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Abstract Multi-criteria simple games constitute an extension of the basic framework of
voting systems and collective decision-making. The study of power index plays an impor-
tant role in the theory of multi-criteria simple games. Thus, in this paper, we propose the
extended Banzhaf index for these games, as the natural generalization of this index in con-
ventional simple games. This approach allows us to compare various criteria simultaneously.
An axiomatic characterization of this power index is established. The Banzhaf index is com-
puted by taking into account the minimal winning coalitions of each class. Since this index
depends on the number of ways in which each player can effect a swing, one of the main
difficulties for finding this index is that it involves a large number of computations. We pro-
pose a combinatorial procedure, based on generating functions, to obtain the Banzhaf index
more efficiently for weighted multi-criteria simple games. As an application, the distribution
of voting power in the European Union is calculated.
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1 Introduction

Voting systems and collective decision-making in which a number of voters are required to
collectively accept or reject a given single proposal have been analyzed within the frame-
work of simple games. The two most commonly used power indices in scalar simple games
are the Shapley–Shubik power index (Shapley and Shubik 1954) and the Banzhaf power
index (Banzhaf 1965) which have frequently been applied to evaluate numerous political
situations (Felsenthal and Machover 1998; Grilli di Cortona et al. 1999). While the Shapley–
Shubik index considers the order in which a winning coalition can be obtained, the Banzhaf
index is the number of swings normalized by the total number of swings. The model of
coalition formation assumed has no regard for the order of the players, and therefore each
swing receives equal importance.

Frequently, however, it is unreasonable to consider isolated issues. For instance, in many
political processes the problem is not to pick one from among a set of alternatives, but to
decide how many of a set of motions will be passed. In the literature, we find several attempts
to incorporate many possible actions for the players into theoretical game models and voting
situations, in order to more accurately model the behavior of players in a real situation. Thus,
in Felsenthal and Machover (1997, 1998), Fishburn (1973), Rubinstein (1980) the failure
of classic simple games to admit abstention as a distinguished alternative is indicated, and
voting systems with abstention are studied in these papers. Other authors consider more than
three alternatives in their analysis, and their primary concern is to introduce power indices
(Shapley–Shubik index and/or Banzhaf index) for the games they define (Amer et al. 1998;
Bolger 1993; Freixas 2005; Freixas and Zwicker 2003; Hsiao and Raghavan 1993). Related
work can be found in Pongou et al. (2011) where the notion of influence relation is extended
to institutions which allow more than two levels of participation.

Although in these models the players face multiple alternatives, they must cast a sin-
gle vote in favor of one particular option. Therefore, these settings do not allow voters to
simultaneously choose more than one of these alternatives.

The extension of simple games to multi-criteria simple games (Monroy and Fernández
2009) provides a very natural way of modeling decision problems when the decision-makers
consider multiple qualitative criteria simultaneously. These games constitute a formal frame-
work to deal with a wide range of qualitative group-decision problems, as well as a gener-
alization of the above-cited models. When modeling voting systems as multi-criteria simple
games, a more satisfactory evaluation of the influence on the outcome by the strategic posi-
tion of each player, is obtained. This analysis provides the importance of each player with
respect to the aggregated criterion, and with respect to each criterion. Thus, the decisiveness
of players and/or criteria is revealed. Example 4.1 illustrates this fact.

Monotonic multi-criteria simple games are completely defined by the sets of minimal
winning coalitions of the positive classes. When there are many of these coalitions and/or a
great number of players, it is worth knowing the power of each player in the game. There-
fore, one major goal of this paper is to show the importance of the natural generalization of
the classic Banzhaf power index to the multi-criteria simple game framework, as well as the
good behavior of this extension, in order to provide a more satisfactory evaluation of the real
power of each player. Thus, we define the Banzhaf index for multi-criteria simple games by
following an axiomatic procedure similar to Dubey and Shapley’s axiomatization for simple
games (Dubey and Shapley 1979). In addition, we propose procedures based on generating
functions to obtain this index more efficiently.

The paper is organized as follows. In Sect. 2 the model together with basic concepts,
the canonical representation and the unanimity multi-criteria simple games are introduced.
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In Sect. 3 the classic Banzhaf power index is extended to multi-criteria simple games by
using an axiomatic approach. When the multi-criteria simple game is given in a weighted
representation, the generating function of the extended Banzhaf index is provided in Sect. 4.
Section 5 is devoted to conclusions.

2 Multi-criteria simple games

In this section we summarize the model together with definitions and results that can be
consulted in Monroy and Fernández (2009, 2011).

Let N = {1,2, . . . , n} be the set of players, where every subset S of N is a coalition,
P(N) is the set of all coalitions and we denote the k qualitative criteria by C1,C2, . . . ,Ck .
These criteria are evaluated by the players in each coalition S, thereby yielding the valuation
criteria space denoted by C .

Definition 2.1 A multi-criteria qualitative game is a weighted hypergraph (N, E , φ) where
vertices, N , are the players, hyperedges, E ⊆ P(N), represent the coalitions and the weight
function, φ : E → C , represents the relative significance of coalitions.

Agents in S can value any number of criteria. The mapping function φ summarizes the
values of the criteria for the agents in S with a value. Coalitions are classified in accordance
with different established conditions on the values φ(S). Thus, a classification of the 2n − 1
coalitions in P(N) is U = {U1,U2, . . . ,Uh} where

⋃h

i=1 Ui = P(N), and each class Uj ∈ U

is the set of the coalitions whose aggregated values verify those established conditions.

