Hypothesis testing in the clique/modularity partition problem

Stefano Benati¹

¹Department of Sociology and Social Research School of International Studies University of Trento

June 25, 2021

Image: A matrix

- A - E - N

The Clique Partition Model

- We have $U = 1, \ldots, n$ statistic units.
- For all pair $i, j \in U \times U$ we have a (dis)similarity measure c_{ii} .
- c_{ii} is positive: the two units are similar.
- c_{ii} is negative: the two units are diverse.
- For a cluster/clique $C_k \subseteq U$, the quality of the clique is:

$$f(C_k) = \sum_{i,j \in C_k} c_{ij}$$

• and for a partition (C_1, \ldots, C_m) , the quality of the partition is:

$$f(C_1,\ldots,C_m)=\sum_{k=1}^m f(C_k)$$

< ロ > < 同 > < 三 > < 三 >

The Clique Partition Model Integer Linear Programming

The Clique Partition Problem

The Clique Partition Problem is:

$$\max_{C_1,\ldots,C_m}\left[\sum_{k=1}^m f(C_k)\right]$$

In the figure:

- The black arcs are positive (connecting similar units);
- The red arcs are negative (connecting dissimilar units).

Figure: Clique Partition

Remark: In all relevant applications, the Clique Partition Problem is formulated on *complete* graphs!

4 A >

3/28

Qualitative Survey Data

Application 1: Clustering qualitative data from surveys: A survey is composed of *m* questions. Take question *k* and compare units *i* and *j*, let x_{ik} the answer of *i* to question *k*:

$$d_{ij,k} = egin{cases} 0 & ext{if } x_{ik} = x_{jk} \ 1 & ext{otherwise} \end{cases}$$

Clique partition similarity matrix (Regnier, 1965):

$$c_{ij}=2*m-\sum_{k=1}^m d_{ij,k}.$$

This motivated the first formulations of clique as a combinatorial problem, by Grotchel, Wakabayashi (1989, 1990, Math Prog) and Johnson, Mehrotra, Nemhauser (1993, Math Prog).

イロト イポト イラト イラト

The Clique Partition Model Integer Linear Programming

Community detection in networks

Application 2: Community detection

Figure: Network communities

- Let V the vertex set of a graph, $i \in V$ represents individuals, companies, nations, and so on.
- There is an arc $(i,j) \in E$ if i and j are connected, 0 otherwise;

For notation purposes, let *m* be the number of arcs, let d_i the degree of vertex *i*, $e_{ij} = 1$ if $(i, j) \in E$, 0 otherwise.

The Modularity maximization problem (Newmann, 2006, PNAS) is formulated as a maximum clique problem (Agarwal and Kemp, 2008, Eu. Physical Journal B) with input data:

Clique Partitions and k-means

The main competitor of clique partitions is the k-means. If you look at Google, for one mention of clique partition there are 1000 mentions of k-means. But we could advocate the use of clique partitions because:

- It is an ILP versus Continuous Non-Convex Problem.
- It works equally well both with both cardinal and qualitative data.
- The number of clusters k is an **output**, it does not need to be fixed in advance.
- It detects outliers, units that are automatically not assigned to any group.
- It can be used for both clustering and community detection.
- It can include the **null-hypothesis**, in the form of expected values of modularity.

Regarding the last points, this property has been recognized by Benati, Puerto, ERC-Sinergy Grant (2017), but also published by Zhang and Cheng, 2017, Statistica Sinica.

6/28

イロト イポト イラト イラト

Integer Linear Programming formulation

Clique/Modularity partitioning can be formulated as Integer Linear Programming (Agarwal, Kempe, 2008, Europ. J. Physics, B):

Figure: The Closing Triangle Constraint

Solution approaches to Maximum Modularity

- Matrix Spectral Decomposition, Newmann, 2006.
- Column Generation: Cafieri, Liberti, Hansen, Caporossi, Aloise, Perron, 2010, Physical Review,
- Hierarchical Aggregation based on Optimal Bipartition: Cafieri, Liberti, Hansen. 2011, Physical Review, 2011.
- Strengthening formulation with Cohesion Constraints: Cafieri, Costa, Hansen, 2013, IMA Journal of Complex Networks, 2014.

A 34 b

Analyzing Survey Graphs National Public Opinions

National problems and Public Opinions

The following question is taken from the Eurobarometer, Autumn 2017:

Question QA3A:

QA3a: What do you think are the two most important issues facing your country at the moment? (MAX. 2 ANSWERS)

- Crime
- Rising prices, inflation
- Taxation
- Unemployment
- Terrorism
- Housing
- Government debt
- Immigration
- Health and social security

- The education system
- Pensions
- The environment, climate and energy issues
- Economic situation
- Other (SPONTANEOUS)
- None (SPONTANEOUS)

ヘロト ヘ戸ト ヘヨト ヘヨト

Don't know

Analyzing Survey Graphs National Public Opinions

European Problems: Single Issues

Figure: Country Problems in Italy, Spain, West Germany, in Autumn 2017

Remark: But respondents actually gave pairs of issues!

10/28

A too simplified framework

A respondent saying *"Immigration"*, *"Crime"* is providing an information that is different from *"Immigration"*, *"Unemployment"*. But, the analysis of this pairs is problematic:

- Respondents can elicit one or two items: weights on answer are not uniform.
- We cannot use correlation: it is negative for any pair (due to the cardinality constraint: only two item can be barred).
- We cannot use two ways tables (e.g. separating men from women), because there are at least ⁽¹³⁾₂ possible answers of an individual.

Nevertheless, the scientific literature seldom realized this flaw and all answers like the one above are simplified in the dichotomy *mentioned/not mentioned*.

A D b 4 A b

- A - E - N

The Survey Graph

- Let l_1, \ldots, l_n be labels assigned to answers of a multi-item question.
- Let $V = \{1, \ldots, n\}$ the vertex set corresponding to labels let l_1, \ldots, l_n ,
- and there is an arc $(i,j) \in E$ for every respondent that answered the l_i, l_j pair.
- there is a loop $(i, i) \in E$ for every respondent that answered l_i as a singleton.

We call the resulting G = (V, E) Survey Graph

Figure: Country Problems in Italy, Autumn 2017

Analyzing Survey Graphs National Public Opinions

Remarks on Survey Graph

Figure: Country Problems in Germany, Autumn 2017

- There are multiple arcs between the same $i, j \in V$ pair.
- There are multiple loops.
- If there are *m* respondents, then |E| = m;
- Let d_i be the degree of i ∈ V (approximately, it is the number of respondents that mentioned l_i), as singleton are counted twice).

13/28

The Null Hypothesis for Survey Graph

- Let I_i , $i = ..., n_l$ the possible answers (the question items).
- Let $Pr[X_i]$ be the probability that item I_i is elicited by one respondent,
- Let $Pr[X_i \cap X_j]$ is the probability the one respondent elicited the I_i, I_j pair.
- Interpreted in the survey graph, $\Pr[X_i \cap X_j]$ is the probability that arc $(i, j) \in E$.

The condition of independence

If $\Pr[X_i|X_j] \neq \Pr[X_i]$, then there is a preferential pairing of items l_i and l_j .

Question: What is the expected number r_{ij} of respondents that should have selected the l_i , l_j pair under the hypothesis that there is no preferential pairing?

14/28

・ ロ ト ・ 白 ト ・ 日 ト ・ 日 ト ・ 日 ・

Analyzing Survey Graphs National Public Opinions

The Probability of Selecting One Arc/Edge

Figure: The Survey Graph and the Auxiliary Graph

Note that for every non-oriented arc $ij \in E$ there are two oriented edges (i, j)and (i, i) in E'. So |E'| = 2m.

- Let \mathcal{A} be the event of selecting one arc at random from E;
- Let \mathcal{E} be the event of selecting one edge at random from E'

Then we have:

$$\Pr[\mathcal{A} = ij] = \Pr[\mathcal{E} = (j, i)] + \Pr[\mathcal{E} = (i, j)] = 2\Pr[\mathcal{E} = (i, j)]$$

A condition of independence

If we draw at random on arc e from E', then we have (calculated as the ratio between favorable and possible cases):

$$\Pr[e \text{ leaves } i] = \frac{d_i}{2m}$$

If there is no preferential pairing (e.g., independence), then:

 $\Pr[\mathcal{E} = (i, j)] = \Pr[\text{the arc leaves } i] \Pr[\text{the arc enter } j|\text{the arc leaves } i]]$ = $\Pr[\text{the arc leaves } i] \Pr[\text{the arc enter } i]$ $=\frac{d_i}{2m}\frac{d_j}{2m}$

So after some straightforward passages, under independence the expected number of arcs between *i* and *j*:

$$r_{ij} = \frac{d_i d_j}{2m}$$

イロト イポト イラト イラト

The Graph Modularity

- Let m_{ij} be the actual number of arcs between $i, j \in V$;
- Let r_{ij} be the hypothetical number of arcs between i, j ∈ V in condition of independence;
- The difference $c_{ij} = m_{ij} r_{ij}$ is an indicator of the discrepancy between the empiric and the random graph.

Clique/Modularity Optimization in Survey Graphs

The objective function is:

$$z(G) = \frac{1}{2m} \max_{i,j} c_{ij} x_{ij}$$

subject to: The triangle inequalities of the clique partition.

Function z(G) is called the graph modularity.

17/28

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hypotesis testing on modularity

Observe that the Survey Graph is characterized by self-loops and multiple arcs, therefore the expected number of arcs between nodes is an *exact* formula, not an approximation. So we can formulate a null hypothesis:

The Null Hypothesis for Survey Graphs

 H_0 : The Survey Graph does not contain preferential pairings.

We use the modularity of the graph as the reference to distinguish random from structured graph, so that the *p*-value of the test can be calculated by simulation, using as the reference the *configuration model* for random graphs.

A D b 4 A b

The *Configuration Model* for a random graph is a graph in which arcs between nodes are random, but the degree distribution is the same as the empiric graph. In other words, the problem marginal distribution remains the same. Let $G_S = (V, E_S)$ the empiric survey graph. Let $G_R = (V, E_R)$ the random survey graph from the configuration model.

We are expecting that the graph modularity values are:

$$z(G_S) >> z(G_R)$$

- Step 1: Generate i = 1, ..., n random graph from the same configuration model $G_{R,i}$.
- Step 2: Calculate modularity $z(G_{R,i}), i = 1, ..., n$.

• Step 3: *p*-value =
$$\frac{I_{\{z(G_{R,i}) > z(G_{S})\}}}{n}$$

4 D b 4 B b 4 B b 4 B b

Italian National Problems

For the case of Italy, Autumn 2017, we found three clusters:

- Group 1, Crime: Crime, Prices, Terrorism
- Group 2, Economy: Economy, Taxation, Unemployment, Debt, Immigration, Pensions
- Group 3, Services: Housing, Health, Schools, Environment
- Group 4, Other: Other

B 5

Analyzing Survey Graphs National Public Opinions

Modularity Hypothesis Testing

The empiric modularity value $z(G_S) = 0.051$ is outside the range of the null distribution. Therefore we can reject the hypothesis that the survey graph does not contain preferential pairings.

4 A >

-

Respondents were recoded into two classes:

- Those whose answers are both in the Economic clusters;
- All other respondents.

Next, I controlled for the individual features (sex, age, political opinions) that could identify respondents worried for the Economic problems. The most significant (using the Chi-square test) is social class.

4 A >

German Clustered Problems

For the case of Germany, we found three clusters:

- Group 1, Crime: Crime, Unemployment, Terrorism, Immigration.
- Group 2, Economy: Economy, Inflation, Taxation, Government debt.
- Group 3, Services: Housing, Health, Education, Pensions, Environment.

4 A >

B 5

23/28

Spanish Clustered Fears

For the case of Spain, we found two clusters:

- **Group 1, Crime:** Crime, Inflation, Taxation, Terrorism, Immigration, Environment.
- Group 2, Services: Economy, Unemployment, Housing, Debt, Health, Education, Pensions.
- Group 3: Other.

-

Now a brief summary:

- Modularity can be used to analyze survey questions with multi-items response.
- The outcome are problem clusters that could identify political/social cleavages.
- Clique partition models are the core of the methodology.
- The methodology opens up substantive analysis of some interest and originality.

4 A I

B 5

Some possible methodological development:

- The *p*-value is calculated after solving *n* (very large number) ILPs. Here, this optimization can be replaced by the continuous relaxations.
- Some questions are organized in groups:
 - What are the national problems?
 - What are the personal problems?
 - What are the European problems?

Solutions: Multi-layer clique partition.

- Some survey questions let respondents elicit at most THREE or more items. Solution: Hypergraph modularity/clique clustering.
- The Null-Hypothesis model can be extended to other applications, for example voting in the United Nation Assembly.

Controversy in the United Nations

Voting in the United Nations General Assembly are: 1 = Yes, 2 = Abstention, 3 = No, so the diffence between nations *i* and *j* on bill *k* is $\Delta_{ijk} = |x_{ik} - x_{jk}|$.

If there are n votes, the S-score (Agreement Index) between i and j, proposed by Signorino and Ritter, 1999, International Studies Quartely, is:

$$s_{ij} = 1 - rac{\sum_{k=1}^{n} \Delta_{ijk}}{n}$$

Note that it is a value between -1 and 1, exactly as values that are used by clique partitioning when applied to survey data. But we can do more, assuming a null hypothesis of random voting versus preferential joint voting.

Image: A marked and A mar A marked and A

きょうきょう

Voting in UNGA are often characterized by large numbers of YES votes.

- Suppose nation A: Pr[A = yes] = 5/6;
- Suppose nation B: Pr[B = yes] = 2/3.

The probability by which they both vote YES (under independence hypothesis) is 10/18. I So, S-scores can be modified to control for this null hypothesis.

 $s_{ii}^{t} = \mathsf{Expected}$ agreement index under random voting

Next, we can use the difference:

$$c_{ij}=s_{ij}-s_{ij}^t$$

to find nation community clusters.

Remark: In this application we must calculate *p*-values, solving the Clique problem on a graph of 193 nations.

28/28