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Different kinds of control systems

Boundary control: Locally distributed control: Multiplicative control:

v = Au+ Bu v = Au+ Bu+pl, v = Au+ pBu
u = plaa u=glaa u = glaa
u(0)=0 u(0)=0 u(0) = up
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Different kinds of control systems

Themap®:p—=uis

Boundary control: Locally distributed control:

v = Au+ Bu u = Au+ Bu + pl,,
u = plaa u = glaa
u(0)=0 u(0)=0

linear linear

Multiplicative control:
v = Au+ pBu

u = gloo
u(0) = up

nonlinear
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Bilinear control systems

Multiplicative control:

u' = Au+ pBu (BCS)
u = glaa
u(0) = wp

Let X be a Banach space with dim(X)=+c0. Let A generate a C-semigroup of bounded linear operators

on X and B : X — X be a bounded linear operator. Let uy € X be fixed, and let u(t; p, up) denote the

unique solution of (BCS) for p € L}, ([0, +-00), R). The set of states accessible from wuo defined by

S(uo) = {u(t; p, wo)i t > 0,p € Lipc([0, +00), R), r > 1}

is contained in a countable union of compact subsets of X and, in particular, has a dense complement.
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Bilinear control systems

Bilinear control problem (BCP):

{ u'(t) + Au(t) + p(t)Bu(t) =0
u(0) = wp

0, P)

Let X be a Banach space with dim(X)=+c0. Let A generate a C-semigroup of bounded linear operators
on X and B : X — X be a bounded linear operator. Let uy € X be fixed, and let u(t; p, uo) denote the
unique solution of (BCP) for p € Lj, ([0, +00),R). The set of states accessible from uo defined by

S(uo) = {u(t; p, wo)i t > 0,p € Lipc([0, +00), R), r > 1}

is contained in a countable union of compact subsets of X and, in particular, has a dense complement.
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Literature on exact bilinear controllability of hyperbolic pbms

Exact controllability of bilinear hyperbolic equations (nonexhaustive list):

® K. Beauchard, C. Laurent. “Local controllability of 1D linear and nonlinear Schrédinger equations with
bilinear control.” J. de Math. Pures et Appl. (2010)
~ controllability in H,(0,1)

® K. Beauchard “Local controllability and non-controllability for a 1D wave equation with bilinear control.”
J. of Diff. Eq. (2011)
~» controllability in Hy, (0,1) x Hi(0,1)

® M. Morancey. “Simultaneous local exact controllability of 1D bilinear Schrédinger equations.” Ann. de
I'Inst. Henri Poincare (C) Non Linear Analysis. (2014)
~~ controllability in (H(30)(0, 1))V

® A. Duca. “Global exact controllability of bilinear quantum systems on compact graphs and energetic
controllability.” SIAM J. on Contr. and Opt. (2020)
~ controllability in H3 "

® P. Cannarsa, P. Martinez, C Urbani. “Bilinear control of a degenerate hyperbolic equation.” SIAM J. of
Math. An., vol. 55, n. 6, pp 6517-6553 (2023)
~ controllability in H(,,(0,1) x H{,)(0,1)

Cristina Urbani (Universitas Mercatorum) Small-time controllability of bilinear parabolic evolution equations 01/12/2025 4|23



Bilinear control systems

Bilinear control problem (BCP):

{ u'(t) + Au(t) + p(t)Bu(t) =0
u(0) = wp

0, P)

Let X be a Banach space with dim(X)=+c0. Let A generate a C-semigroup of bounded linear operators
on X and B : X — X be a bounded linear operator. Let uy € X be fixed, and let u(t; p, uo) denote the
unique solution of (BCP) for p € Lj, ([0, +00),R). The set of states accessible from uo defined by

S(uo) = {u(t; p, wo)i t > 0,p € Lipc([0, +00), R), r > 1}

is contained in a countable union of compact subsets of X and, in particular, has a dense complement.

Cristina Urbani (Universitas Mercatorum) Small-time controllability of bilinear parabolic evolution equations 01/12/2025 4|23



Bilinear control systems

Bilinear control problem (BCP):

{ u'(t) + Au(t) + p(t)Bu(t) =0
u(0) = wp

0, P)

Let X be a Banach space with dim(X)=+c0. Let A generate a C-semigroup of bounded linear operators
on X and B : X — X be a bounded linear operator. Let uy € X be fixed, and let u(t; p, uo) denote the
unique solution of (BCP) for p € Lj, ([0, +00),R). The set of states accessible from uo defined by

S(uo) = {u(t; p, wo)i t > 0,p € Lipc([0, +00), R), r > 1}

is contained in a countable union of compact subsets of X and, in particular, has a dense complement.