Definition 2.2 A multi-criteria simple game is defined by the tuple (N, E , C, φ,U, r) where
(N, E , φ) is a multi-criteria qualitative game, U = {U1,U2, . . . ,Uh} is a classification on
P(N), and r : C → P(U) is a rule which maps each coalition aggregated value, φ(S), to a
set of classes.

Henceforth, the multi-criteria simple game will be denoted by (N,v) where v : P(N) →
P(U) is defined by v(S) = r ◦ φ(S) = r(φ(S)) = {Ul, S ∈ Ul}.

Example 2.1 (Simultaneous multiple voting) Consider a multiple vote of k candidates and
n voters, where each voter has p ≤ k votes. All voters can divide their own votes as they
please, perhaps giving all votes to one candidate or distributing them among the candidates
as they see fit. A candidate j ∈ {1,2, . . . , k} is chosen if he obtains, at least, qj votes.

In order to describe this voting process as a multi-criteria simple game, k criteria are
considered: Cj , j ∈ {1,2, . . . , k}, where criterion Cj represents the candidate j . The clas-
sification of the different coalitions is given by U = {U1,U2, . . . ,Uk,Uk+1}, where Uj ,
j ∈ {1,2, . . . , k}, is the set of coalitions for which candidate j is chosen and Uk+1 is the
set of the remaining coalitions.

The votes obtained by the candidate j from the voters in coalition S are denoted by nj (S),
j = 1,2, . . . , k. The function φ : P(N) → R

k assigns the k-tuple φ(S) = (n1(S), . . . , nk(S))

to each coalition S. The function r : R
k → P(U) establishes which of the values φ(S) verify

the different conditions of the classes, that is,

Author's personal copy



218 Ann Oper Res (2014) 215:215–230

r
(
n1(S), . . . , nk(S)

) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U1 if n1(S) ≥ q1

U2 if n2(S) ≥ q2

...

Uk if nk(S) ≥ qk

Uk+1 otherwise.

Therefore, we have defined a multi-criteria simple game, (N,v), where the value func-
tion, v = r ◦ φ, assigns to each coalition the set of classes to which it belongs.

For instance, consider a particular simultaneous multiple voting game of three candidates
(k = 3) and three voters (n = 3), where each voter has two votes which can be given to one
candidate or to two of the candidates. A candidate j ∈ {1,2,3} is chosen if he obtains, at
least, two votes (qj = 2). Suppose that player 1 gives two votes to candidate 1, player 2
gives one vote each to candidate 1 and candidate 2, and player 3 gives one vote each to
candidate 1 and candidate 2. In this situation, U1 = {{1}, {1,2}, {1,3}, {2,3}, {1,2,3}}, U2 =
{{2,3}, {1,2,3}}, U3 = ∅, U4 = {{2}, {3}}. Thus, for coalition S = {2,3}, v(S) = {U1,U2}
since the number of votes obtained by candidate 1 and candidate 2 form voters in S is 2.

The special class of monotonic multi-criteria simple games constitute an important tool
for the modeling of voting systems.

Definition 2.3 Let (N,v) be a multi-criteria simple game with classification U = {U1,U2,

. . . ,Uh}.
1. A class Ui ∈ U is a positive class if S1 ∈ Ui , and S1 ⊂ S2 ⊂ N , imply S2 ∈ Ui .
2. A class Ui ∈ U is a negative class if S2 ∈ Ui , and S1 ⊂ S2 ⊂ N , imply S1 ∈ Ui .

Example 2.2 (2.1 continued) We now show that class U2 in the particular simultaneous
multiple voting game is a positive class. Consider S1 ∈ U2 and S1 ⊂ S2. Since S1 ∈ U2, then
at least candidate 2 has obtained 2 or more votes from the voters in S1. Thus, any super-
coalition of S1, S2, will collect at least the same number of votes for candidate 2 as in S1,
and therefore S2 ∈ U2. Class U4 is a negative class. Consider the coalition S2 ∈ U4, then no
candidate has obtained 2 votes from voters in S2. Obviously, any sub-coalition of S2, S1,
will collect fewer votes than in S2, and therefore no candidate will obtain more votes from
S1 than from S2. Hence S1 ∈ U4.

From Definition 2.3, the concepts of winning coalitions and losing coalitions in scalar
simple games can be extended to the multi-criteria case as follows:

Let (N,v) be a multi-criteria simple game with classification U = {U1,U2, . . . ,Uh}.

Definition 2.4 A coalition in a positive class is called a winning coalition for the class.
A coalition is an absolute winning coalition when it belongs to all positive classes.

Definition 2.5 A coalition S is a losing coalition for a positive class Uj if S /∈ Uj . A coali-
tion is a losing coalition for the game if is a losing coalition for all positive classes.

Example 2.3 (2.1 continued) In the particular simultaneous multiple voting game, coalition
S = {1,3} is a winning coalition for class U1, and coalition S = {3} is a losing coalition for
the game.
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In this paper we focus in decisive monotonic multi-criteria simple games since they rep-
resent efficient group decision rules without inconsistencies.

Definition 2.6 A multi-criteria simple game (N,v) with classification U = {U1,U2, . . . ,Uh}
is monotonic if

v(S) ⊆ v(T ), if S ⊂ T , S ∈ Ui, and Ui is a positive class.

v(T ) ⊇ v(S), if T ⊂ S, S ∈ Ui, and Ui is a negative class.

The following result characterizes monotonic multi-criteria simple games.

Theorem 2.1 (Monroy and Fernández 2009) A multi-criteria simple game (N,v) with
classification U = {U1,U2, . . . ,Uh} is monotonic if and only if the value of each coalition,
v(S), is given by either only positive classes or by only negative classes.

