀k ∈ K (6)

xk
ij ≥ 0 and integer ∀(i, j) ∈ A, ∀k ∈ K (7)

zk
c ∈ {0, 1} ∀c ∈ H, ∀k ∈ K (8)

y kc
ij ∈ {0, 1} ∀(i, j) ∈ AR , ∀c ∈ H, ∀k ∈ K (9)
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Valid inequalities

Other connectivity inequalities.

Parity inequalities.

K-C and K-C02 inequalities.

Path-bridge inequalities.

Max-distance inequalities.

Symmetry-breaking inequalities.

For a single vehicle: dissagregate inequalities, and

For a subset Ω ⊆ {1, . . . ,K} of vehicles: Ω-aggregate inequalities.
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Max-distance inequalities

Suppose a set of customers F H that can not be served with just one
vehicle:

K∑
k=1

xk (δ−(S)) ≥ 2, and

K∑
k 6=k ′

xk (δ−(S)) ≥ 1, ∀ k ′

(Max-distance-x ineq.)
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Max-distance inequalities

Suppose a set of customers F H that can not be served with just one
vehicle:

For each k :∑
c∈F H

zk
c ≤ |F H | − 1, and

∑
c∈F H

ykc(Hc) ≤ |F H | − 1

(Max-distance-z ineq.)
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Max-distance inequalities

How do we know if set F H can not be served with a single vehicle?

⇒ Solving the CEARP defined on G with set of customers F H

by using the B&C for the CEARP by Ávila et al. (2015).
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Comparison of separation strategies and cutting-plane
algorithms

To analyze the contribution of the valid inequalities and the separation
algorithms, we compare the gaps in the root node and the
performance profiles (Dolan and Moré, 2002) of the versions of our
B&C procedure using different combinations of separation algorithms.
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Comparison of separation strategies and cutting-plane
algorithms

For instance, we considered different options regarding the
max-distance inequalities. Here, three new versions were
implemented and compared with the “whole algorithm”. Performance
profiles, average gaps in the root node, and other measures follow.

# opt Gap0 (%) Time0 (scs) Time (scs)
V1234 46 5.874 252.38 1031.19
V123 46 9.835 114.34 902.39
V123 + 4(a) 46 7.738 136.99 1036.11
V123 + 4(b) 46 6.655 241.18 1054.21

Table: Results on the subset of 48 instances - max-distance
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Comparison of separation strategies and cutting-plane
algorithms

We compute the performance ratio rp,s = tp,s/min{tp,s : s ∈ S},

where tp,s is the computing time required by algorithm s to solve
instance p. If s is not able to solve the instance p within the time limit,
we set rp,s =∞.

Thus, the performance profile of each version s,

ρs(τ) =
|{p ∈ P : rp,s ≤ τ}|

|P|
,

describes the percentage of instances that can be solved by s within a
factor τ ≥ 1 compared to the fastest algorithm.

Note, for example, that ρs(1) is the percentage of instances for which
algorithm s is the fastest and that ρs(∞) is the percentage of instances
that are solved by algorithm s within the time limit.
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Comparison of separation strategies and cutting-plane
algorithms

Figure: Impact of the max-distance inequalities: Performance profile
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Comparison of the new B&C with that of Ávila et al.

Figure: The proposed B&C (Alg 1) versus that of Ávila et al. (Alg 2)
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New B&C versus that of Ávila et al.

Gap0(%) Final Gap(%)
Algorithm 0 (Full) 14.20 8.98
Algorithm 1 (New) 14.36 7.80
Algorithm 2 (Ávila et al.) 15.35 9.23

Table: Results on the 11 instances not solved by any algorithm

# opt Gap(%) Final Gap(%)
Algorithm 0 (Full) 7 12.07 4.98
Algorithm 1 (New) 10 11.86 3.68
Algorithm 2 (Ávila et al.) 5 12.94 5.27

Table: Results on the 27 instances not solved by at least one algorithm
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Min-Max CEARP. Definition

The Min-Max Close-Enough Arc Routing Problem consists of finding a
set of K routes, starting and ending at the depot, servicing all the
customers and minimizing the length of the largest route.

Two different formulations:
Arc-based formulation
Route-based set covering formulation
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Arc-based formulation
xk

ij = number of times that vehicle k traverses arc (i, j) ∈ A,

zk
c = 1, if c is served by vehicle k

Minimize w

∑
(i,j)∈A

dij xk
ij ≤ w ∀k ∈ K

xk (δ+(i)) = xk (δ−(i)) ∀ i ∈ V , ∀k ∈ K∑
k∈K

zk
c = 1 ∀c ∈ H

∑
(i,j)∈Hc

xk
ij ≥ zk

c ∀c ∈ H, ∀k ∈ K

xk (δ+(S)) ≥ zk
c − xk (Hc ∩ A(V \ S)) ∀S ⊂ V \{1}, ∀c ∈ H, ∀k ∈ K

xk
ij ≥ 0 and integer ∀(i, j) ∈ A, ∀k ∈ K

zk
c ∈ {0, 1} ∀c ∈ H, ∀k ∈ K
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Route-based set covering formulation

Let Rk be the set of feasible routes for vehicle k .

