Record-like observations and counters

IV Encuentros Desafíos de la Matemática Combinatoria Priego de Córdoba, 27-29 Septiembre 2013

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Records and record-like observations

The connection....

Particle counters

Records and record-like observations

The connection....

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Particle Counters

Useful devices with many applications

- Geiger counters of radioactivity
- Quality of drinking water
- Air Pollutants
- Hydraulic liquids in industry

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

etc..

Particle Counters

 A particle counter observes a sequence τ of events occurring at (random) times

 $\tau_1 < \tau_2 < \tau_3 \cdots$

- Usually particle counters are blocked after the arrival of a new particle so that the counting is interrupted during this "busy" period.
- The particle counter records only a subsequence σ ,

$$\sigma_1 < \sigma_2 < \sigma_3 \cdots$$

Types of counters

- Type I or non-paralizable counters.
 - The length of the busy period is a fixed amount $\delta > 0$.
 - The busy period is not extended by the arrival of particles during the busy period.
- Type II or paralyzable counters.
 - ► The busy period is always extended δ > 0 units of time after the arrival of a particle

In both cases the detector counts only those particles arriving during idle periods.

- Arrival process homogeneous Poisson process or renewal process, Smith (1958) or Cox & Isham (1980)
- The Poisson and/or the equally distributed inter-arrival assumptions have been questioned in certain applications, Larsen & Kotinski (2009).
- The exact behavior of counters under time-varying arrival rates does not seem to be well-understood Teich (1978) or Sippl & Wiederstein (2012)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Arrival process homogeneous Poisson process or renewal process, Smith (1958) or Cox & Isham (1980)
- The Poisson and/or the equally distributed inter-arrival assumptions have been questioned in certain applications, Larsen & Kotinski (2009).
- The exact behavior of counters under time-varying arrival rates does not seem to be well-understood Teich (1978) or Sippl & Wiederstein (2012)

うして 山田 マイボット ボット シックション

- Arrival process homogeneous Poisson process or renewal process, Smith (1958) or Cox & Isham (1980)
- The Poisson and/or the equally distributed inter-arrival assumptions have been questioned in certain applications, Larsen & Kotinski (2009).
- The exact behavior of counters under time-varying arrival rates does not seem to be well-understood Teich (1978) or Sippl & Wiederstein (2012)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Poisson processes and Poisson random measures

A point process *N* is a Poisson process with rate $\lambda(t) \ge 0$ if (basically):

- Independent increments
- N(B)=number of points in $B \sim \text{Poisson}(\Lambda(B))$ where

$$\Lambda(B) = \int_B \lambda(t) \, dt$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We denote

 $N \sim \mathsf{PP}(\lambda(t))$

One of our objectives is to study the probabilistic behavior of counters under time varying rates , i.e, when the arrival process of particles is a $PP(\lambda(t))$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Records

Let $\mathbf{X} = \{X_n\}_{n \ge 1}$ be sequence of random variables.

$$T_1 = 1,$$

$$T_k = \min\{j > T_{k-1} : X_j > X_{T_{k-1}}\}, \ k \ge 2,$$
(1)

The *n*-th record is

$$R_n = X_{T_n}$$

▶ if $X_n \stackrel{iid}{\sim} F$ then R_n is the *n*-th record from the parent *F*

Records

Let $\mathbf{X} = \{X_n\}_{n \ge 1}$ be sequence of random variables.

$$T_1 = 1, T_k = \min\{j > T_{k-1} : X_j > X_{T_{k-1}}\}, \ k \ge 2,$$
(1)

The *n*-th record is

$$R_n = X_{T_n}$$

• if $X_n \stackrel{iid}{\sim} F$ then R_n is the *n*-th record from the parent F

Record-like observations

Record-like observations are generalizations of the concept of records.

Among them:

• δ -exceedances of records, Balakrishnan et al. (1996)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ δ-records, Gouet et al. (2007, 2012, 2013)
- ▶ Geometric records, Eliazar (2005)

Record-like observations

Record-like observations are generalizations of the concept of records.

Among them:

• δ -exceedances of records, Balakrishnan et al. (1996)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► δ-records, Gouet et al. (2007, 2012, 2013)
- ► Geometric records, Eliazar (2005)

δ -exceedances, Balakrishnan et al. (1996)

Let $\mathbf{X} = \{X_n\}_{n \ge 1}$ be sequence of random variables. $\delta \in \mathbb{R}$

$$T_{1,\delta} = 1, T_{k,\delta} = \min\{j > T_{k-1,\delta} : X_j > X_{T_{k-1,\delta}} + \delta\}, \ k \ge 2,$$
(2)

The *n*-th δ -exceedance is

 $A_{n,\delta} = X_{T_{n,\delta}}$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = ∽ ۹ < ℃

δ -exceedances, Balakrishnan et al. (1996)

Let $\mathbf{X} = \{X_n\}_{n \ge 1}$ be sequence of random variables. $\delta \in \mathbb{R}$

$$T_{1,\delta} = 1, T_{k,\delta} = \min\{j > T_{k-1,\delta} : X_j > X_{T_{k-1,\delta}} + \delta\}, \ k \ge 2,$$
(2)

The *n*-th δ -exceedance is

 $A_{n,\delta} = X_{T_{n,\delta}}$

δ -records, Gouet et al.