Example 2.4 (2.1 continued) Consider the particular simultaneous multiple voting game
whose classification has two positive classes U1, U2, and one negative class, U4. (Since
there are no coalitions in U3, then it makes no sense to analyze U3.) From the conditions
on the criteria which define each class, it follows that Ui ∩ U4 = ∅, i = 1,2. Therefore, for
each coalition S ∈ P (N), v(S) is given by positive classes or by the negative class. Thus,
simultaneous multiple voting is a monotonic multi-criteria simple game.

The result in Theorem 2.1, together with the types of problems that will be analyzed
in this framework, suggest the possibility of considering monotonic multi-criteria simple
games where all the classes of the classification have the same nature except one class,
which has the opposite nature and contains all the coalitions which do not belong to any
of the former classes. This class is called the residual class, denoted by R, and will be
omitted when no needed. Consider a multi-criteria simple game (N,v) with classification
U = {U1, . . . ,Uh, R}.

Definition 2.7 A coalition S ∈ Ui such that N\S ∈ R, is a decisive coalition for the class Ui .

Definition 2.8 A coalition S ∈ R such that N\S ∈ Ui , is a strictly losing coalition.

Definition 2.9 A multi-criteria simple game is a decisive multi-criteria simple game if all
its winning coalitions are decisive coalitions, and all its losing coalitions are strictly losing
coalitions.

In a monotonic multi-criteria simple game, the notion of minimal winning coalition is
established as follows:

Definition 2.10 A coalition S is a minimal winning coalition for the positive class Uj if
S ∈ Uj and for each sub-coalition S ′ of S, S ′ /∈ Uj . A coalition S is an absolute minimal
winning coalition if S is a minimal winning coalition for Ui , ∀i.

Definition 2.11 A coalition S is a maximal losing coalition for the positive class Ui if
S /∈ Uj and for each super-coalition S ′ of S, S ′ ∈ Uj .
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Example 2.5 (2.1 continued) In the particular simultaneous multiple voting game, coalition
S = {2,3} is a minimal winning coalition for class U1 since S ∈ U1, but no sub-coalition,
S ′ = {2}, S ′ = {3}, belongs to U1. Note that S = {2,3} is also a minimal winning coalition
for class U2, and therefore S = {2,3} is an absolute minimal winning coalition.

Coalition S = {3} is a maximal losing coalition for class U1, since S = {3} /∈ U1, and
{1,3}, {2,3}, {1,2,3} ∈ U1.

2.1 Canonical representation of a multi-criteria simple game

Given a multi-criteria simple game (N,v) with classification U = {U1,U2, . . . ,Uh},
a canonical representation of this game is given by the hypergraph (N, ε, ν), where
ν : P(N) → {0,1}h with

ν(S) = (
νi(S)

)
i=1,...,h

and

{
νi(S) = 1 if S ∈ Ui

νi(S) = 0 if S /∈ Ui.

Henceforth, the canonical representation of the multi-criteria simple game (N,v) will be
denoted by (N, ν).

Example 2.6 (2.1, continued) The canonical representation for the particular simultaneous
multiple voting game is (N, ν) where ν : P(N) → {0,1}4, and therefore ν(S) ∈ {0,1}4.
Thus, for coalition S = {2,3}, since v(S) = {U1,U2}, it follows that ν(S) = (1,1,0,0).

The canonical representation (N, ν) of a multi-criteria simple game, (N,v) with clas-
sification U = {U1,U2, . . . ,Uh}, induces h component scalar simple games (N, νi), i =
1, . . . , h, defined by νi : P(N) → {0,1} such that νi(S) = 1 or 0. If νi(S) = 1 then S ∈ Ui

and S is a winning coalition in the scalar game (N, νi). If νi(S) = 0 then S /∈ Ui and S is a
losing coalition in the scalar game (N, νi).

Definition 2.12 The canonical representation (N, ν) of a multi-criteria simple game, (N,v),
with classification U = {U1,U2, . . . ,Uh}, is monotonic if1

ν(S) ≤ ν(T ), if S ⊂ T , S ∈ Ui, and Ui is a positive class.

ν(T ) ≥ ν(S), if T ⊂ S, S ∈ Ui, and Ui is a negative class.

Proposition 2.1 The canonical representation (N, ν) of a multi-criteria simple game (N,v)

is monotonic if and only if the multi-criteria simple game is monotonic.

When the canonical representation of a monotonic multi-criteria simple game is consid-
ered, the notion of minimal winning coalition is established as follows:

Definition 2.13 A coalition S is a minimal winning coalition for the positive class Ui if
νi(S) = 1 and νi(S

′) = 0 for each sub-coalition S ′ of S.

S G Ch
N denotes the set of multi-criteria monotonic simple games in canonical representa-

tion with the set of players N and whose classifications have the same number of positive
classes, h, and only one residual class, R. In this case, if ν(S) = (0, . . . ,0) then S ∈ R. The
set S G Ch

N is a distributive lattice.

1For x, y ∈ Rk we denote x ≥ y ⇔ xi ≥ yi , x �= y.
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2.2 Unanimity multi-criteria simple games

Let N = {1,2, . . . , n} be the set of players, and consider k qualitative criteria C1,C2, . . . ,Ck .
Let U = {U1,U2, . . . ,Uh, R} be a classification in P(N) given by conditions established on
the criteria.

For any class Uq ∈ U and for any coalition S ⊆ N , the unanimity multi-criteria simple
game (N,u(S,q)), where u(S,q) : P(N) → P(U), is defined by

u(S,q)(T ) =
{

Uq if S ⊆ T

R otherwise.

