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From single to multiobjective optimization

Let f : Rn → Rk and S ⊂ Rn compact.

v −min f (x) := (f 1(x), . . . , kk (x)) (VOP)

s.t. x ∈ S

Definition
A decision vector x∗ ∈ S is a Pareto-optimal solution for VOP if there does not exist
another decision vector x ∈ S such that f i (x) ≤ f i (x∗) for all i = 1, . . . , k and
f j (x) < f j (x∗) for at least one index j.
If x∗ is a Pareto-optimal solution f (x∗) is said to be an efficient point of VOP.

Find the entire set of PO solutions.

Many applications in different fields: Economics, Game Theory, Spacial Analysis ...
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MOLP: Very modest aspiration: The linear
case

v −min Cx := (c1x , . . . , ck x) (MOLP)

s.t. Ax ≥ b

x ≥ 0

Definition
A decision vector x∗ ≥ 0 such that Ax ≥ b is a Pareto-optimal solution for MOLP if
there does not exist another decision vector x ≥ 0 with Ax ≥ b such that c i x ≤ c i x∗ for
all i = 1, . . . , k and c j x < c j x∗ for at least one index j.
If x∗ is a Pareto-optimal solution f (x∗) is said to be an efficient point of MOLP.

Find the entire set of PO solutions.

Facial Structure of the solution set

The solution set is a connected union of faces (of any dimension)
Computing PO-set is #P-hard
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Motivation I: LP and MOLP

The single objective linear case

Active Set (A.S.) Primal A.S. Dual

A.S. Primal-Dual Non-Active Set

The multiple objective linear case

Active Set (A.S.) Primal
Steuer (1985); Yu and Zeleni (1975)

Active Set Dual
Benson (1998); Ehrgott, Löhne, Shao, (2011)

Active Set Primal-Dual
Ehrgott, P. and Rodriguez (2007)

Non-Active Set
Only partial answers: Fliege (2004,2006)

Our goals:

• New parallelism between LP and MOLP.

• Adapt the techniques of polynomial optimization (Lasserre 2009) to MOLP.
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An illustrative example

Example

Consider problem MOLP with the data:

C =

(
1 0
0 1

)
, A =


2 1
1 1
1 2
−1 0
0 −1

 , b =


4
3
4
−5
−5

 .

The problem is:

v −min{(x1, x2) : Ax ≥ b, x ≥ 0}.

Observe that the last two constraints refer to the upper bound constraints x1 ≤ 5 and
x2 ≤ 5, so they are not considered as rows of the matrix A but as the sets of upper
bounds in the polynomial constraints pj (x) in Theorem 3. Moreover, by the form of
DLPλ we can use ubD

i = 1 for i = 1, 2, 3 as valid upper bounds for the variables in the
dual problems.
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From MOLP to Polynomial inequalities

v −min Cx := (c1x , . . . , ck x) (MOLP)

s.t. Ax ≥ b

x ≥ 0

Lemma (Gass & Saaty 1955; Zadeh 1963; Geoffrion 1968)
x∗ is a Pareto-optimal solution of MOLP if and only if there exists a weighting vector
λ ∈ Λ = {ω ∈ Rk

+,
∑k

i=1 ωi = 1} such that x∗ is a solution of the following scalar
problem:

min
k∑

i=1

λi c
i (x) (SP)

s.t. Ax ≥ b

x ≥ 0

Moment approach for MOLP POP 2013 7 / 20



From MOLP to Polynomial inequalities

For a fixed λ ∈ Λ we need to solve:

min
k∑
`=1

λ`c
`x (LPλ)

s.t. Ax ≥ b

x ≥ 0.

whose dual problem is:

max
m∑

j=1

uj bj (DLPλ)

s.t. utA ≤
k∑

i=1

λi c
i

u ≥ 0.

Lemma (Strong Duality
Theorem/Complementary
Slackness Property)
Let x∗ be a feasible solution of LPλ
and let u∗ be a feasible solution of
DLPλ. Then, the following statements
are equivalent:

1 x∗ is an optimal solution of LPλ
and u∗ is an optimal solution of
DLPλ.

2 c tx∗ = btu∗.