For each r ∈ Rk , let dkr be the length of the route. Moreover, for each
customer c ∈ H and each r ∈ Rk , let skr

c = 1 if the route r serves
customer c and 0 otherwise. Then, let

λkr = 1, if the route r ∈ Rk is assigned to vehicle k ,

and

wk = length of the route assigned to vehicle k .
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Route-based set covering formulation

Minimize w1

∑
k∈K

∑
r∈Rk

skr
c λ

kr ≥ 1 ∀c ∈ H

∑
r∈Rk

λkr = 1 ∀k ∈ K

∑
r∈Rk

dkrλkr − wk ≤ 0 ∀k ∈ K

wk − wk+1 ≥ 0 ∀k = 1, . . . ,K − 1

λkr ∈ {0, 1} ∀k ∈ K, ∀r ∈ Rk

MASTER PROGRAM
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Route-based set covering formulation

Minimize w1

∑
k∈K

∑
r∈Rk

skr
c λ

kr ≥ 1 ∀c ∈ H

∑
r∈Rk

λkr = 1 ∀k ∈ K

∑
r∈Rk

dkrλkr − wk ≤ 0 ∀k ∈ K

wk − wk+1 ≥ 0 ∀k = 1, . . . ,K − 1

λkr ∈ {0, 1} ∀k ∈ K, ∀r ∈ Rk

MASTER PROGRAM

µc ∈ R+, ∀c ∈ H,

θk ∈ R, ∀k ∈ K,

ρk ∈ R−, ∀k ∈ K,

σk ∈ R+, k = 1, . . . ,K − 1
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Branch-and-price (BP) algorithm

In a BP algorithm, at each node of the branch-and-bound tree, the
linear relaxation of the Master Problem (LMP) is solved iteratively by
means of column generation.

The starting point is to define the LMP over a subset R̃ ⊆
⋃

k∈K Rk of
the feasible routes for the vehicles (reduced LMP, RLMP).

At each iteration, column generation alternates between the
optimization of the RLMP and the solution of pricing problems (PPs).
The former allows to retrieve optimal dual variable values with respect
to set R̃. The latter generates negative reduced cost route variables
λkr to be included in the RLMP, if any.

When no negative reduced cost variable is found, the optimal solution
of the RLMP is also the optimal solution of the LMP. Branching is finally
required to ensure the integrality of the solution.
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Column generation

Let us consider the LMP at the root node of the branch-and-bound
tree. The dual of LMP is:

Max
∑
c∈H

1 · µc +
∑
k∈K

1 · θk +
∑
k∈K

0 · ρk +
K−1∑
k=1

0 · σk

∑
c∈H

skr
c µc + θk + dkrρk ≤ 0 ∀k ∈ K, ∀r ∈ Rk

−ρ1 + σ1 ≤ 1

−ρk + σk − σk−1 ≤ 0 ∀k = 2, . . .K − 2

−ρK − σK−1 ≤ 0
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Column generation

There is one distinct PP for each vehicle k ∈ K.

In particular, given the duals (µ,θ,ρ,σ), the PP for vehicle k ∈ K
consists of finding a minimum reduced cost route to be assigned to the
vehicle, where the reduced cost c̄kr (µ,θ,ρ) of route r ∈ Rk to be
assigned to the vehicle is:

ckr (µ,θ,ρ) = −
∑
c∈H

skr
c µc − θk − dkrρk (10)

A solution (a route) corresponds to a negative reduced cost λkr

variable if its value (reduced cost) is less than 0.
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Pricing problem

The PP associated with vehicle k ∈ K can be formulated as:

Min −
∑
c∈H

µc zk
c −

∑
(i,j)∈A

dijρk xk
ij

xk (δ+(i)) = xk (δ−(i)) ∀ i ∈ V

xk (δ+(S)) ≥ zk
c − xk (Hc ∩ A(V \ S)) ∀S ⊂ V \{1}, ∀c ∈ H∑

(i,j)∈Hc

xk
ij ≥ zk

c ∀c ∈ H

xk
ij ≥ 0 and integer ∀(i , j) ∈ A

zk
c ∈ {0,1} ∀c ∈ H,

where µc ≥ 0 ∀c ∈ H, and, −dijρk ≥ 0 for each (i , j) ∈ A.
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Pricing problem