Cristina Urbani (Universitas Mercatorum) Small-time controllability of bilinear parabolic evolution equations 01/12/2025 4|23



Outline

2. Controllability in small time of nonlinear parabolic problems
2.1 Setting and local well-posedness

2.2 Global approximate controllability in small time

2.3 Local exact controllability

2.4 Global small time exact controllability

Cristina Urbani (Universitas Mercatorum) Small-time controllability of bilinear parabolic evolution equations 01/12/2025 4|23



Outline

2. Controllability in small time of nonlinear parabolic problems
2.1 Setting and local well-posedness
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Setting of the problem

Let T? = RY/27Z9, d € N* and consider

Be(t,x) = Ap(t,x) — wpPHH(t, x) + (u(t), QEx)¥(t,x), x €T, t >0,
Qﬁ(O,X) = ¢0(X)7

(NHE)
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Setting of the problem

Let T? = RY/27Z9, d € N* and consider

Be(t,x) = Ap(t,x) — kP (8, x) + (u(t), QE)¥(t,x), x €T, t>0,
Qﬁ(O,X) = ¢0(X)7

(NHE)

with

* peN keR
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Setting of the problem

Let T? = RY/27Z9, d € N* and consider

Be(t,x) = Ap(t,x) — wpPHH(t, x) + (u(t), Q(x)¥(t,x), x €T, t>0,
Qﬁ(O,X) = ¢0(X)7

(NHE)

with

* peN, keR
* Q=(Q,...,Qq i1, p2) : T? — RI*2 potentials, g € N, g > 2d + 1,
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Setting of the problem

Let T? = RY/27Z9, d € N* and consider

Be(t,x) = Ap(t,x) — kpPHH(t, x) + (u(t), QE)¥(t,x), x €T, t>0,
Qﬁ(O,X) = ¢0(X)7

(NHE)

with

* peN, keR
* Q=(Q,...,Qq 1, 12) : T? = RI*2 potential, g €N, g > 2d +1,

® uc i (R",RI*?) control
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Setting of the problem

Let T? = RY/27Z9, d € N* and consider

Be(t,x) = Ap(t,x) — kpPHH(t, x) + (u(t), QE)¥(t,x), x €T, t>0,
QZJ(O,X) = ¢0(X)7

(NHE)

with

* peN, keR
* Q=(Q,...,Qq 1, 12) : T? = RI*2 potential, g €N, g > 2d +1,
® uc L2 (RT,R7?) control
We prove:
1. global approximate controllability in small time on T¢
2. local exact controllability in T in any time

3. global exact controllability in small time on T
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Setting of the problem

Let T? = RY/27Z9, d € N* and consider

Be(t,x) = Ap(t,x) — kpPHH(t, x) + (u(t), QE)¥(t,x), x €T, t>0,
QZJ(O,X) = ¢0(X)7

(NHE)

with

* peN, keR
* Q=(Q,...,Qq 1, 12) : T? = RI*2 potential, g €N, g > 2d +1,
® uc L2 (RT,R7?) control
We prove:
1. global approximate controllability in small time on T¢
2. local exact controllability in T in any time
3. global exact controllability in small time on T

More precisely...
=
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Main results

(assumptions)

(i) Let tho, 1 € H*(T? R) be such that sign(to) = sign(¢/1). For any ¢ > 0 and T > 0, there exist
7 € (0, T] and u € L?((0,7),R7™?) such that the solution t(t; o, u) of (NHE) satisfies

oo (7 o, u) — hal,2 < €

(i) Let 1o,¢1 € H*(T, R) be such that 10,41 > 0 (or to,%1 < 0). For any ¢ >0 and T > 0, there
exists u € L?((0, T),R9"2) such that the solution t(t; o, u) of (NHE)

19(T ;5 2bo, u) — || ys < e
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Main results

(assumptions)

(i) Let tho, 1 € H*(T? R) be such that sign(to) = sign(¢/1). For any ¢ > 0 and T > 0, there exist
7 € (0, T] and u € L?((0,7),R7™?) such that the solution t(t; o, u) of (NHE) satisfies

oo (7 o, u) — hal,2 < €

(i) Let tho, 1 € H*(T9 R) be such that 10,1 > 0 (or ¥o,11 < 0). For any e >0 and T > 0, there
exists u € L?((0, T),R9"2) such that the solution t(t; o, u) of (NHE)

19(T ;5 2bo, u) — || ys < e

(assumptions), then (NHE-1D) is locally exactly controllable to the ground state solution ¢ in any
positive time: for any T > 0 there exists Rt > 0 such that, for any

o € {¢ € H*(T,R) : || — collsn < R},
there exists u € H*((0, T), R9"2) such that 4(T; o, u) = co.
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Local well-posedness

Let s > d/2 and Q € H*(T R9™2). For any v € H*(T?,R) and u € Li, (R",R7") there exists a
maximal time T = T(1o,u) > 0 and a unique mild solution ¥ € C°([0, T], H*(T¢,R)), VT < T, of
(NHE) represented by

P(t; %o, u) = etAwo +/ (t=2)a ((U(S) QX)) (s, x) — ktp(s, x)p+1> ds.
0
If T < +oo, then [[¢(t)]|ys - +o0ast — T .




