test Zotero

Esto es una prueba

Naranjo Ramírez, J., Torres Márquez, M., Vega Pozuelo, R. F., & Morales Gil, A. (2016). La desecación histórica de los humedales del medio Guadalquivir: Relaciones ecoculturales, económicas y sanitarias. In J. F. Vera Rebollo, J. Olcina Cantos, & M. Hernández Hernández (Eds.), Paisaje, cultura territorial y vivencia de la geografía: Libro homenaje al profesor Alfredo Morales Gil (pp. 319–342). San Vicente del Raspeig (Alicante) : Publicaciones de la Universidad de Alicante, cop. 2016.
de una Zotero

 

Esta es una segunda prueba de Zotero

 

Y la tercera prueba

Mills, E. L. (2011). The Fluid Envelope of Our Planet: How the Study of Ocean Currents Became a Science. https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=682761
Bergamasco, A., & Malanotte-Rizzoli, P. (2010). The circulation of the Mediterranean Sea: a historical review of experimental investigations. Advances in Oceanography and Limnology, 1(1), 11–28. https://doi.org/10.1080/19475721.2010.491656
O’Gorman, E., San Martín, W., Carey, M., & Swart, S. (Eds.). (2024). The Routledge handbook of environmental history. Routledge.
Galka, J. (2023). Oceans of Ooze: Deep-Sea Sedimentary Data, Mineral Resource Frontiers, and Imperial Continuities in Ocean History. Historical Studies in the Natural Sciences, 53(5), 481–517. https://doi.org/10.1525/hsns.2023.53.5.481
Curry, A. (n.d.). Adrian Currie - Rock, Bone, and Ruin - An Optimist’s Guide to the Historical Sciences-MIT Press (2018).
Imbert, C. (2017). Computer Simulations and Computational Models in Science. In L. Magnani & T. Bertolotti (Eds.), Springer Handbook of Model-Based Science (pp. 735–781). Springer International Publishing. https://doi.org/10.1007/978-3-319-30526-4_34
Bailer-Jones, D. (2009). Scientific models in philosophy of science. University of Pittsburgh Press.
Bokulich, A. (2017). Models and Explanation. In L. Magnani & T. Bertolotti (Eds.), Springer Handbook of Model-Based Science (pp. 103–118). Springer International Publishing. https://doi.org/10.1007/978-3-319-30526-4_4
Star, S. L. (2002). Infrastructure and ethnographic practice: Working on the fringes. 14.
(N.d.).
(N.d.).
The Mediterranean Targeted Project: A new insight into the life of the Mediterranean Sea. (n.d.). CORDIS | European Commission. Retrieved November 23, 2023, from https://cordis.europa.eu/article/id/7339-the-mediterranean-targeted-project-a-new-insight-into-the-life-of-the-mediterranean-sea
Malanotte-Rizzoli, P., & Robinson, A. R. (Eds.). (1994). Ocean Processes in Climate Dynamics: Global and Mediterranean Examples. Springer Netherlands. https://doi.org/10.1007/978-94-011-0870-6
Malanotte-Rizzoli, P., & Eremeev, V. N. (Eds.). (1999). The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems. Springer Netherlands. https://doi.org/10.1007/978-94-011-4796-5
La Violette, P. E. (1989). WMCE Western Mediterranean Circulation Experiment: A preliminary review of results. Eos, Transactions American Geophysical Union, 70(31), 746. https://doi.org/10.1029/89EO00233
Gačić, M., Civitarese, G., Miserocchi, S., Cardin, V., Crise, A., & Mauri, E. (2002). The open-ocean convection in the Southern Adriatic: a controlling mechanism of the spring phytoplankton bloom. Continental Shelf Research, 22(14), 1897–1908. https://doi.org/10.1016/S0278-4343(02)00050-X
Incarbona, A., Martrat, B., Mortyn, P. G., Sprovieri, M., Ziveri, P., Gogou, A., Jordà, G., Xoplaki, E., Luterbacher, J., Langone, L., Marino, G., Rodríguez-Sanz, L., Triantaphyllou, M., Di Stefano, E., Grimalt, J. O., Tranchida, G., Sprovieri, R., & Mazzola, S. (2016). Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean Transient-type events. Scientific Reports, 6(1), 29623. https://doi.org/10.1038/srep29623
Cortina-Guerra, A., Gomez-Navarro, J. J., Martrat, B., Montávez, J. P., Incarbona, A., Grimalt, J. O., Sicre, M.-A., & Mortyn, P. G. (2021). Northern Hemisphere atmospheric pattern enhancing Eastern Mediterranean Transient-type events during the past 1000 years [Preprint]. Climate Modelling/Historical Records/Holocene. https://doi.org/10.5194/cp-2021-24
Physical oceanography of the Eastern Mediterranean (POEM): The scientific plan for the second phase of POEM (No. 57; UNESCO Reports in Marine Science). (1992). UNESCO.
Pollard, R. T., Grifftths, M. J., Cunningham, S. A., Read, J. F., Pérez, F. F., & Ríos, A. F. (1996). Vivaldi 1991 - A study of the formation, circulation and ventilation of Eastern North Atlantic Central Water. Progress in Oceanography, 37(2), 167–192. https://doi.org/10.1016/S0079-6611(96)00008-0