The PP formulation is equivalent to

− Max
∑
c∈H

µc zk
c −

∑
(i,j)∈A

(
−dijρk

)
xk

ij

xk (δ+(i)) = xk (δ−(i)) ∀ i ∈ V

xk (δ+(S)) ≥ zk
c − xk (Hc ∩ A(V \ S)) ∀S ⊂ V \{1}, ∀c ∈ H∑

(i,j)∈Hc

xk
ij ≥ zk

c ∀c ∈ H

xk
ij ≥ 0 and integer ∀(i , j) ∈ A

zk
c ∈ {0,1} ∀c ∈ H

Note that it is not mandatory to service all the customers.
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Pricing problem

We call Profitable Close Enough Arc Routing Problem (PCEARP) to
this problem. We have studied it and have proposed a branch-and-cut
algorithm for its solution.

If an upper bound W is available for w1, Rk can be restricted to include
feasible routes such that dkr ≤W − 1, and we can include in the PP
formulation the constraint: ∑

(i,j)∈A

dijxk
ij ≤W − 1
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Branch and Price. Branching rules

As mentioned, when no negative reduced cost variable is found, the optimal solution of
the RLMP is the optimal solution of the LMP. If it is not integer, branching is required.

Let (λ,w) be the optimal solution of the current RLMP. When (λ,w) is fractional, we
apply the following branching rules:

First, we consider an application of the Ryan and Foster’s branching rule:

For each pair of customers c′ and c′′, we define αc′c′′ =
∑

k∈K
∑

r∈Rk skr
c′s

kr
c′′λ

kr

as the sum of the λkr values associated with routes that serve both customers c′

and c′′.

We select α∗c′c′′ closest to 0.5 such that 0 < α∗c′c′′ < 1. On one branch, we set
α∗c′c′′ = 0, meaning that c′ and c′′ must be served in different routes (and
vehicles). Then, zk

c′ + zk
c′′ ≤ 1 is added to the formulation associated with each

k ∈ K. On the other, we set α∗c′c′′ = 1, meaning that they have to be served in
the same route by the same vehicle. Then, we add zk

c′ − zk
c′′ = 0.

When the solution is fractional and there is no c′ and c′′ such that 0 < α∗c′c′′ < 1,
we branch on the fractional use of an arc by vehicle k ∈ K.
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Computational results. B&C vs B&P

We studied the performance of the branch-and-cut and
branch-and-price methods and compared them.
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Computational results
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Computational results

Instances with LB Instances without LB

BC BP BC

# Inst # opt Time Gap(%) # opt Time Gap(%) # Inst # opt Time Gap(%)

2 59 59 245.0 0.00 53 1081.6 0.38 12 7 3764.1 4.09
3 57 35 3032.0 1.47 43 2064.0 1.19 7 0 7200.0 11.67
4 41 16 4724.6 5.43 25 2996.6 1.93 5 0 7200.0 22.54
5 31 5 6279.3 8.32 15 3770.0 3.80 2 0 7200.0 25.31

M6 42 3 6741.5 7.68 21 4101.6 2.78 2 0 7200.0 19.72

230 118 3733.9 3.86 157 2580.2 1.76 28 7 5727.5 10.89

Table: Gap comparison on the instances with and without LB computed by the BP algorithm

Corberán, Plana, Reula & Sanchis Close Enough Routing Problems Fuengirola, June 23-25, 2021 47 / 59



Outline

1 Introduction

2 The Distance-constrained CEARP

3 The Min-Max CEARP (with N. Bianchessi)

4 The Profitable CEARP (with N. Bianchessi)

5 Future work

Corberán, Plana, Reula & Sanchis Close Enough Routing Problems Fuengirola, June 23-25, 2021 48 / 59



The Profitable CEARP. Definition

G = (V ,A) strongly connected directed graph.
Vertex 1 is the depot.
There is a cost dij ≥ 0 associated with each arc (i , j) ∈ A.
There is a family H =

{
H1, ...,HL

}
, of arc sets, each Hc ⊆ A

(Hc are the arcs from which a “customer” c can be served).
There is a profit pc ≥ 0 collected (only once) if c is serviced.

The PCEARP is defined as to find a tour on G maximizing the
difference between the sum of profits collected and the total length of
the tour.
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The Profitable CEARP. Formulation

Maximize
∑
c∈H

pczc −
∑

(i,j)∈A

dijxij

x(δ+(i)) = x(δ−(i)) ∀ i ∈ V

x(δ+(S)) ≥ zc − x(Hc ∩ A(V \ S)) ∀S ⊂ V \ {1}, ∀c ∈ H
x(Hc) ≥ zc ∀c ∈ H

xij ≥ 0 and integer ∀(i , j) ∈ A
1 ≥ zc ≥ 0 and integer ∀c ∈ H,

Other valid inequalities: Parity and K-C inequalities.
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The Profitable CEARP. Polyhedron

PCEARP(G) = conv
{

(x , z) ∈ Z|A|+|H| : (x , z) is a PCEARP tour
}
.