3 x∗ and u∗ satisfy u∗t(b−Ax∗) = 0
and (u∗tA− c t)x∗ = 0.
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From MOLP to Polynomial inequalities

Hence, a solution of MOLP must be a solution of:

ut(b − Ax) = 0

(
k∑

i=1

λi c
i − utA)x = 0

Ax ≥ b (Sys1)

utA ≤
k∑

i=1

λi c
i

k∑
i=1

λi = 1

λ, u, x ≥ 0.

Exploit facial structure of PO-set
System with continuum of solutions: Resort to extreme point PO-solutions

Extensions to other problems: integer case, convex continuous... (??)
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Other MO problems...

• MO linear problems in integer variables: Short rational generating functions of
lattice points in polyhedra (De Loera, Hemmecke and Köppe 2009, Blanco and P.,
2012)

• MO convex problems, Non-convex problems ...

Moment approach for MOLP POP 2013 10 / 20



Other MO problems...

• MO linear problems in integer variables: Short rational generating functions of
lattice points in polyhedra (De Loera, Hemmecke and Köppe 2009, Blanco and P.,
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From MOLP to Polynomial inequalities

B: basis of A and N: columns of A not in B.
c`B : `-th objective function that corresponds to variables in the basis B.

Bx = b, (Sys-B)

k∑
`=1

λ`c
` − utA ≥ 0, (1)

k∑
`=1

λ`c
`
B B−1A.j −

k∑
`=1

λ`c
`
j ≤ 0, ∀j ∈ N,

k∑
`=1

λ` = 1,

where Ai· is the i-th row, A·j is the j-th column and Aij is the (i , j) element of A,
respectively.
K : least common multiple of all the determinants of full rank submatrices of (A, I ).
K ′: least common multiple of all the determinants of full rank submatrices of 1, for all B.
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From MOLP to Polynomial inequalities

Theorem
If x is a Pareto-optimal solution and extreme point of the feasible region of MOLP then
K x is the projection onto the first n-components of a solution of the system (Sys2):

h0
0(λ) :=

k∑
`=1

λ` − K ′ = 0,

h0
1(x, u) := ut(K b − Ax) = 0,

h2(x, u) := (
k∑

`=1

λ`c` − ut A)x = 0,

g0
s (x) := As·x − Kbs ≥ 0,

gj (u, λ) :=
k∑

`=1

λ`c`
j − ut A·j ≥ 0,

pj (x) :=

ubP
j K∏

`=0

(xj − `) = 0,

qs (u) :=

ubD
s K′∏
`=0

(us − `) = 0,

tr (λ) :=
K′∏
`=0

(λr − `) = 0.

Conversely, any of the finitely many solutions of System (Sys2) induces a Pareto-optimal
solution of MOLP and all the Pareto-optimal extreme points are included among them.
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Example: Continuation

The System applied to the example is:

(Sys2)



h0
0 = λ1 + λ2 − 6 = 0

h0
1 = u1(24− 2x1 − x2) + u2(18− x1 − x2) + u3(24− x1 − 2x2) = 0

h1
2 = (−2u1 − u2 − u3 + λ1)x1 + (−u1 − u2 − 2u3 + λ2)x2 = 0

g 0
1 = 2x1 + x2 − 24 ≥ 0
g 0
2 = x1 + x2 − 18 ≥ 0

g 0
3 = x1 + 2x2 − 24 ≥ 0

g 1
1 = −2u1 − u2 − u3 + λ1 ≥ 0

g 1
2 = −u1 − u2 − 2u3 + λ2 ≥ 0

p1 =
∏30
`=1(x1 − `) = 0

p2 =
∏30
`=1(x2 − `) = 0

q1 =
∏6
`=1(u1 − `) = 0

q2 =
∏6
`=1(u2 − `) = 0

q3 =
∏6
`=1(u3 − `) = 0

t1 =
∏6
`=1(λ1 − `) = 0

t2 =
∏6
`=1(λ2 − `) = 0
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MOLP and SDP
Theorem
The entire set of Pareto-optimal extreme point solutions of MOLP is encoded in the
optimal solutions, y = (yαβγ) ⊂ R, of the semidefinite program SDP − N∗, for some
N∗ ∈ N.

min y0 := 1 (SDP − N∗)

s.t. MN∗(y) � 0,

MN∗−1(h0
0y) = 0,

MN∗−1(h0
1y) = 0,

MN∗−1(h2y) = 0,

MN∗−1(g 0
s y) � 0, s = 1, . . . ,m,

MN∗−1(gjy) � 0, j = 1, . . . , n,

MN∗−ζj (pjy) = 0, j = 1, . . . , n, (2)