There are (2n − 1) × h unanimity multi-criteria simple games.
The canonical representation of the unanimity multi-criteria simple game (N,u(S,q)),

denoted by (N, ν(S,q)), is given by

ν(S,q)(T ) =
{

(0, . . . ,1, . . . ,0) if S ⊆ T

(0, . . . ,0, . . . ,0) otherwise

where number 1 is in position q .
Note that the canonical representation of a unanimity multi-criteria simple game, whose

classification has h classes, is equivalent to a unanimity multi-criteria game with h criteria.
Let (N, ν) ∈ S G Ch

N be the canonical representation of a monotonic multi-criteria simple
game with classification U = {U1,U2, . . . ,Uh}. Denote by W

q
m = {Sq

1 , . . . , S
q

kq
} the set of

minimal winning coalitions for the class Uq , q ∈ {1, . . . , h}.

Proposition 2.2 Each component νq , q ∈ {1, . . . , h}, of the canonical representation ν can
be expressed as νq = ν

q

(S1,q) ∨ ν
q

(S2,q) ∨ · · · ∨ ν
q

(Skq ,q).

3 The Banzhaf index for multi-criteria simple games

In this section we propose a natural extension of the Banzhaf power index of scalar sim-
ple games (Banzhaf 1965), when the canonical representation of a monotonic multi-criteria
simple game is considered. We introduce definitions and results, which are needed to pro-
vide an axiomatic characterization of the index, and we state the theorem which proves its
existence and uniqueness.

Definition 3.1 A power index in S G Ch
N is a map φ : S G Ch

N → R
h×n such that

Φ(ν) =

⎛

⎜
⎜
⎜
⎝

Φ1
1 (ν) · · · Φ1

n(ν)

Φ2
1 (ν) · · · Φ2

n(ν)
...

...
...

Φh
1 (ν) · · · Φh

n (ν)

⎞

⎟
⎟
⎟
⎠

= (
Φ1(ν), . . . ,Φn(ν)

)
.

The power (or the value) of player i in the class Uj is Φ
j

i (ν). Thus, the column
Φi(ν) ∈ R

h is the power of player i in each class, and the row Φj(ν) ∈ R
n represents the

power of each player in the class Uj .
Consider a monotonic multi-criteria simple game, (N,v) with classification U =

{U1,U2, . . . ,Uh} and canonical representation (N, ν).
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Definition 3.2 Let π be any permutation of the set N . The canonical representation (N,πν)

is given by πν(πS) = ν(S), where πS = {π(i1), . . . , π(iS)}, for all S = {i1, . . . , iS} ⊆ N .

Definition 3.3 A player i ∈ N is a dummy for the class Uj ∈ U , if for all coalition S in Uj ,
S ∪ {i} is in the class Uj . A dummy player for all the classes is called a dummy.

The key element in the construction of the Banzhaf index, sometimes known as the
Banzhaf value, is a swing.

Definition 3.4 A swing for player i ∈ N in the class Uj ∈ U is a pair of sets (S,S \ {i})j ,
such that S is a winning coalition for the class Uj and S \ {i} is not.

For each i ∈ N , we denote ηij (ν) as the number of swings for {i} in the class Uj and
η̄j (ν) as the total number of swings of the class Uj , η̄j (ν) = ∑

i∈N ηij (ν).
We denote the swing-vector of player {i} by ηi(ν), the swing-matrix of the players by

η(ν), and the total swing-vector by η̄(ν):

ηi(ν) =

⎛

⎜
⎜
⎝

ηi1(ν)

ηi2(ν)

· · ·
ηih(ν)

⎞

⎟
⎟
⎠ , η(ν) =

⎛

⎜
⎜
⎝

η11(ν) η21(ν) · · · ηn1(ν)

η12(ν) η22(ν) · · · ηn2(ν)

· · ·
η1h(ν) η2h(ν) · · · ηnh(ν)

⎞

⎟
⎟
⎠

η̄(ν) =

⎛

⎜
⎜
⎝

∑
i∈N ηi1(ν)∑
i∈N ηi2(ν)

· · ·∑
i∈N ηih(ν)

⎞

⎟
⎟
⎠ =

∑

i∈N

⎛

⎜
⎜
⎝

ηi1(ν)

ηi2(ν)

· · ·
ηih(ν)

⎞

⎟
⎟
⎠ =

∑

i∈N

ηi(ν).

When the number of swings of a player {i} in a class Uj is zero, ηij (ν) = 0, then the
player {i} is a dummy for the class, since this player is never needed to help a coalition win.

However, if the number of swings of a player {i} in a class Uj coincides with the total
number of swings of the class Uj , ηij (ν) = η̄j (ν), then player {i} is a dictator for the class
Uj . A player can be a dictator for several classes. If a player is a dictator for all the classes
then the player is an absolute dictator.

The swing vectors, ηi(ν) ∀i ∈ N , are the vector indices of Banzhaf and they assign the
sum of each player’s marginal contributions towards the coalitions to which the player be-
longs. Therefore:

ηi(ν) =

⎛

⎜
⎜
⎜
⎝

∑
S:i∈S⊂N [ν1(S) − ν1(S\{i})]

∑
S:i∈S⊂N [ν2(S) − ν2(S\{i})]

· · ·
∑

S:i∈S⊂N [νh(S) − νh(S\{i})]

⎞

⎟
⎟
⎟
⎠

.

Since the interpretation of the ratios of these vectors is of more interest than their mag-
nitudes, it is common practice to normalize these vectors:

βi(ν) =
(

ηi1(ν)

η̄1(ν)
,
ηi2(ν)

η̄2(ν)
, . . . ,

ηih(ν)

η̄h(ν)

)t

i = 1, . . . , n

which provide a matrix with h rows:

β(ν) = (
β1(ν),β2(ν), . . . , βn(ν)

) =
(

η1j (ν)

η̄j (ν)
,
η2j (ν)

η̄j (ν)
, . . . ,

ηnj (ν)

η̄j (ν)

)

j = 1, . . . , h.
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Definition 3.5 The normalized extended index of Banzhaf of the game (N,v), with canon-
ical representation (N, ν), is

β(ν) = (
β1(ν),β2(ν), . . . , βn(ν)

) =

⎛

⎜
⎜
⎜
⎜
⎝

η11(ν)

η̄1(ν)

η21(ν)

η̄1(ν)
· · · ηn1(ν)

η̄1(ν)

η12(ν)

η̄2(ν)

η22(ν)

η̄2(ν)
· · · ηn2(ν)

η̄2(ν)

· · · · · · · · · · · ·
η1h(ν)

η̄h(ν)

η2h(ν)

η̄h(ν)
· · · ηnh(ν)

η̄h(ν)

⎞

⎟
⎟
⎟
⎟
⎠

.

Another, more natural, normalization is obtained by taking into account the probability
that a player is a swinger:

(
β ′

1(ν),β ′
2(ν), . . . , β ′

n(ν)
) = 1

2n−1

⎛

⎜
⎜
⎜
⎝

η11(ν) η21(ν) · · · ηn1(ν)

η12(ν) η22(ν) · · · ηn2(ν)

· · · · · · · · · · · ·
η1h(ν) η2h(ν) · · · ηnh(ν)

⎞

⎟
⎟
⎟
⎠

which results from the following probabilistic model. Suppose that each player tosses a coin
to decide whether to vote yes or no about r issues. The set of “yes” votes, S, is then an r-
dimensional random variable which gives a probability of 1

2n−1 for each subset of N in each
of the r classes. If S is a winning coalition then the r issues are passed. For each player {i}
and for each class Uj , the winning coalitions correspond with the number of swings (S ∪{i},
S \ {i})j . That is, the probability that a player is a swinger is (β ′

1(ν),β ′
2(ν), . . . , β ′

n(ν)).
The following theorem characterizes the extended Banzhaf index for multi-criteria sim-

ple games.

Theorem 3.1 There exists a unique map Φ : S G Ch
N → R

h×n satisfying the following four
axioms:

A1: If i is a dummy then Φi(ν) = (0, . . . ,0)t .
A2:

∑
i∈N Φi(ν) = η̄(ν).

A3: For any permutation π of N , Φπ(i)(πν) = Φi(ν).
A4: For any (N, ν1) and (N, ν2) in S G Ch

N , Φ(ν1 ∨ ν2) + Φ(ν1 ∧ ν2) = Φ(ν1) + Φ(ν2).

Moreover, Φ(ν) = η(ν), for all (N, ν) in S G Ch
N .

Proof For any class Uq ∈ U and for any coalition S ⊆ N , we have defined (2n − 1)×h una-
nimity multi-criteria simple games, (N,u(S,q)), whose canonical representation, (N, ν(S,q)),
is given by

ν(S,q)(T ) =
{

(0, . . . ,1, . . . ,0) if S ⊆ T

(0, . . . ,0, . . . ,0) otherwise

where number 1 is in position q .
Each player i in N \ S is a dummy in ν(S,q) for all classes Uq , q ∈ {1, . . . , h}, then,

from A1, Φi(ν(S,q)) = (0, . . . ,0)t . In addition, if π is the permutation that interchanges i

and k (for any i ∈ S and k ∈ S) and leaves the other players fixed, then π(ν(S,q)) = ν(S,q) and
thus, from A3, Φi(ν(S,q)) = Φk(ν(S,q)). Therefore, from A2,

∑

i∈N

Φi(ν(S,q)) = |S| · Φi(ν(S,q)) = (
0, . . . , η̄(ν(S,q)), . . . ,0

)
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and Φi(ν(S,q)) is uniquely determined, if Φ exists, and is given by

Φi(ν(S,q)) =
{

(0, . . . ,
η̄(ν(S,q))

|S| , . . . ,0) if i ∈ S

(0, . . . ,0, . . . ,0) if i /∈ S

where

η̄(ν(S,q))

|S| = 2|N−S|.

In order to prove the uniqueness of the map Φ , an induction on the number of minimal
winning coalitions and on the cardinal of those coalitions is performed.

Consider (N, ν) ∈ S G Ch
N with classification U = {U1,U2, . . . ,Uh}. Denote by W

q
m =

{Sq

1 , . . . , S
q

kq
} the set of minimal winning coalitions for the class Uq , q ∈ {1, . . . , h}. From

Proposition 2.2, each component νq , q ∈ {1, . . . , h}, of ν can be expressed as νq = ν
q

(S1,q) ∨
ν

q

(S2,q) ∨ · · · ∨ ν
q

(Skq ,q).

Suppose, by induction hypothesis, that Φ(ν(S,q)) is uniquely determined if the number of
minimal winning coalitions is lower than kq . It remains to be proved that Φ(ν(S,q)) is also
uniquely determined if the number of minimal winning coalitions is kq .

If ν is not a unanimity game, then for each component νq , q ∈ {1, . . . , h}, kq > 1, and νq

can be expressed as νq = ν ′
q ∨ ν ′′

q , where ν ′
q and ν ′′

q have fewer minimal winning coalitions
for the class Uq than νq . For instance, consider ν ′

q = ν
q

(S1,q) and ν ′′
q = ν

q

(S2,q) ∨ · · · ∨ ν
q

(Skq ,q).

Analogously, ν ′
q ∧ ν ′′

q has even fewer minimal winning coalitions for the class Uq . Thus,
applying the induction hypothesis yields that Φ(ν ′

q ∧ ν ′′
q ), Φ(ν ′

q), and Φ(ν ′′
q ) are uniquely

determined, and by using A4:

Φ(νq) = Φ
(
ν ′

q ∨ ν ′′
q

) = Φ
(
ν ′

q

)+ Φ
(
ν ′′

q

)− Φ
(
ν ′

q ∧ ν ′′
q

)
.

Hence, Φ(νq) is uniquely determined and therefore, Φ(ν) is also uniquely determined.
In order to prove the existence of Φ , note that the proof of uniqueness implicitly contains

a recursive construction of Φ thereby establishing existence. However, it is simpler to prove
directly that the function η satisfies the axioms A1–A4. In fact, A1–A3 are obvious.

The expression of ηi(ν) shows that η(ν) can be extended to a linear map in S G Ch
N , and

since ν + ν ′ = (ν ∨ ν ′) + (ν ∧ ν ′), for (N, ν), (N, ν ′) ∈ S G Ch
N , then A4 is satisfied. �

Example 3.1 (2.1 continued) Consider the particular simultaneous multiple voting in Ex-
ample 2.1. In this game, due to the symmetry of the players, if the Banzhaf index is com-
puted ex-ante, then the three players have the same power in each class, which is 1/3.
However, the real power of the players is obtained ex-post, since it depends on the votes
given to the candidates. Thus, for classes U1 = {{1}, {1,2}, {1,3}, {2,3}, {1,2,3}}, U2 =
{{2,3}, {1,2,3}}, U3 = ∅, U4 = {{2}, {3}}, the extended Banzhaf index for this game be-
comes:

β(ν) = (
β1(ν),β2(ν),β3(ν)

) =
(

3
5

1
5

1
5

0 1
2

1
2

)

Since there are no coalitions in U3, then it makes no sense to consider the Banzhaf index of
the players in this class.
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Nevertheless, a player can analyze his power ex-ante taking into account his choices
and the other players’ choices, where each of these latter choices has the same probabil-
ity.

The Banzhaf index has been computed by taking into account the minimal winning coali-
tions of each class. If the multi-criteria simple game is given in a weighted representation,
then it is possible to apply this approach, since the minimal winning coalitions can be ob-
tained from this representation. However, in this situation, generating functions, by using
techniques of combinatorial analysis, become efficient tools which facilitate the computa-
tion of this index.

4 Weighted multi-criteria simple games and generating functions

Weighted systems constitute an alternative way of representing multi-criteria simple games.
The notion of weighted representation for this type of game was introduced in Monroy
and Fernández (2007). In that paper, it is shown that any multi-criteria simple game admits
two different types of weighted representations. In the first one, each class of the multi-
criteria game is defined by a family of quotas, and in the second one each class of the
classification is given by only one quota. Since the generating function method was used by
Brams and Affuso (1976) for computing the Banzhaf index in weighted voting games, in the
literature can be found several procedures, based on generating functions, which allow the
computation of different power indices (Alonso-Mejide and Bowles 2005; Fernández et al.
2002). In this section we provide the generating function of the Banzhaf index in weighted
multi-criteria simple games, which eases the computation of this index. We first introduce
some definitions and results.

Consider a multi-criteria simple game (N,v) with k criteria and classification U =
{U1,U2, . . . ,Uh}.

Definition 4.1 A weighted representation of (N,v) is [Q1, Q2, . . . , Qh|−→w 1,
−→w 2, . . . ,

−→w n]
where Qj is the family of quotas which defines the class Uj , j ∈ {1,2, . . . , h} and −→w i ∈ Rk ,
i ∈ {1,2, . . . , n}, is a set of weight vectors.

Definition 4.2 A weighted representation of a multi-criteria simple game is a canonical
weighted representation of the game if each class of the classification is defined by only one
quota vector.

Theorem 4.1 (Monroy and Fernández 2007) Any multi-criteria simple game admits a
canonical weighted representation and its dimension is upper-bounded by the cardinal num-
ber of the family of the maximal losing coalitions of the game.

The proof of this theorem provides a procedure to obtain this representation by con-
structing a weighted majority game for each maximal losing coalition L

j

k of the class Uj ,
such that L

j

k is a losing coalition and all the other coalitions are winning coalitions. If pj is
the number of maximal losing coalitions of the class Uj , ∀j = 1, . . . , h, then the canonical
weighted representation of order p, p = ∑h

j=1 pj , is
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q1
1 0 · · · 0 w1

11 w1
12 · · · w1

1n

q1
2 0 · · · 0 w21 w22 · · · w2n

· · · · · · · · · · · · · · · · · · · · · · · ·
q1

p1
0 · · · 0 w1

p11 w1
p12 · · · w1

p1n

0 q2
1 · · · 0 w2

11 w2
12 · · · w2

1n

0 q2
2 · · · 0 w2

21 w2
22 · · · w2

2n

· · · · · · · · · · · · · · · · · · · · · · · ·
0 q2

p2
· · · 0 w2

p21 w2
p22 · · · w2

p2n

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · qh

1 wh
11 wh

12 · · · wh
1n

0 0 · · · qh
2 wh

21 wh
22 · · · wh

2n

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · qh

ph
wh

ph1 wh
ph2 · · · wh

phn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In this weighted representation, each class Uj is given by a vector-weighted system,
which can be considered as the intersection of pj weighted majority games:

v
j

1 = [
q

j

1 ;wj

11,w
j

12, . . . ,w
j

1n

]
, v

j

2 = [
q

j

2 ;wj

21,w
j

22, . . . ,w
j

2n

]
, . . . ,

vj
pj

= [
qj

pj
;wj

pj 1,w
j

pj 2, . . . ,w
j
pj n

]
.

In the literature (see Algaba et al. 2003), this intersection game is considered as a weighted
multiple-majority game, denoted by v

j

1 ∧ · · · ∧ v
j
pj

, where

(
v

j

1 ∧ · · · ∧ vj
pj

)
(S) =

{
1 if w

j
t (S) ≥ q

j
t , 1 ≤ t ≤ pj

0 otherwise

with w
j
t (S) = ∑

i∈S w
j

ti .
Next, we consider generating functions which are particularly useful for solving counting

problems.

Definition 4.3 A generating function of the sequence {a0, a1, a2, . . . , } is a formal power
series f (x) = ∑∞

k=0 akx
k .

Since the Banzhaf index of a player depends on the number of swings for the player,
in Brams and Affuso (1976) generating functions method is applied to obtain the nor-
malized Banzhaf index. Thus, in Brams and Affuso (1976) is established that, for a
weighted voting game v = [q;w1, . . . ,wn], the number of swings for player i ∈ N satis-
fies ηi(v) = ∑q−1

k=q−wi
bi

k , where bi
k is the number of coalitions S ⊆ N such that i /∈ S and

weight w(S) = k.

Proposition 4.1 (Brams and Affuso 1976) Let (N,v) be a weighted voting game given by
v = [q;w1, . . . ,wn]. For a player i ∈ N , the generating functions of numbers {bi

k} are given
by:

Bi(x) =
n∏

j=1,j �=i

(
1 + xwj

)
.

We now present generating functions for the computation of the Banzhaf power index in
weighted multi-criteria simple games.
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Let (N, ν) be the canonical representation of the multi-criteria simple game, (N,v),
with classification U = {U1, . . . ,Uh, R} and consider a canonical weighted representation,
where all the weights and the quotas are positive integers. In Algaba et al. (2003) generating
functions for the computation of the Banzhaf index for weighted multiple-majority games
are provided. We apply these results to each class in the classification U in order to obtain
the Banzhaf index for a multi-criteria simple game.

Proposition 4.2 Let νj = ν
j

1 ∧ · · · ∧ ν
j
pj

be a weighted pj -majority game for the class Uj .
For each i ∈ N ,

1. The number of swings of player i in the class Uj is given by:

ηij (ν) =
w

j
t (N\i)∑

k
j
t =q

j
t −w

j
ti

1≤t≤pj

bi

k
j
1 ...k

j
pj

−
w

j
t (N\i)∑

k
j
t =q

j
t

1≤t≤pj

bi

k
j
1 ...k

j
pj

where b
k
j
1 ...k

j
pj

is the number of coalitions in Uj such that i /∈ S and w
j
t (S) = k

j
t for all

1 ≤ t ≤ pj .
2. The generating function for numbers {bi

k
j
1 ...k

j
pj

}
k
j
1 ...k

j
pj

≥0
, are given by

B
j

i (x1, . . . , xpj
) =

n∏

r=1,r �=i

(
1 + x

w
j
1r

1 . . . x
w

j
pj r

pj

)
.

Note that for pj = 1 this result coincides with that of scalar weighted voting games.

Example 4.1 (Algaba et al. 2003) A classic application in the literature of power indices is
to the European Union. The Council of Ministers of the EU represents the national govern-
ments of the member states. The council uses a voting system of a qualified majority to pass
new legislation. The Nice European Council in December 2000 established the decision rule
for the EU, whose members have been augmented to 27 countries.

The voting rule prescribed by the Treaty of Nice indicates that the result will be favorable
if it counts on the support of 2/3 of the countries, that is 18 countries, with at least 255 votes,
and with at least 62 % of the population. In order to analyze this problem as a multi-criteria
simple game, we consider the set of players N , given by the 27 countries, and three criteria.
Criterion C1 represents votes of countries, criterion C2 represents countries, and criterion C3

represents the population of each country as a percentage of the total EU population, multi-
plied by 1000. The classification of the different coalitions is given by U = {U1,U2,U3, R},
where

1. U1 is the set of coalitions S such that the total number of votes given by players in S is
at least 255.

2. U2 is the set of coalitions S such that the number of players in S is at least 18.
3. U3 is the set of coalitions S such that the sum of the percentages of the population of

each country in S is at least 62 %.
4. R is the set of the remaining coalitions.

For each coalition S ∈ P(N) we denote φ1(S) as the total votes of players in S, φ2(S) as
the cardinal of S, and φ3(S) as the sum of the percentages of the population of each country
in S. Thus,
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v(S) = r
({

φ1(S),φ2(S),φ3(S)
}) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U1 if φ1(S) ≥ 255

U2 if φ2(S) ≥ 18

U3 if φ3(S) ≥ 620

R otherwise.
Taking into account the weighted system of each class, the canonical weighted represen-

tation for this multi-criteria simple game is:
⎡

⎢
⎢
⎣

255 0 0 29 29 29 29 27 27 14 13 12

4
︷︸︸︷
12 10

2
︷︸︸︷
10

3
︷︸︸︷

7

2
︷︸︸︷

7 4 4 4 4 4 3
0 18 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 620 170 123 122 120 82 80 47 33 22 21 18 17 11 8 5 4 3 2 1 1

⎤

⎥
⎥
⎦

where
a

︷︸︸︷ indicates that this column is repeated “a” times.
In order to calculate the normalized extended Banzhaf index for this multi-criteria simple

game, we apply the procedure based on generating functions to each class of the game. Thus,
for class U1 and player 1 we obtain:

B1
1 (x) = (

1 + x29
)3(

1 + x27
)2(

1 + x14
)(

1 + x13
)(

1 + x12
)5(

1 + x10
)3

× (
1 + x7

)5(
1 + x4

)5(
1 + x3

)

= x316 + x313 + 5x312 + 10x309 + 10x308 + · · · + 25 985x254 + 28 467x253

+ 30 561x252 + 32 264x251 + 35 905x250 + 38 053x249 + 40 403x248 + 43 816x247

+ 47 157x246 + 5023x245 + 52 758x244 + 58 005x243 + 61 053x242 + 64 214x241

+ 69 571x240 + 73 476x239 + 78 077x238 + 82 208x237 + 88 087x236

+ 92 948x235 + 97 365x234 + 104 534x233 + 108 758x232

+ 115 626x231 + 121 728x230 + 127 494x229 + 134 839x228

+ 141 015x227 + 149 067x226 + · · · + 10x7 + 5x4 + x3 + 1,

which is a polynomial of degree 316, with 310 terms. The number of swings for player 1
is given by the sum of the coefficients from the 226th term to the 254th term, that is, η11 =∑254

k=226 = 2 193 664. Players 2, 3 and 4 have the same number of swings as player 1 since
they have the same weights in class U1. Analogously, the number of swings of the other
players in this class as well as the number of swings of the players in the other two classes
are obtained, yielding the total number of swings for each class: η1 = 28 186 428, η2 =
84 362 850, η3 = 132 043 208.

Note that the result given by a coalition S will be favorable if S ∈ Ui , i = 1,2,3, that is,
if the coalition belongs to the intersection of the three classes. If we aggregate the classes
by intersection, then a new multi-criteria simple game is obtained, whose classification is
U ′ = {U1,U2,U3,

⋂3
i=1 Ui, R}. The weighted representations for U1, U2 and U3 are the

same as in the original game, and the weighted representation for the new class,
⋂3

i=1 Ui , is
a vector-weighted system of order 3:

⎡

⎢
⎢
⎣

255 29 29 29 29 27 27 14 13 12

4
︷︸︸︷
12 10

2
︷︸︸︷
10

3
︷︸︸︷

7

2
︷︸︸︷

7 4 4 4 4 4 3
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

620 170 123 122 120 82 80 47 33 22 21 18 17 11 8 5 4 3 2 1 1

⎤

⎥
⎥
⎦ .

The following table contains the Banzhaf power indices of the countries for each class and
for the intersection class:
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Countries U1 U2 U3
⋂3

i=1 Ui

Germany 0.0778 0.0370 0.1750 0.0665

United Kingdom 0.0778 0.0370 0.1239 0.0665

France 0.0778 0.0370 0.1229 0.0665

Italy 0.0778 0.0370 0.1207 0.0665

Spain 0.0742 0.0370 0.0802 0.0631

Poland 0.0742 0.0370 0.0780 0.0631

Romania 0.0426 0.0370 0.0467 0.0407

The Netherlands 0.0397 0.0370 0.0326 0.0386

Greece 0.0368 0.0370 0.0217 0.0366

Czech Republic 0.0368 0.0370 0.0207 0.0366

Belgium 0.0368 0.0370 0.0207 0.0366

Hungary 0.0368 0.0370 0.0207 0.0366

Portugal 0.0368 0.0370 0.0207 0.0366

Sweden 0.0309 0.0370 0.0177 0.0325

Bulgaria 0.0309 0.0370 0.0169 0.0325

Austria 0.0309 0.0370 0.0169 0.0325

Slovak Republic 0.0218 0.0370 0.0108 0.0263

Denmark 0.0218 0.0370 0.0108 0.0263

Finland 0.0218 0.0370 0.0108 0.0263

Ireland 0.0218 0.0370 0.0079 0.0263

Lithuania 0.0218 0.0370 0.0079 0.0263

Latvia 0.0126 0.0370 0.0049 0.0198

Slovenia 0.0126 0.0370 0.0039 0.0198

Estonia 0.0126 0.0370 0.0030 0.0198

Cyprus 0.0126 0.0370 0.0020 0.0198

Luxembourg 0.0126 0.0370 0.0010 0.0198

Malta 0.0094 0.0370 0.0010 0.0177

One of the several advantages of studying the European Union system as a multi-criteria
simple game is shown in this example. When the component games are considered, the
importance of the selected criteria is revealed. For instance, the power of each country with
respect to the second criterion, which is given by the Banzhaf index of class U2, is the same
for all countries, and therefore it holds no relevance in the determination of the real power of
the countries. However, this criterion is being considered in European Union system. On the
other hand, countries with different powers in class U3 but with the same power in class U1,
end up with the same power in the intersection class. Thus, the most decisive criterion is the
first criterion. We conclude that we present a valuable analysis, since it provides the power
of each country not only with respect to the aggregated criterion, but also with respect to
each one of the criteria considered.

5 Conclusions

The extended Banzhaf index has been introduced, which provides a notion of solution for
group-decision problems where multiple players simultaneously deal with multiple quali-
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tative criteria. An axiomatic characterization, similar to that of the classic index, has been
established. It yields a quantitative measure of the power of the players in each class of the
multi-criteria simple game. The extended Banzhaf index permits us to maintain the multi-
dimensional nature of each player’s decision, since in order to obtain this index, no weights
have to be given to players nor to criteria. Thus, it is not sensitive to changes in their possible
numeric evaluations, and therefore, it better reflects the real power of the players.

The combinatorial analysis is a useful tool which facilitates the computation of the
Banzhaf index when a weighted representation of the multi-criteria simple game is con-
sidered. Therefore, a combinatorial method based on generating functions for computing
the Banzhaf index efficiently has been introduced.
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