It can be seen that PCEARP(G) is an unbounded polyhedron.

If G is strongly connected, dim(PCEARP(G))= |A|+ |H| − |V |+ 1.

Under mild conditions, the following inequalities are facet inducing:

xij ≥ 0,
zc ≥ 0 and zc ≤ 1,
x(Hc) ≥ zc ,
Connectivity inequalities, and
Parity inequalities.
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The Profitable CEARP. Computational results

We have designed and implemented a heuristic and a branch-and-cut
algorithm with separation procedures for:

Connectivity inequalities,
Parity inequalities, and
K-C inequalities

Corberán, Plana, Reula & Sanchis Close Enough Routing Problems Fuengirola, June 23-25, 2021 52 / 59



Computational results

Table: Characteristics of the sets of instances

#Inst |V | |A| |AR | |ANR | |H|

Min Max Min Max Min Max Min Max

Albaida 24 116 259 305 124 172 109 162 18 33
Madrigueras 24 196 453 544 224 305 197 281 22 47
Random50 12 50 296 300 105 292 7 193 10 100
Random75 12 75 448 450 143 438 10 305 15 150
Random100 12 100 498 500 134 490 10 366 20 200
Random150 12 150 749 750 256 731 19 493 30 300
Random200 12 200 997 1000 321 972 27 679 40 400
Random300 12 300 1498 1500 502 1457 43 998 60 600
Random400 12 400 1999 2000 675 1936 63 1324 80 800

Corberán, Plana, Reula & Sanchis Close Enough Routing Problems Fuengirola, June 23-25, 2021 53 / 59



Computational results

[0.65µ, 1.05µ] [0.80µ, 1.20µ] [0.95µ, 1.35µ]

Min Max Min Max Min Max
Albaida 181.8 293.8 223.8 335.9 265.8 378.0
Madrigueras 167.4 271.0 206.4 309.7 245.1 348.6
Random50 93.5 151.3 115.2 173.1 136.8 194.5
Random75 80.7 130.5 99.3 149.3 118.0 168.0
Random100 70.2 113.9 86.7 130.1 102.8 146.3
Random150 61.3 99.2 75.3 113.2 89.7 127.6
Random200 49.2 79.5 60.5 91.2 72.0 102.5
Random300 38.9 63.2 48.0 72.3 57.1 81.3
Random400 36.1 58.8 44.6 67.3 53.1 75.8

Table: Average min/max profit per instance set and profit interval
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Computational results

Heuristic B&C

#Inst # opt Gap Time # opt Gap0 Gap # nodes Time

Alb 72 59 0.44 0.9 72 0.09 0.00 1.2 1.0
Mad 72 39 3.03 4.0 72 1.87 0.00 10.5 12.3
R50 36 23 0.77 17.8 36 0.90 0.00 5.6 0.5
R75 36 13 2.38 29.6 36 0.32 0.00 11.1 1.2
R100 36 13 2.69 33.0 36 1.19 0.00 1454.4 51.2
R150 36 6 7.00 44.5 34 1.15 0.19 2620.4 269.5
R200 36 6 10.84 46.4 31 1.87 0.21 4994.8 763.3
R300 36 2 18.54 53.4 19 3.79 2.13 6064.1 2023.1
R400 36 0 21.67 60.0 16 3.09 2.23 4181.9 2190.8

396 161 6.44 26.8 352 1.48 0.43 1759.6 484.2

Table: Heuristic and B&C results in all instances
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Computational results

Heuristic B&C

# Inst # opt Gap Time # opt Gap0 Gap # nodes Time

[0.65µ, 1.05µ] 132 68 7.84 26.4 119 2.16 0.51 1208.0 401.9
[0.80µ, 1.20µ] 132 52 6.36 27.0 118 1.13 0.37 1888.6 471.4
[0.95µ, 1.35µ] 132 41 5.11 26.9 115 1.14 0.43 2182.3 579.3

396 161 6.44 26.8 352 1.48 0.43 1759.6 484.2

Table: Heuristic and B&C results by profit intervals
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Outline

1 Introduction

2 The Distance-constrained CEARP

3 The Min-Max CEARP (with N. Bianchessi)

4 The Profitable CEARP (with N. Bianchessi)

5 Future work
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Future work

To study the multiple vehicle version of the PCEARP, the Team
Orienteering CEARP:

We consider mandatory and potential customers. A fleet of
vehicles with maximum distance constraints. The goal is to
maximize the collected profits associated with the potential
customers.
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Close Enough Routing Problems

Thanks for your attention !
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