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1. INTRODUCTION  
 

PLANNING PUBLIC TRANSPORT 

RAILWAY NETWORK’S 
INFRASTRUCTURE 

STRATEGICAL level (1) 

LINE DESIGN STRATEGICAL level(2) 

SETTING FREQUENCIES TACTICAL level 

ROLLING STOCK  OPERATIONAL level (1) 
 

CREW SCHEDULES OPERATIONAL level (2) 
 

 

Line Planning is a key 

phase when designing a 

public transportation 

system. 

 

It consists of determining 

a set of transit lines with 

their corresponding 

operating frequencies, 

such that most of trip 

demand can be satisfied. 
 
 

There are two main perspectives: 

   

 Minimize operating costs (point of view of the operator) 

 

 Minimize riding and transfer times (perspective of passengers). 



1. INTRODUCTION (i) 
 

 

The single-line Train Timetabling Problem is devoted to obtaining and optimizing 

timetables for trains with different levels of priority that share a railway line with 

single and multiple track sections.  

 
 

 

Given a railway infrastructure provided with different sections along a single 

transit line, the Train Timetabling Problem (TTP) consists of computing 

timetables that satisfy existing constraints and that optimize a single/multicriteria 

objective function for trains of both, passengers and /or cargo.  

 

Timetable design is a central problem in railway planning with many interfaces 

with other classical problems: line planning, vehicle scheduling, and delay 

management.  

 



1. INTRODUCTION (ii) 
 

 

The requirement for periodicity of the timetables leads to the classification of 

TTP into Periodic (or cyclic) Train Timetabling and, on the other hand, Non-

Periodic Train Timetabling. 

 

In Periodic Timetabling, the timetable is easy to remember for the passengers 

although its solutions can become inefficient when planning resources such as 

crews and rolling stock.  

 

Serafini, P., & Ukovich, W. (1989). A mathematical for periodic scheduling problems. SIAM J. Discret. 

Math., 2, 550–581. 

Nachtigall, K., & Voget, S.  (1996). A genetic algorithm approach to periodic railway synchronization. 

Computers & Operations Research, 23, 453–463.  

Odijk, M. (1996). A constraint generation algorithm for the construction of periodic railway timetables. Trans. 

Research Part B, 30, 455–464. 

Kroon, L., & Peeters, L. (2003). A variable time model for cycling railway timetabling. Trans. Science, 37, 

198–212. 

 

ARRIVAL project (http://arrival.cti.gr/, 2009).  

 

 

http://arrival.cti.gr/


1. INTRODUCTION (iii) 
  

Non-Periodic Train Timetabling is relevant in presence of disturbances that can 

affect to the operativeness of train transit. The non-periodic train timetabling problem 

has been considered by most authors:  

Szpigel, B. (1973). Optimal train scheduling on a single track railway. In: Roos, M. (ed.) Proceedings of IFORS 

Conference on Operational Research 1972, (pp. 343–352). 

Jovanovic, D., & Harker, P.T. (1991). Tactical scheduling of rail operations: The SCAN-I system. Trans. Science, 

25, 46–64.  

Cai, X., & Goh, C.J. (1994). A fast heuristic for the train scheduling problem. Computers & Operation Research, 21, 

499–510. 

Carey, M., & Lockwood, D. (1995). A model, algorithms and strategy for train pathing. Journal of the Operational 

Research Society, 46, 988–1005. 

Higgins, A., Kozan, E., & Ferreira, L. (1997). Heuristic techniques for single line train scheduling.  Journal of 

Heuristics 3, 43–62. 

Silva de Oliveira, E. (2001). Solving Single-Track Railway Scheduling Problem Using Constraint Programming. PhD 

thesis, The University of  Leeds, School of Computing. 

Caprara, A., Monaci, M., Toth, P., & Guida, P. (2006). A lagrangian heuristic algorithm for a real -world 

train timetabling problem. Discrete Applied Mathematics, 154, 738–753. 

Ingolotti, L., Lova, A., Barber, F., Tormos, P., Salido, M.A., & Abril, M. (2006). New heuristics 

to solve the csop railway timetabling problem.  Lecture Notes in Computer Science, 4031, 400–409. 

Barber, F., Ingolotti, L., Lova, A., Tormos, P., & Salido, M.A. (2009). Meta-heuristic and 

Constraint-Based Approaches for Single-Line Railway Timetabling. Lecture Notes in Computer Science, 5868, 145–181. 

Mesa, J.A., Ortega, F.A., & Pozo, M.A. (2009). Effective allocation of fleet frequencies by reducing 

intermediate stops and short turning in transit systems. Lecture Notes in Computer Science, 5868, 293–309. 

Michaelis M., & Schöbel, A. (2009). Integrating line planning, timetabling, and vehicle scheduling: a customer-

oriented heuristic. Journal of Public Transport, 1, 211–32. 

 



2. GEOMETRIC REPRESENTATION OF TRAIN TIMETABLES (i) 
 

Managers usually use running maps as graphic tools to plan train timetables. A 

running map is a time-space diagram where possible crossings of trains can be 

observed.  Figure 1 shows the C4 line that belongs to the Madrid commuter 

railway network .  

Figure 2 shows twenty-five instances of train schedules along the previous transit 

corridor. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 1.: Line C4 (Parla-Atocha). Fig 2.: Train schedule 



2. GEOMETRIC REPRESENTATION OF TRAIN TIMETABLES (ii) 
 

A transit line of high traffic density will generate in a labyrinthine tangle of 

polygonal lines, each of which will correspond to the hours of operation of a 

train, making infeasible a non-automated assessment of the possible 

alternatives. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. GEOMETRIC REPRESENTATION OF TRAIN TIMETABLES (iii) 
 

MESA, J.A., ORTEGA, F.A., & POZO, M.A. (2013). A geometric model for an 

effective rescheduling after reducing service in public transportation systems. Computers & 

Operations Research, 40, 737-746. 

 

Context: SINGLE RAILWAYS CORRIDOR 

 

 H1. All trains run by the same railways corridor in one direction and at  constant 

commercial speed along the way. 

 

 H2. There is a common time period (h) that  is used as unit for quantifying the time 

required for all service tasks sequenced. 

 

 H3. Time taken to travel without stopping between two consecutive stations is h. 

 

 H4. Minimum time required for boarding and alighting passengers on/from train is 

also h. 

 

 H5. Temporary security margin between each pair of consecutive trains is a 

multiple of h. 

 

 The above assumptions can be relaxed without altering the validity of the model.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. GEOMETRIC REPRESENTATION OF TRAIN TIMETABLES (iv) 
 

Event-activity maps at stations along the corridor. 

A uniform grid of squares of length h (in terms of time) establishes feasible times 

for locating train maneuvers at each station of the line. Each active point in the 

event-activity map will indicate, simultaneously,  arrival time (X-coordinate) and 

departure time  (Y-coordinate) of an specific train. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three trains passing through 
the station k 



2. GEOMETRIC REPRESENTATION OF TRAIN TIMETABLES (v) 
 

 

The sequence of stations (with stopping or not) along the railway line will 

correspond to a succession of temporary diagrams with active points 

indicating arrival-departure timetables. 

Each timetable-point in the k-th diagram of activity will match to some other 

feasible point of the vertical segment that starts from its projection on the 

diagonal in the (k +1)-th activity-map. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESTACION k ESTACION k 1

Feasibility zone of timetable-points between 

consecutive stations 



3. PATTERN OF DEMAND BEHAVIOR (i) 
 

Assume that arrival / departure times of trains at stations were previously set 

and are known by users.  

 

Figure explains in percentage terms the travelers’ accumulation on the platform 

of station k, due to the imminent arrival of the scheduled train i at time ti. 

 

Time interval associated with the arrival of travelers to the platform is 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Usual demand behavior in terms of percentage 

of user´s presence at platform 
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If the train i arrived on time, the whole 

population placed on platform could be 

transported, as shows the figure. 



3. PATTERN OF DEMAND BEHAVIOR (ii) 
 

Nevertheless, if train i were delayed, the reaction of users when they know 

the existence of such delay would consist of initially waiting along a short 

certain period of time. Subsequently, the curve that models the percentage of 

population waiting would appear stabilized. After this period, the traveler 

population gradually decreases until disappearing.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Demand behavior when train is delayed. 
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If the train arrived late, only a portion of the population that normally 

waits could be transported. 



3. PATTERN OF DEMAND BEHAVIOR (iii) 
 

Finally, if the train arrived and departed in advance, only users who were 

already placed on the platform could take the train. The other passengers 

will be coming in the usual way, because they were unaware of this schedule 

change (see figure ).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Demand behavior if train departed in advance. 
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The option to wait a certain interval of time leads to the possibility of 

taking the next train.  



3. PATTERN OF DEMAND BEHAVIOR (iv) 
 

Assuming this behavior pattern, a new time for the train arrival/departure at 

the station can be determined, taking advantage of these overlapping demand 

curves.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overlapping curves of  population behaviour 

The subsequent rescheduling of train timetables will have the objective of 

minimizing the loss of passengers.  

 

Two scenarios can be considered  depending on that passengers require 

transfers toward / from other network lines are (or not) at particular times.   
  



4. FORMULATION OF THE MODEL WITHOUT TRANSFERS (i) 
 

Indices and Sets 

  index identifying trains of set I 

  index identifying cantons (or stations) of set K 

  indices identifying the time horizon discretization T 

  coordinates corresponding to temporary map M at station k  

 

Parameters 

  population available to boarding  to train i at station k and at time v 

 

Variables 

  binary variable equals to 1 if train i is located at point (u, v) at station k; 

   0, otherwise 
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The objective function maximizes customers’ mobility by using the train system 



4. FORMULATION OF THE MODEL WITHOUT TRANSFERS (ii) 

(5) If there is a timetable-point 

located at position (u, v) of the 

temporary map for the k-th 

station, then there must be 

another timetable point, at the 

(k + 1)-th station, on the 
v-th column 

(7) Binary nature of the decision 
variables 
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(6) Limitation of the number 

of trains that can operate, 

according to the existing 
number of tracks 

(3, 4) There can be no train 

arriving/departing from the 

k-th station if there was just 
another train operating 

(2) Forced passage through each station 

(with or without stopping) for all trains to 
be determined 

(1) The number of train schedules to be 
located must be exactly |I|. 



4. GREEDY ALGORITHM for selecting the |I| better solutions in sequence 

 [Step 1] Set the mesh density of parameter h. Generate the sequence of temporary maps 

corresponding to the sections of railway line. Locate the existing timetable-points (u,v). 

 

[Step 2] Estimate populations         for the remaining unmeasured timetable-points, 

according to the previous procedure, and obtain the maximum value  

 

[Step 3] Build an initial feasible graph G1, composed of a sequence of maps ranging from 

the map k = 1 to k = |K| - 1 and whose edges connect points (u, v)  of the map k-th with 

points of the (k +1)-th map, according to feasibility criteria.  
 

k

uva
maxa

 [Step 4] i=1.  

While  i  is less than |I| 

- Using a shortest path algorithm, determine the i-th 

optimal path connecting the two terminal stations 

of the line through the sequence of maps that 

represents graph Gi  

-Remove the feasible arcs used in the i-th path and 

those infeasible (isolated) arcs arising from the 

previous reduction. The new graph is denoted by Gi+1 

for the next iteration.  

         - i:=i+1   
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Assume a railway line that consists of 7 equi-spaced stations, separated from each 

other by a distance (travel time) equal to h. There are 3 vehicles crossing the line. 

  Operating time [8:20 to 9:30] is discrete with periodicity of size h = 2 minutes. 

  The arrival / departure timetables at stations are known by users (Table 1) in 

addition to the matrix of  users’ arrivals at each station (Table 2) 

 

 

 

 

 

5. AN EXAMPLE (i) 

Station Number 1 2 3 4 5 6 7 

Train 1: 
Arrival/Departure  8:26/8:28 8:30/8:32 8:34/8:36 8:38/8:42 8:44/8:48 8:50/8:52 8:54/8:56 

Train 2: 
Arrival/Departure  8:38/8:40 8:42/8:44 8:46/8:48 8:50/8:54 8:56/9:00 9:02/9:04 9:06/9:08 

Train 3: 
Arrival/Departure  8:50/8:52 8:54/8:56 8:58/9:00 9:02/9:06 9:08/9:12 9:14/9:16 9:18/9:20 

Station 
Number 1 2 3 4 5 6 7 

Train 1: 
Passengers  1417 1153 664 281 77 39 0 

Train 2: 
Passengers 1143 756 359 113 23 10 0 

Train 3: 
Passengers 2131 1204 488 117 18 7 0 



 

 Assume that, as consequence of an incident, the system operator must reduce the 

fleet size by one unit. Rescheduling train timetables must minimize the loss of users, 

by introducing advances or delays in the original schedules of the two vehicles which 

will remain operative. According to the previous model, the following distribution of 

passengers that access to stations is shown in table 1. 

 

 

 

 

  If train were not punctual, population waiting for boarding could be 

deterministically estimated (see table 2). Since it is assumed that the user loss for 

railway system is only caused by decisions of putting advanced or delayed 

schedules, the sequence of blue cells indicates optimal reprogramming of the two 

feasible schedules. 

 

 

 

 

5. AN EXAMPLE (ii) 



 The solution after applying a myopic methodology (cancel the train that serves the 

smallest number of users) can be compared with that obtained by applying the 

model (by introducing small advances or delays in the starting times to reduce the 

loss of users). 

  The results obtained are summarized in Table 4 

 

 

 

 

 

 

 

 

5. AN EXAMPLE (iii) 

TABLE 4: PASSENGERS 

  INITIAL STATUS MYOPIC SOLUTION MODEL SOLUTION 

TRAIN 1 3631 3631 3940 (1st.) 

TRAIN 2 2404 ¨ 4187 (2nd.) 

TRAIN 3 3965 3965 ¨ 

TOTAL 10000 7596 8122 

% LOSS 0% -24,04% -18,73% 



Station 1 

Station 2 

Station 3 Station 4 

Station 5 

Line A 

Line 1 

Line B 

6. EXTENDING THE MODEL IN PRESENCE OF TRANSFERS (i) 
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If transit corridor intersects with others 

transit lines at specific stations, as is 

shown in figure, the determination of 

new timetables should ensure the 

transfer of passengers between trains 

from different line runs at such 

interchange stations.  



6. EXTENDING THE MODEL IN PRESENCE OF TRANSFERS (ii) 

Two strategies can be considered: 

- Imposing synchronization between the 

timetables of these lines; that is, a 

solution can be accepted only if the 

connection between them is feasible 

(Scenario 2.1). 

- Rewarding the possibility of providing 

transfers for passengers of external lines 

towards concurrent expeditions of the 

internal line by means of a weighting 

factor    (Scenario 2.2). 

 

STATION 4

arrival time

depart. time



6. EXTENDING THE MODEL IN PRESENCE OF TRANSFERS (iii) 

For instance, Figure shows the 

timetable-point (filled in red) of another 

line (line A) when arrives/departs at/from 

station 4 at times u=4 and v=8, 

respectively. If the synchronization 

between the timetables of these lines 

were imposed, the feasible subset of 

timetable-points (i.e., ), where transfer is 

preserved, would coincide with the set of 

unfilled points in magenta color. 

Consistently with the notation used for 

decision variables in the model, let be a 

binary input data which is equal to 1 if 

train j (of an external line whose 

arrival/depart timetables are given) is 

located at timetable-point (u, v) at 

station; otherwise, its value would be 0.  

 

STATION 4

arrival time

depart. time



6. EXTENDING THE MODEL IN PRESENCE OF TRANSFERS (iv) 
 
NEW Indices and Sets 
  index that identifies trains of other transit lines concurrent with lines runs of set I.  

   

  index that enumerates the subset of stations that allow transfers to the travelers.  

   

  subset of timetable-points in the temporary map M of station s where transfers 

  between two transit lines can be carried  out 
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FORMULATING MODEL FOR SCENARIO 2.1  
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Constraints (8) establish that if there is an active (i.e.,            ) timetable-point 

located at position (u, v) of the temporary map for the s-th station of an outside 

line j, then there must be at least another active timetable-point at the same 

station for synchronizing  transfers from/toward line runs i of the inner transit line I. 
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6. EXTENDING THE MODEL IN PRESENCE OF TRANSFERS (v) 

 

FORMULATING MODEL FOR SCENARIO 2.2  

For this context, it is necessary to distinguish between users who enter in the 

system from outside and passengers who previously entered into the system with 

the certainty of being able to make a transfer to another line already.  Objective to 

maximize must take into account this division of populations and asymmetrically 

favor one over the other population by using a weighting factor           .   
 

Let              be a real input data which represents the population available to 

transferring from train j at station k and at timetable-point (u, v).  
 

Redefining the objective (1’): 
 

(1’) 

 

 

 

If k is not an interchange station, then                        and the second additive term 

is cancelled.  

Therefore, objective (1’) and constraints (2)-(8) constitute a procedure for 

maximizing mobility of travelers who enter in the system after rescheduling, by 

ensuring the option of transferring from/towards other external lines at interchange 

stations. 
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7. CONCLUSIONS  
 

 

 A geometric approach to determine the redistribution of service along a rail 

corridor has been introduced.  

 

Motivation for rescheduling railway timetables is caused by the forced reduction 

of fleet size due to accidents, strikes and other sources of train delays and 

cancellations.  

 

Two scenarios have been modelled: a context without considering transfers 

from/towards other transit lines, and a setting where the existence of transfers 

between lines must be preserved although the service must be rescheduled.  

 

A common approach for these scenarios has been developed by using a 

geometrical representation of train timetables at stations. The associated 

formulations are Integer Linear Programming models, where the number of 

decision variables can be reduced according to different constraints imposed by 

the structural and fleet capacities.  

 

The theoretical development has been illustrated with a non-sophisticated 

example in order to clarify the concepts used through the paper.  
 

 

 

 

 

 