Local well-posedness

\.

Let s > d/2 and Q € H*(T?,R%"?). For any ¢ € H*(T?,R) and u € L}, (R*,R"?) there exists a
maximal time T = T(1o,u) > 0 and a unique mild solution ¥ € C°([0, T], H*(T¢,R)), VT < T, of
(NHE) represented by

Ulein,) = 0o + [ o9 ((u(s), QU5 — mls. X)) o

If T < +o0, then ||3)(t)]|s — +00 as t — T~ . Moreover,

i. if Yo, do € Bys(ra gy(0, R), with R >0, and u, v € L}, (R*,R9"?), then for any
0<T<L mln{‘J’(ng, u), T(¢o, v)}, there exists C = C(u, v) such that

sup_[[9(t; o, u) — %(t; do, V)llps < C (Iltoo = dollys + llu = vll,2)
0<t<T
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Local well-posedness

\.

Let s > d/2 and Q € H*(T?,R%"?). For any ¢ € H*(T?,R) and u € L}, (R*,R"?) there exists a
maximal time T = T(1o,u) > 0 and a unique mild solution ¥ € C°([0, T], H*(T¢,R)), VT < T, of
(NHE) represented by

(e, ) = o + [ e ((u(s), QR (51 — mls. X)) o

If T < +o0, then ||3)(t)]|s — +00 as t — T~ . Moreover,

i. if Yo, do € Bys(ra gy(0, R), with R >0, and u, v € L}, (R*,R9"?), then for any
0<T<L mln{‘J’(z/)o, u), T(¢o, v)}, there exists C = C(u, v) such that

sup_[[9(t; o, u) — %(t; do, V)llps < C (Iltoo = dollys + llu = vll,2)
0<t<T

ii. set K = ||9]lcqo,71,15) + l|%ollms + ||ull 2. There exists 6 = §(T(zbo, u), K) > 0 such that, for any
o € H(T?,R) and i € L((0, T),R%*?) satisfying
1o = ollns + 13 — ull2 <6,
problem (NHE) admits a unique mild solution ¢ € C([0, T], H*(T?, R)) with initial condition %
and control 4.
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Outline

2. Controllability in small time of nonlinear parabolic problems

2.2 Global approximate controllability in small time
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Small-time limit of conjugated dynamics

Define the non-linear operator J

B()(x) = Y (Bge(x))*, Ve CH(T',R).

Jj=1
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Small-time limit of conjugated dynamics

Define the non-linear operator

d

B(e)(x) = > ( (Bge(x))*, Ve CHT'R),

Let s > d/2 and (Q1,..., Qy) € H**(T RY). Assume that ¢o € H*(T R), (u1,...,us) € R, and
@ € H*2(T? R) is non-negative. Then, there exists a constant d > 0 such that, for any § € (0, d),

the solution ¥ (t; e_‘s_l/z*"@/;o,d_lu) of (NHE) with u = (u1, ..., uq, 0,0) is well-defined in [0, d] and

e‘s_l/z‘”z/)(é; e_‘s_l/z‘Pwo,(;_lu) — 2Oy in K as § — 0.
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Small-time limit of conjugated dynamics

Define the non-linear operator J

B()(x) = Y (Bge(x))*, Ve CH(T',R).

Jj=1

Let s > d/2 and (Q1,..., Qy) € H**(T RY). Assume that ¢o € H*(T R), (u1,...,us) € R, and
@ € H*2(T? R) is non-negative. Then, there exists a constant d > 0 such that, for any § € (0, d),

the solution ¥ (t; e_‘s_l/z*"@/;o,d_lu) of (NHE) with u = (u1, ..., uq, 0,0) is well-defined in [0, d] and
e‘s_l/z“”z/J(zS; e_‘s_l/z‘Pwo,(;_lu) — 2Oy in K as § — 0.

Let s > d/2 and 1 € span{ @, ..., Q;}. Let ¢po € H*(T?,R). For any €, T > 0 there exists a constant

control u € R7™? such that the solution %(t; to, u) of (NHE) is defined in [0, T] and

(T o, u)||ns < €.
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Small-time limit of conjugated dynamics

Define the non-linear operator J

B()(x) = Y (Bge(x))*, Ve CH(T',R).

Jj=1

Let s > d/2 and (Q1,..., Qy) € H**(T RY). Assume that ¢o € H*(T R), (u1,...,us) € R, and
@ € H*2(T? R) is non-negative. Then, there exists a constant d > 0 such that, for any § € (0, d),

the solution ¥ (t; e_‘s_l/z*"@/;o,d_lu) of (NHE) with u = (u1, ..., uq, 0,0) is well-defined in [0, d] and
e‘s_l/z‘”z/)(é; e_‘s_l/z‘Pwo,(;_lu) — 2Oy in K as § — 0.

Let s > d/2 and 1 € span{ @, ..., Q;}. Let ¢po € H*(T?,R). For any €, T > 0 there exists a constant

control u € R7™? such that the solution %(t; to, u) of (NHE) is defined in [0, T] and

||¢( T'; %o, U)||Hs < e

.

Apply the limit of conjugate dynamics with ¢ =0 and —c = Zf:1 u; Q; small enough.
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An intermediate controllability result

Given @Q1,...,Q, € C>°(T9,R), g € N*, define the vector space
Ho = spang{Q1, ..., Qq}
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An intermediate controllability result

Given @Q1,...,Q, € C>°(T9,R), g € N*, define the vector space
Ho = spang{Q1, ..., Qq}

Define Jj, j € N*, as the largest vector space whose elements ) can be written as

¢:¢O+ZB(¢k)v o, pn€Hjm1, neN,
k=1
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An intermediate controllability result

Given @Q1,...,Q, € C>°(T9,R), g € N*, define the vector space
Ho = spang{Q1, ..., Qq}
Define Jj, j € N*, as the largest vector space whose elements ) can be written as
n
¢:¢O+ZB(¢k)v o, pn€Hjm1, neN,

k=1
and

o

Heo = | ).

0

J
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An intermediate controllability result

Given @Q1,...,Q, € C>°(T9,R), g € N*, define the vector space
Ho = spang{Q1, ..., Qq}
Define Jj, j € N*, as the largest vector space whose elements ) can be written as
n
¢:¢0+ZB(¢k)v o, pn€Hjm1, neN,

k=1
and

Let s > d/2 and (Q1,..., Q;) € C>(T9,RY) be such that 1 € Ho. Assume that H is dense in
H*(T? R). Let 9o € H*(TY R) and ¢ € H*(TY,R). For any ¢, T > 0, there exist 7 € [0, T) and
(u1, ..., ug) € L2((0,7),RY) such that the solution %(t; o, u) of (NHE) with control u = (u1, ..., ug, 0, 0)
is defined in [0, 7] and

1¥(7; o, u) — €79ol|ns < .
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An intermediate controllability result

Given @Q1,...,Q, € C>°(T9,R), g € N*, define the vector space
9{0 = SpanR{Q17 RS Qq}

Define j, j € N*, as the largest vector space whose elements ) can be written as

T[J:QDO‘FZB(QDk), 9007“'790"6:]{]—17 HENa
k=1

and

Let s > d/2 and (@1, ..., Qy) € C°°(T RY) be such that 1 € Hy. Assume that H, is dense in
H*(T? R). Let 10 € H(TY,R) and ¢ € H*(TY,R). For any ¢, T > 0, there exist 7 € [0, T) and
(t1, ..., ug) € L*((0,7),RY) such that the solution ¢ (t; 4o, u) of (NHE) with control u = (ux, ..., ug, 0, 0)
is defined in [0, 7] and

(7 o, u) — e¥ebol|ns <e.

_
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An intermediate controllability result

To prove the Proposition:
® validity for every n € N of

(P,) for any o € H(T?,R), ¢ € H,, and any &, T > 0, there exist 7 € [0, T) and
(u1, ..., uq) : [0,7] — RY piecewise constant such that the solution of (NHE) with the initial
condition o and the control u = (us, ..., ug, 0, 0) satisfies

[0 o, u) — €4

Hs(Td)

® density of Hoo in H5(T,R) :
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An intermediate controllability result

To prove the Proposition:
® validity for every n € N of

(P,) for any o € H(T?,R), ¢ € H,, and any &, T > 0, there exist 7 € [0, T) and
(u1, ..., uq) : [0,7] — RY piecewise constant such that the solution of (NHE) with the initial
condition o and the control u = (us, ..., ug, 0, 0) satisfies

[0 o, u) — €4

Hs(Td)

® density of Hoo in H5(T,R) :
Ve >0,Yyp e H(TYR), 3¢ € Hoo such that

llo = Cllpsray <€
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An intermediate controllability result

To prove the Proposition:
® validity for every n € N of

(P,) for any o € H(T?,R), ¢ € H,, and any &, T > 0, there exist 7 € [0, T) and
(u1, ..., uq) : [0,7] — RY piecewise constant such that the solution of (NHE) with the initial
condition o and the control u = (us, ..., ug, 0, 0) satisfies

[0 o, u) — €4

Hs(Td)

® density of Hoo in H5(T,R) :
Ve >0,Yyp e H(TYR), 3¢ € Hoo such that

< Ce
Hs(Td)

lle — CHHs(Td) <e = He%ﬁo - ec"ﬁo‘
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An intermediate controllability result

To prove the Proposition:
® validity for every n € N of

(P,) for any o € H(T?,R), ¢ € H,, and any &, T > 0, there exist 7 € [0, T) and
(u1, ..., uq) : [0,7] — RY piecewise constant such that the solution of (NHE) with the initial
condition o and the control u = (us, ..., ug, 0, 0) satisfies

[0 o, u) — €4

Hs(Td)

® density of Hoo in H5(T,R) :
Ve >0,Yyp e H(TYR), 3¢ € Hoo such that

< Ce
Hs(Td)

lle — CHHs(Td) <e = He%ﬁo - eC"ﬁO‘

(€EHo => FneEN:CEH, = (=¢o+ > B(&), o, ., bm € Hon

—1
- J
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An intermediate controllability result

To prove the Proposition:
® validity for every n € N of

(P,) for any o € H(T?,R), ¢ € H,, and any &, T > 0, there exist 7 € [0, T) and
(u1, ..., uq) : [0,7] — RY piecewise constant such that the solution of (NHE) with the initial
condition o and the control u = (us, ..., ug, 0, 0) satisfies

[0 o, u) — €4

Hs(Td)
> limit of conjugated dynamics
> (Pn-1)
P> point i. and ii. of well-posedness
® density of Hoo in H5(T, R) :
Ve >0,Yyp e H(TYR), 3¢ € Hoo such that

< Ce
Hs(Td)

le = Cllpsray < = HJ% - egwo‘
(€Hoo => INEN:CEH, = C=¢o+ Y B(¢), ¢o,....6m€EHn1

Jj=1
]
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Small time global approximate controllability

Let s > d/2 and let (Q, ..., Q) € C=(T9 RY) be such that 1 € Hy and Ho, is dense in H*(T?, R).

(i) Let v, 91 € H5(T?,R) be such that sign(10) = sign(t1). For any € > 0 and T > 0, there exist
7€ (0, T] and (u1, ..., ug) € L3((0,7),RRY) for which the solution v(t; o, u) of (NHE) with
control u = (ui, ..., uq,0,0) is defined in [0, 7] and satisfies

||¢(7';¢07 l.l) - ¢l||1_2 <€




Small time global approximate controllability

Let s > d/2 and let (@, ..., Q;) € C>(T? RY) be such that 1 € Hy and H, is dense in H*(T9,R).

(i) Let v, 91 € H5(T?,R) be such that sign(10) = sign(t1). For any € > 0 and T > 0, there exist
7€ (0, T] and (u1, ..., ug) € L3((0,7),RRY) for which the solution v(t; o, u) of (NHE) with
control u = (ui, ..., uq,0,0) is defined in [0, 7] and satisfies

||¢(T§¢0, l.l) - ¢1||L2 <€

(i) Let 10,91 € H*(T, R) be such that 10,41 > 0 (or 0,41 < 0). For any € > 0 and T > 0, there
exists (ut, ..., ug) € L2((0, T),RY) such that the solution 1(t; 0, u) of (NHE) with control
u=(u1, ..., Ug,0,0) is defined in [0, T] and satisfies

19(T ;5 2bo, u) — || ys < e

_
Cristina Urbani (Universitas Mercatorum) Small-time controllability of bilinear parabolic evolution equations 01/12/2025 13]23



Small time global approximate controllability

Let s > d/2 and let (@1, ..., ;) € C=(T? RY) be such that 1 € H and H is dense in H*(T9, R).

(i) Let v, 91 € H5(T?,R) be such that sign(10) = sign(t1). For any € > 0 and T > 0, there exist
7€ (0, T] and (u1, ..., ug) € L3((0,7),RRY) for which the solution v(t; o, u) of (NHE) with
control u = (uy, ..., ug, 0, 0) is defined in [0, 7] and satisfies

||1p(7-;¢0, l.l) - ¢1||L2 <€

(i) Let 0,91 € H*(T?,R) be such that 1,11 > 0 (or 0,%1 < 0). For any € >0 and T > 0, there
exists (u1, ..., ug) € L2((0, T),R9) such that the solution (t; 1o, u) of (NHE) with control
u=(u1, ..., Ug,0,0) is defined in [0, T] and satisfies

(T o, 1) — ol s < €.

\.