Infrastructuring Eastern Mediterranean - CriCon. (n.d.). Infrastructuring Eas. Retrieved October 13, 2023, from https://www.infra-eastmed.org
Wise, M. N., Editor. (2004). Growing explanations: Historical perspectives on recent science. Duke University Press.
Wise, M. N. (2011). Science as (Historical) Narrative. Erkenntnis (1975-), 75(3,), 349–376. https://www.jstor.org/stable/41476728
Cristalli, C., & Sánchez-Dorado, J. (2021). Colligation in modelling practices: From Whewell’s tides to the San Francisco Bay Model. Studies in History and Philosophy of Science Part A, 85, 1–15. https://doi.org/10.1016/j.shpsa.2020.11.001
Wise, M. N., N. H. Creager, A., & Lunbeck, E. (Eds.). (2007). Sciences Without Laws: model system, cases, exemplary narratives. Duke University Press.
Leonelli, S. (2019). What distinguishes data from models? European Journal for Philosophy of Science, 9(2), 22. https://doi.org/10.1007/s13194-018-0246-0
Hon, G., & Goldstein, B. R. (2021). Maxwell’s role in turning the concept of model into the methodology of modeling. Studies in History and Philosophy of Science, 88, 321–333. https://doi.org/10.1016/j.shpsa.2021.03.010
Hansson, S. O. (Ed.). (2015). The Role of Technology in Science: Philosophical Perspectives (Vol. 18). Springer Netherlands. https://doi.org/10.1007/978-94-017-9762-7
ves. The narratives thataccompanysimulations and articulate theirmeaningare typicallyhistorical or natural historical in kind.They explaincomplexphenomenaby growingthemratherthanby referring themto generallaws. (n.d.).
ble changeinmodesof scientific explanatio. (n.d.).
The traditional mode of explanationin physicsvia deductionfrom partialdifferential equationsis contrasted herewithexplanationvia simulatio. (n.d.).
all-important roleof technologies in scienc. (n.d.).
“whileprogressin scienceand engineering can becatalyzedby entirely new theoretical insights, itis moreoften the casethatrevolutionary advancesspringfromthe arrival on the scene of new technologiesthat allowinvestigators to exploreunresolvedquestionswithnew tools,or to ask previouslyunapproachable questions”(Tilghman2009). (n.d.).
A starting pointcan be had fromwritings in literarc yriticismthatexplicitlytreat written languageas technolog. (n.d.).
ves I aminspired directly bythe recent works of Mary Morgan on the waynarrative functions in the use of models byeconomists (Morgan 2001, 2007). More generally, I have longfollowed theworks ofHans-Jörg Rheinberger, forexample, histhoughts on Historiality, Narration, and Reflection (1997, ch.11):"Experimental systems contain remnants of older narratives aswell as shreds and traces of narratives that havenotyetbeenrelated" (p.186). Theyare “generators ofepistemic novelty” (p.229. (n.d.).
writingmay be said to provideour mostpervasive “technologo yf distance” in space and tim. (n.d.).
Theautonomyofwritten languageis also crucial toitsroleas a vehicle of critical reflection and creative imaginatio. (n.d.).
relationbetweenthesetwo features throug t hhe role of narra. (n.d.).
technologiesof knowledgeas languagesthatsupportparticular formsof explanatornyarrative. (n.d.).
“The materializedrealizationof languagein writingis the conditionthat allows fortheautonomization of literature” (Berman2007,p. 64).2. (n.d.).
I will add mathematical languagesto this assessmen. (n.d.).
Theircreative function reflects inpart,I willargue,thecapacitytosupport narratives ofparticular kindsabouttheobjectsof scienc. (n.d.).
We caneasilygeneratean instructive examplefor heatconductio. (n.d.).
arguing against. (n.d.).
thewritten equation,givesa materialized and objectifier depresentation of ourthinking about theproblemof heat conducti. (n.d.).
The ubiquityof PDE’s in physicsis reflected in thestandardized toolboxesof mathematical techniqu. (n.d.).
intuition is essential to anycreativeuse of the toolbox. Typically, itrelatesthephysicalproblemto a PDEthrouga h storyabouta pieceof theworld.It is this relation ofstorytomathematical structure that interests mehere (Morgan2001, 2007). (n.d.).
, we do not have to start out,as Fourier did,by. (n.d.).
thatphysicalexplanationsshouldreduceto microscopii cnteractio. (n.d.).
althoughwe do needto havea similar background storyat han. (n.d.).

 

Listado:

 

Biblioteca:

Elementos de nivel superior

0 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir!

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *