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Computational tools

GAP from www.gap-system.org, and the following packages

numericalsgps by M. Delgado, PAGS and J. J. Morais. The
idea is to offer methods depending on which of the following
packages are installed in the user’s machine

4ti2Interface by S. Gutsche
NormalizInterface by S. Gutsche, M. Horn, C. Söger (under
development)
SingularInterface by M. Barakat, M. Horn, F. Lübeck, O.
Motsak, M. Neunhoeffer, H. Shoenemann (under development)
Singular by M. Costantini, W. de Graaf
gap4ti2 by A. Sánchez-R.-Navarro (under development)



Atoms in a block monoid

G ∼= Zd1 × · · · × Zdr

Let g1, . . . , gn ∈ G . The set of zerosum sequences corresponds to
the set of nonnegative integer solutions of

g11x1 + · · ·+ gn1xn ≡ 0 mod d1
· · ·

g1rx1 + · · ·+ gnr xn ≡ 0 mod dr

So we can use Normaliz with the option “congruences”



Atoms in a block monoid, example

Let us compute the atoms of B(C 3
2 )

gap> a:=AffineSemigroup("equations",

[TransposedMat([[1,0,0],[0,1,0],[1,1,0],[0,0,1],[1,0,1],[0,1,1],[1,1,1]]),

[2,2,2])];

<Affine semigroup>

gap> at:=GeneratorsOfAffineSemigroup(a);

[ [ 0, 0, 0, 0, 0, 0, 2 ], [ 0, 0, 0, 0, 2, 0, 0 ], [ 0, 0, 0, 0, 0, 2, 0 ],

[ 0, 0, 0, 2, 0, 0, 0 ], [ 0, 0, 2, 0, 0, 0, 0 ], [ 0, 2, 0, 0, 0, 0, 0 ],

[ 2, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 1, 1, 0 ], [ 0, 0, 1, 1, 0, 0, 1 ],

[ 0, 1, 0, 0, 1, 0, 1 ], [ 0, 1, 0, 1, 0, 1, 0 ], [ 1, 0, 0, 0, 0, 1, 1 ],

[ 1, 0, 0, 1, 1, 0, 0 ], [ 1, 1, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 1, 1, 1 ],

[ 0, 1, 1, 0, 0, 1, 1 ], [ 0, 1, 1, 1, 1, 0, 0 ], [ 1, 0, 1, 0, 1, 0, 1 ],

[ 1, 0, 1, 1, 0, 1, 0 ], [ 1, 1, 0, 0, 1, 1, 0 ], [ 1, 1, 0, 1, 0, 0, 1 ] ]

So, from this point on, we “live” inside N7



Factorizations

We look for the factorizations of an element b in elements of
atoms A
In our setting b and the elements in A are in Nk for some k , so we
have to solve the system

Ax = b

where A has the elements of A as columns
Hence we can use for this Normaliz with the option
“inhom equations” or 4ti2

gap> FactorizationsVectorWRTList([3,3],[[2,0],[1,1],[0,2]]);

[ [ 0, 3, 0 ], [ 1, 1, 1 ] ]

And thus one can easily compute sets of lengths, delta sets,
catenarities, tame degrees of an element



Elasticity

We want to compute the maximum of maxL(s)
minL(s) for s ranging in our

semigroup
Let A be the matrix containing as columns the atoms of the
semigroup, and let G be a Graver basis of Ax = 0

The elasticity

The elasticity of the monoid is the maximum of |v
+|
|v−| where

v ranges in G , and v+, v− ∈ Nk with v = v+ − v− and
v+ · v− = 0

Actually A. Philipp proved that one has to look among the circuits
Circuits can be computed as explained by Eisenbud and Sturmfels



The elasticity, an example

We compute next the elasticity of B(C 2
2 )

gap> AffineSemigroup("equations",

[TransposedMat([[1,0],[0,1],[1,1]]),[2,2]]);;

gap> ElasticityOfAffineSemigroup(last);

3/2



The catenary degree of an element with an example

66 ∈ S = 〈6, 9, 11〉, c(S) = 4
The factorizations of 66 ∈ 〈6, 9, 11〉 are

Z(66) = {(0, 0, 6), (1, 3, 3), (2, 6, 0), (4, 1, 3), (5, 4, 0), (8, 2, 0), (11, 0, 0)}

The distance between (11, 0, 0) and (0, 0, 6) is 11.

(11, 0, 0)

(11, 0, 0) (0, 0, 6)

(0, 0, 6)
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The catenary degree of an element with an example

66 ∈ S = 〈6, 9, 11〉, c(S) = 4
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The catenary degree of an element with an example

66 ∈ S = 〈6, 9, 11〉, c(S) = 4
The factorizations of 66 ∈ 〈6, 9, 11〉 are

Z(66) = {(0, 0, 6), (1, 3, 3), (2, 6, 0), (4, 1, 3), (5, 4, 0), (8, 2, 0), (11, 0, 0)}

The distance between (11, 0, 0) and (0, 0, 6) is 11.

(3, 0, 0)

(11, 0, 0) (8, 2, 0)

(0, 2, 0)|(3, 0, 0)

(5, 4, 0)

(0, 2, 0)|(5, 4, 0) (0, 0, 6)

(0, 0, 6)
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The catenary degree of an element with an example

66 ∈ S = 〈6, 9, 11〉, c(S) = 4
The factorizations of 66 ∈ 〈6, 9, 11〉 are

Z(66) = {(0, 0, 6), (1, 3, 3), (2, 6, 0), (4, 1, 3), (5, 4, 0), (8, 2, 0), (11, 0, 0)}

The distance between (11, 0, 0) and (0, 0, 6) is 11.

(3, 0, 0)

(11, 0, 0) (8, 2, 0)

(0, 2, 0)|(3, 0, 0)

(5, 4, 0)

(0, 2, 0)|(3, 0, 0)

(2, 6, 0)

(0, 2, 0)|(2, 6, 0) (0, 0, 6)

(0, 0, 6)

3 3 3 8



The catenary degree of an element with an example

66 ∈ S = 〈6, 9, 11〉, c(S) = 4
The factorizations of 66 ∈ 〈6, 9, 11〉 are

Z(66) = {(0, 0, 6), (1, 3, 3), (2, 6, 0), (4, 1, 3), (5, 4, 0), (8, 2, 0), (11, 0, 0)}

The distance between (11, 0, 0) and (0, 0, 6) is 11.

(3, 0, 0)

(11, 0, 0) (8, 2, 0)

(0, 2, 0)|(3, 0, 0)

(5, 4, 0)

(0, 2, 0)|(3, 0, 0)

(2, 6, 0)

(0, 2, 0)|(1, 3, 0)

(1, 3, 3)

(0, 0, 3)|(1, 3, 0) (0, 0, 3)

(0, 0, 6)

3 3 3 4 4



The catenary degree of 77 ∈ 〈10, 11, 23, 35〉

(0, 7, 0, 0)

(1, 4, 1, 0)

(2, 1, 2, 0)

(2, 2, 0, 1)3

6

23
5 2
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The catenary degree of 77 ∈ 〈10, 11, 23, 35〉

(0, 7, 0, 0)

(1, 4, 1, 0)

(2, 1, 2, 0)

(2, 2, 0, 1)

23
2

c(77) = 4



The catenary degree of a monoid

Let S be an affine semigroup minimally generated by A
The catenary degree of S is defined as

c(S) = max{c(s) | s ∈ S}

For n ∈ S , define the graph Gn as the graph with vertices a ∈ A if
n − a ∈ S , and edges ab if n − (a + b) ∈ S
Let Betti(S) be the set of n ∈ S with Gn nonconnected

Calculating the catenary degree

c(S) = max{c(s) | s ∈ Betti(S)}



Which graphs are non connected?