Let $\mathbf{X} = \{X_n\}_{n \ge 1}$ be sequence of random variables. $\delta \in \mathbb{R}$

$$T_{1,\delta} = 1,$$

$$T_{k,\delta} = \min\{j > T_{k-1,\delta} : X_j > M_{j-1} + \delta\}, \ k \ge 2,$$
(3)

$$M = \max\{X_k, X_j \} \text{ The p-th } \delta \text{-record is}$$

with $M_n = \max\{X_1, \ldots, X_n\}$ The *n*-th δ -record is

 $R_{n,\delta} = X_{T_{n,\delta}}$

・ロト・「「「・山下・山下・山下・山下・山下・

δ -records, Gouet et al.

Let $\mathbf{X} = \{X_n\}_{n \ge 1}$ be sequence of random variables. $\delta \in \mathbb{R}$

$$T_{1,\delta} = 1, T_{k,\delta} = \min\{j > T_{k-1,\delta} : X_j > M_{j-1} + \delta\}, \ k \ge 2,$$
(3)

with $M_n = \max\{X_1, \ldots, X_n\}$ The *n*-th δ -record is

 $R_{n,\delta} = X_{T_{n,\delta}}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Geometric records, Eliazar(2005)

Let $\mathbf{X} = \{X_n\}_{n \ge 1}$ be sequence of random variables. $\lambda > 0$

$$T_{1,\lambda} = 1,$$

$$T_{k,\lambda} = \min\{j > T_{k-1,\lambda} : X_j > \lambda M_{j-1}\}, \ k \ge 2,$$
(4)

with $M_n = \max\{X_1, \ldots, X_n\}$ The *n*-th λ -geometric record is

 $G_{n,\delta} = X_{T_{n,\lambda}}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Geometric records, Eliazar(2005)

Let $\mathbf{X} = \{X_n\}_{n \ge 1}$ be sequence of random variables. $\lambda > 0$

$$T_{1,\lambda} = 1, T_{k,\lambda} = \min\{j > T_{k-1,\lambda} : X_j > \lambda M_{j-1}\}, \ k \ge 2,$$
(4)

with $M_n = \max\{X_1, \ldots, X_n\}$ The *n*-th λ -geometric record is

 $G_{n,\delta} = X_{T_{n,\lambda}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The connection....

- Assume that the arrival process of particles is $PP(\lambda(t))$
- A remarkable property of records :

The points of a Poisson process with rate $\lambda(t)$, $t \ge 0$, are the records from the parent distribution $F(x) = 1 - \exp \Lambda(x)$, where $\Lambda(x) = \int_0^x \lambda(t) dt$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The connection....

- Assume that the arrival process of particles is $PP(\lambda(t))$
- A remarkable property of records :

The points of a Poisson process with rate $\lambda(t)$, $t \ge 0$, are the records from the parent distribution $F(x) = 1 - \exp \Lambda(x)$, where $\Lambda(x) = \int_0^x \lambda(t) dt$

L The connection....

Formally, if $N \sim \mathsf{PP}(\lambda(t))$ then

$$N(B) \stackrel{d}{=} \sum_{k=1}^{\infty} \mathbf{1}_{\{R_k \in B\}}, \ B \in \mathcal{B}(\mathbb{R})$$
(5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

where $\{R_k\}_{k\geq 1}$ is distributed as the sequence of ordinary records from the parent distribution $F(x) = 1 - \exp \Lambda(x)$

-The connection....

Gouet et al. (2012) have shown that:

If the arrival process of particles is $PP(\lambda(t))$ then the points of the process of counted particles by a type II counter are distributed as the δ -records from $F(x) = 1 - \exp \Lambda(x)$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

The connection....

We (ACM, FLB and BSM) (2013) have shown that:

If the arrival process of particles is $PP(\lambda(t))$ then the points of the process of counted particles by a type I counter are distributed as the δ -excededances from $F(x) = 1 - \exp \Lambda(x)$

うして 山田 マイボット ボット シックション

-The connection....

.... but the distribution theory of δ -exceedances, δ -record, geometric records is not well known!!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The connection....

For that reason we have started a systematic study of these record-like objects:

- ► δ-records
 - δ ≤ 0 Distribution theory of δ-records. Case δ ≤ 0. To appear in Test

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ δ > 0 (in progress...)
- ψ -exceedances (in progress...)
- Geometric records (in progress...)

-The connection....

Acknowledgements

This research has been supported by the Research Projects MTM2010-16949 of Ministerio de Educación y Ciencia, España and FQM331 Junta de Andalucía.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~