MN∗−ηs (qsy) = 0, s = 1, . . . , n, (3)

MN∗−νr (try) = 0, r = 1, . . . , k. (4)

Any generic solution of the above problem (for instance obtained using interior point
methods) shall give full rank to the moment matrix.
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Getting the PO-set

We can transform (Sys2) into an algebraic set adding slack variables.
Let

Ĵ = 〈h0
0, h

0
1, h2, g

0
1 , . . . , g

0
m, g1, . . . , gn, p1, . . . , pn, q1, . . . , qm, t1, . . . , tk〉

the zero-dimensional ideal in R[x , u, λ], generated by all the polynomial equations
defining the System. The variety VR(Ĵ) is finite. (Apply Lasserre, Laurent, Rostalski

(2008):
R
√

Ĵ = 〈KerMs (y)〉 for some s.)

Since Ĵ is zero-dimensional R[x , u, λ]/Ĵ is a finite dimensional R-vector space with the
usual addition and scalar product. Let BĴ = {b1, . . . , bN} be a basis.

Furthermore, R[x , u, λ]/Ĵ is an algebra with multiplication [f ][g ] = [fg ].
For any h ∈ R[x , u, λ]:

mh : R[x , u, λ]/Ĵ → R[x , u, λ]/Ĵ
f → mh([f ]) := [fh]

Let M̂h be the multiplication matrix associated with the linear operator mh expressed in
the basis BĴ .

Moment approach for MOLP POP 2013 15 / 20



MOLP and SDP

For any v ∈ VR(Ĵ), let rv := (b`(v))1≤`≤N ∈ RN be the evaluation of the point v by the
polynomials that define the basis BĴ .

Matrices M̂h satisfy:

M̂hrv = h(v)rv for all v ∈ VR(Ĵ)) (Stickelberger Theorem)

Theorem
For t large enough, there exists d ≤ s ≤ t such that:

rankMs (y) = rankMs−d (y) = |VR(Ĵ)|, y = (yαβγ)|αβγ|≤2t ∈ R(SDP-t).

Moreover, one can obtain the coordinates of all (x , u, λ) ∈ VR(Ĵ), as the eigenvalues of
multiplication matrices M̂x` , M̂uj , M̂λs for all ` = 1, . . . , n, j = 1, . . . ,m, s = 1 . . . , k.
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Example: Continuation

We use Gloptipoly 3 and N∗ = 4, the rank condition of Theorem 5 is satisfied, i.e.
rankM4(x , u, λ) = rankM1(x , µ, λ) = 6. Thus, we extract the following solutions of
SDP − N∗:

Solutions

x u λ

Sol. #1 (6, 12) (2, 0, 0) (4, 2)
Sol. #2 (0, 24) (2, 0, 0) (4, 2)
Sol. # 3 (6, 12) (0, 3, 0) (3, 3)
Sol. # 4 (12, 6) (0, 3, 0) (3, 3)
Sol. # 5 (12, 6) (0, 0, 3) (3, 3)
Sol. # 6 (24, 0) (0, 0, 2) (2, 4)

Note that the number of moments involved in the SDP problem that had to be solved
was 6435. In this problem, the moment matrix MN∗(x , u, λ) has size 330× 330.

Thus, projecting the set of extracted solutions onto the x-coordinates and dividing by K ,
we get the set of extreme Pareto-optimal solutions of the problem,
XE = {(4, 0), (1, 2), (2, 1), (0, 4)}.
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The PO-set

These Pareto-optimal solutions and the complete Pareto-optimal set are shown in Fig.
?? (black dots and black segments, respectively).

Figure: Pareto-optimal set of Example.
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Conclusions

• We present moment approach to find the set of extreme PO extreme points of a
MOLP.

• We explicitly give an SDP problem the solutions of which encode all the PO
extreme points of MOLP.

• We show how all these points can be obtained by applying the so called moment
matrix algorithm.

• The main drawback is the size of the SDP problem which is not polynomial in the
input size of MOLP.

• Our results also show the power of some techniques developed in the field of
polynomial optimization to be applied in apparently different areas such as
Multiobjective Optimization.
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Thanks for your attention!!!
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