In a numerical semigroup S minimally generated by
{n1, . . . , ne}, if Gn is not connected, then n = w + nj with
w ∈ S \ {0}, w − n1 6∈ S and j ∈ {2, . . . , e}
In the affine case we can use Herzog’s correspondence and the
fact that a minimal presentation for S is constructed from
factorizations of elements inf Betti(S)

ϕ : Ne → S ψ : K [x1, . . . , xe ]→ K [S ] =
⊕

s∈S Kt
s

ei 7→ ni xi 7→ tni

(a, b) ∈ ker φ if and only if X a − X b ∈ kerψ



Elimination and nonconnected graphs

Gn is not connected if and only if n = ϕ(a) for some a such that
there exist b ∈ Ne such that X a − X b is in a minimal generating
set of kerψ
Singular+eliminate+minbase
or
4ti2+removing non connected graphs (4ti2 computes binomial
Gröbner basis, and our ideals are binomial)



Some more graphs

S = 〈5, 7, 11, 13〉

G26

5

7

11

13

∇n is a (nonoriented) graph with vertices the factorizations of n,
and there is an edge if x · y 6= 0

∇26

(1,3,0,0)

(3,0,1,0)

(0,0,0,2)



Sets of distances

Let as in the previous lectures, ∆(s) denote set of distances (delta
set) of factorizations of s, that is, the differences of two
consecutive lengths of factorizations

∆(S) =
⋃
s∈S

∆(s)

The minimum

The minimum is actually the greatest common divisor of ∆(S)

The maximum

The maximum is achieved in the set Betti(S)



Tame degree with an example

We go back to 66 ∈ S = 〈6, 9, 11〉, t(S) = 7 The factorizations of
66 ∈ 〈6, 9, 11〉 are

Z(66) = {(0, 0, 6), (1, 3, 3), (2, 6, 0), (4, 1, 3), (5, 4, 0), (8, 2, 0), (11, 0, 0)}

Besides, 9 divides 66

(11, 0, 0)



Tame degree with an example

We go back to 66 ∈ S = 〈6, 9, 11〉, t(S) = 7 The factorizations of
66 ∈ 〈6, 9, 11〉 are

Z(66) = {(0, 0, 6), (1, 3, 3), (2, 6, 0), (4, 1, 3), (5, 4, 0), (8, 2, 0), (11, 0, 0)}

and 11 also divides 66
(8, 2, 0)

(11, 0, 0)
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Tame degree with an example

We go back to 66 ∈ S = 〈6, 9, 11〉, t(S) = 7 The factorizations of
66 ∈ 〈6, 9, 11〉 are

Z(66) = {(0, 0, 6), (1, 3, 3), (2, 6, 0), (4, 1, 3), (5, 4, 0), (8, 2, 0), (11, 0, 0)}

(8, 2, 0)

(11, 0, 0)

3

(4, 1, 3)
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Tame degree of the monoid

The tame degree of an affine semigroup is the maximum of the
tame degrees of its elements

Calculating the tame degree

t(S) is the maximum of the t(s) with s ∈ S having associated
graph Gs not complete



Tame degree of the monoid, practical info

In the numerical semigroup case, Gs not complete means that
s = w + nj where w ∈ S \ {0}, w − ni 6∈ S for some ni , nj atoms
of the monoid
In the affine case, Apéry sets are not that easy to compute, but
one can still use the following fact

Primitive elements and tame degree

Let A be the matrix whose columns are the atoms of the monoid
The tame degree of the monoid is achieved in an element s
such that there exists v = v+− v− in a Graver basis of Ax = 0
with ϕ(v+) = s

So, we can use once more 4ti2 for the Hilbert basis computations
and Normaliz or 4ti2 for the factorizations of each candidate



The ω-primality

Let S be an affine semigroup with atoms A = {a1, . . . , ak}, and let
s ∈ S
The ω-primality of s, ω(s), is the least integer N such that
whenever (

∑k
i=1 λiai )− s ∈ S , there exists

(β1, . . . , βk) ≤ (λ1, . . . , λk) such that (
∑k

i=1 βiai )− s ∈ S and∑
βi ≤ N

Calculating ω-primality

ω(s) is the maximum of the lengths of the minimal elements of
Z(s + S)



The ω-primality, practical information

We want to calculate ω(s), and the atoms are A; A is a matrix
with columns the elements of A

For numerical semigroups, one only has to look at
factorizations of elements of the form w + a with
w ∈ S \ {0}, w − s 6∈ S and a ∈ A
For affine semigroups, we can compute the minimals of
Z(s + S) or find the solutions to Ax = s + Ay , project on x ,
and take the minimal ones

So we can either use Singular+preimage or
Normaliz+inhom equations or 4ti2

gap> OmegaPrimalityOfElementInAffineSemigroup(

[1000],[[31],[51],[75],[49]]);

37