Idea of the proof of point (i):
® define Z = {x € T? : vo(x) = 1(x) =0} and Z, = {x € T : dist(x, Z) < n}

_
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Small time global approximate controllability

Let s > d/2 and let (@1, ..., ;) € C=(T? RY) be such that 1 € H and H is dense in H*(T9, R).

(i) Let v, 91 € H5(T?,R) be such that sign(10) = sign(t1). For any € > 0 and T > 0, there exist
7€ (0, T] and (u1, ..., ug) € L3((0,7),RRY) for which the solution v(t; o, u) of (NHE) with
control u = (uy, ..., ug, 0, 0) is defined in [0, 7] and satisfies

||1p(7-;¢0, l.l) - ¢1||L2 <€

(i) Let 0,91 € H*(T?,R) be such that 1,11 > 0 (or 0,%1 < 0). For any € >0 and T > 0, there
exists (u1, ..., ug) € L2((0, T),R9) such that the solution (t; 1o, u) of (NHE) with control
u=(u1, ..., Ug,0,0) is defined in [0, T] and satisfies

(T o, 1) — ol s < €.

\.

Idea of the proof of point (i):
® define Z = {x € T? : vo(x) = 1(x) =0} and Z, = {x € T : dist(x, Z) < n}
* define ¢, = 1z¢ log(t1/10) € L*(T7)

_
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Small time global approximate controllability

Let s > d/2 and let (@1, ..., ;) € C=(T? RY) be such that 1 € H and H is dense in H*(T9, R).
(i) Let v, 91 € H5(T?,R) be such that sign(10) = sign(t1). For any € > 0 and T > 0, there exist
7€ (0, T] and (u1, ..., ug) € L3((0,7),RRY) for which the solution v(t; o, u) of (NHE) with
control u = (uy, ..., ug, 0, 0) is defined in [0, 7] and satisfies

||1p(7-;¢0, l.l) - ¢1||L2 <€

(i) Let 0,91 € H*(T?,R) be such that 1,11 > 0 (or 0,%1 < 0). For any € >0 and T > 0, there
exists (u1, ..., ug) € L2((0, T),R9) such that the solution (t; 1o, u) of (NHE) with control
u=(u1, ..., Ug,0,0) is defined in [0, T] and satisfies

[9(T: %0, u) = ¢nllys <e

\. J

Idea of the proof of point (i):
® define Z = {x € T? : vo(x) = 1(x) =0} and Z, = {x € T : dist(x, Z) < n}
* define ¢, = 1z¢ log(t1/10) € L*(T7)

® observe that |e®"¢o — Y1ll2(ray < [|tho — ¢1||L2(Z,,) < § for n small enough
m
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Small time global approximate controllability

® observe that H'(T) is dense in L2(T?) = 3¢, € H*(T9) such that ||e‘£"¢'o - e¢"¢o||Lz(Td) <3
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Small time global approximate controllability

® observe that H'(T) is dense in L2(T?) = 3¢, € H*(T9) such that ||e‘£"¢'o - e¢"¢o||Lz(Td) <3

® we apply the intermediate controllability result with ¢ = ¢, [[v(7; vo, u) — e?oll12(ray < §-
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Small time global approximate controllability

® observe that H'(T) is dense in L2(T?) = 3¢, € H*(T9) such that ||e‘£"¢o - e¢"¢o||Lz(Td) <3

® we apply the intermediate controllability result with ¢ = ¢, [[v(7; vo, u) — e?oll12(ray < §-

Where does this method come from?
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Small time global approximate controllability

e observe that H(TY) is dense in L?(T¢) = 3¢, € H*(T) such that ||ed;"wo - e¢’7¢o||Lz(Td) <3
® we apply the intermediate controllability result with ¢ = ¢, [[v(7; vo, u) — e?oll12(ray < §-

Where does this method come from?

® Jurdjevic, Kupka "Polynomial control systems”, 1985 (finite dimensional control systems)

® Agrachev, Sarychev "Navier-Stokes equations: controllability by means of low modes forcing”, 2005
(infinite dimensional control systems)

® Agrachev, Sarychev " Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing”, 2006
(infinite dimensional control systems)

® Shirikyan "Approximate controllability of three-dimensional Navier-Stokes equations”, 2006
® Shirikyan ”"Approximate controllability of the viscous Burgers equation on the real line”, 2014

® Glatt-Holtz, Herzog, Mattingly "Scaling and saturation in infinite-dimensional control problems with
applications to stochastic partial differential equations”, 2018

® Nersesyan, "Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension”, 2021

® Duca, Nersesyan "Bilinear control and growth of Sobolev norms for the nonlinear Schrédinger equation”,

2025 (bilinear controls)
_ i
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Small time global approximate controllability

...going back to the density of Hoo:
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Small time global approximate controllability

...going back to the density of Hoo:

Assume that

{Q1,..., Qq} = {1,sin(k, x)), cos(k, x) }keL,
for some L C Z9. Then, H is dense in H*(T9,R),s > 0, if and only if

® [ is a generator,
e forany /,m € L, there exists {n;}/_; C Lsuch that / ¥ ni,n; X njy1,j=1,...,r—1,and n, L m.
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Small time global approximate controllability

...going back to the density of Ho

Assume that

{Q1,..., Qq} = {1,sin(k, x)), cos(k, x) }keL,
for some L C Z9. Then, H is dense in H*(T9,R),s > 0, if and only if

® [ is a generator,
e forany /,m € L, there exists {n;}/_; C Lsuch that / ¥ ni,n; X njy1,j=1,...,r—1,and n, L m.

In our result we assume that Q1,..., Qg € C*°(T% R) and

{1, cos(k, x), sin(k, x C Ho,

}kGL

with
L=1{(1,0,...,0),(0,1,...,0),...,(0,...,1,0),(1,...,1)} c Z°.

_
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Our approximate controllability achieved
® with a scalar input control u(t)

® in arbitrarily small time

Cristina Urbani (Universitas Mercatorum) Small-time controllability of bilinear parabolic evolution equations 01/12/2025 1623



Literature

® A.Y. Khapalov, Global non-negative controllability of the semilinear parabolic equation governed by
bilinear control, ESAIM Control Optim. Calc. Var., 7, 269-283, 2002

® A.Y. Khapalov, Controllability of partial differential equations governed by multiplicative controls,
Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1995, 2010

® P. Cannarsa and G. Floridia, Approximate multiplicative controllability for degenerate parabolic problems
with Robin boundary conditions, Commun. Appl. Ind. Math. 2(2), e-376, 16, 2011

® G. Floridia, Approximate controllability for nonlinear degenerate parabolic problems with bilinear control,
J. Differ. Equ. 257(9):3382-3422, 2014

® P. Cannarsa, G. Floridia and A. Y. Khapalov, Multiplicative controllability for semilinear reaction-diffusion
equations with target states admitting finitely many changes of sign, Journal de Mathématiques Pures et
Appliquées, 108(4), 25-458, 2017

® G. Floridia Nonnegative controllability for a class of nonlinear degenerate parabolic equations with
application to climate science, Electronic Journal of Differential Equations, pp. 1-27, 2020

Our approximate controllability achieved
® with a scalar input control u(t)
® in arbitrarily small time
® in arbitrary spatial dimensions, T?, d € N*

Cristina Urbani (Universitas Mercatorum) Small-time controllability of bilinear parabolic evolution equations 01/12/2025 1623



Literature

® A.Y. Khapalov, Global non-negative controllability of the semilinear parabolic equation governed by
bilinear control, ESAIM Control Optim. Calc. Var., 7, 269-283, 2002

® A.Y. Khapalov, Controllability of partial differential equations governed by multiplicative controls,
Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1995, 2010

® P. Cannarsa and G. Floridia, Approximate multiplicative controllability for degenerate parabolic problems
with Robin boundary conditions, Commun. Appl. Ind. Math. 2(2), e-376, 16, 2011

® G. Floridia, Approximate controllability for nonlinear degenerate parabolic problems with bilinear control,
J. Differ. Equ. 257(9):3382-3422, 2014

® P. Cannarsa, G. Floridia and A. Y. Khapalov, Multiplicative controllability for semilinear reaction-diffusion
equations with target states admitting finitely many changes of sign, Journal de Mathématiques Pures et
Appliquées, 108(4), 25-458, 2017

® G. Floridia Nonnegative controllability for a class of nonlinear degenerate parabolic equations with
application to climate science, Electronic Journal of Differential Equations, pp. 1-27, 2020

Our approximate controllability achieved
® with a scalar input control u(t)
® in arbitrarily small time
® in arbitrary spatial dimensions, T?, d € N*

® in presence of a (potentially high power) polynomial nonlinearity
=
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Outline

2. Controllability in small time of nonlinear parabolic problems

2.3 Local exact controllability
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Properties of the operator and assumptions

=» 1-dimensional case: T
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Properties of the operator and assumptions

=» 1-dimensional case: T

The ordered eigenvalues { A\« }xen of the Laplacian —A

e = K2, VkeN
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Properties of the operator and assumptions

= 1-dimensional case: T
The ordered eigenvalues { A\« }xen of the Laplacian —A
M=k, VkeN

! Except for the first one Ao = 0, all the eigenvalues are double !!
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Properties of the operator and assumptions

= 1-dimensional case: T
The ordered eigenvalues { A\« }xen of the Laplacian —A

M=k, VkeN
1 Except for the first one \g = 0, all the eigenvalues are double !!

Denote by {co, ¢k, sk }ken the corresponding orthonormal eigenfunctions of —A

1 1 . *
a(x) = N cos(kx), sk(x) = 7 sin(kx), VkeN,

which form a Hilbert basis of L*(T,R).

Reference trajectory: the ground state solution ¢,
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Properties of the operator and assumptions

= 1-dimensional case: T
The ordered eigenvalues { A\« }xen of the Laplacian —A

M=k, VkeN
1 Except for the first one \g = 0, all the eigenvalues are double !!

Denote by {co, ¢k, sk }ken the corresponding orthonormal eigenfunctions of —A
() = —= cos(kx),  su(x) = —— sin(kx)
k = \/7? ) k - \/E )

which form a Hilbert basis of L*(T,R).

Reference trajectory: the ground state solution ¢y, solution of

Aep(t, x) = A(t, x) — kP (t, x) + (u(t), Q(x))b(t,x), x €T, t >0,

$(0,x) = o(x),

VkeN",

(NHE-1D)
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Properties of the operator and assumptions

=» 1-dimensional case: T
The ordered eigenvalues { A« }ken of the Laplacian —A

e = K2, VkeN
1 Except for the first one \g = 0, all the eigenvalues are double !!

Denote by {co, ¢k, Sk }ken the corresponding orthonormal eigenfunctions of —A

c(x) = % cos(kx), sk(x) = iﬂ_ sin(kx),

f ‘\/7
which form a Hilbert basis of L*(T,R).

Reference trajectory: the ground state solution ¢, solution of

Db(t, x) = AY(t, x) — kPt x) + (u(t), Q(x))(t,x), x€T, t>0,

U(OX) = Co,

VkeN",

(NHE-1D)
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Properties of the operator and assumptions

To avoid the problem of double eigenvalues, we assume:
Assumptions on Q: Q1 =1, p1, 2 € H3(’]I‘, R) and
(1, €0)2(my # 0, (p2, co)2(my = 0,
Ib1,q1>0: AP |(,u1,ck>Lz(T)| > b1, and (u1,sk)2r) =0, VkeN,
Ib2,q2 >0 AP |</Az,5k>L2(vﬂ-)| > by, and (u2, k)2 =0, VkeN
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Properties of the operator and assumptions

To avoid the problem of double eigenvalues, we assume:
Assumptions on Q: Q1 =1, p1, 2 € H3(’]I‘, R) and
(1, €0)2(my # 0, (p2, co)2(my = 0,
Ib1,q1>0: AP |<M17Ck>L2(T)| > b1, and (u1,sk)2r) =0, VkeN,
Ib2,q2 >0 AP |<M275k>L2(T)| > by, and (u2, k)2 =0, VkeN

Example:
m(x) = x*(2r —x)?, pa(x) = x*(x = m)*(x - 27)°
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Properties of the operator and assumptions

To avoid the problem of double eigenvalues, we assume:
Assumptions on Q: Q1 =1, p1, 2 € H3(’]I‘, R) and
(1, €0)2(my # 0, (p2, co)2(my = 0,
Ib1,q1>0: AP |<N1’Ck>L2(1r)| > b1, and (u1,sk)2r) =0, VkeN,
Ib2,q2 >0 AP |<ll2»5k>L2(1r)| > by, and (u2, k)2 =0, VkeN

Example:
pm(x) = x*(2r = x)?%, pa(x) = x*(x = m)*(x - 27)°

We need the solution to be globally (in time) defined:

Let p € 2N, 90 € H3(T,R), Q € H*(T,R%™?), u € HL.((0, +00),R7™?) and x > 0. Then, for any T > 0
there exists a unique mild solution ¥ € C°([0, T], H*(T,R)) of (NHE-1D).

_
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Local controllability to the ground state solution

Let x > 0 and p € 2N. Suppose that Assumptions on Q is satisfied. Then, (NHE-1D) is locally exactly
controllable to the ground state solution ¢y, in any positive time. In other words, for any T > 0 there
exists Rt > 0 such that, for any

Yo € {¢ € H¥(T,R) : ||t — collsu < Rr},

there exists (u1, u2) € H*((0, T),R?) such that 9(T; 0, u) = co, where u = (%,0,...,0, u1, ).
0
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Local controllability to the ground state solution

Let x > 0 and p € 2N. Suppose that Assumptions on Q is satisfied. Then, (NHE-1D) is locally exactly
controllable to the ground state solution ¢y, in any positive time. In other words, for any T > 0 there
exists Rt > 0 such that, for any

Yo € {¢ € H¥(T,R) : ||t — collsu < Rr},

there exists (u1, u2) € H*((0, T),R?) such that 9(T; 0, u) = co, where u = (%,0,...,0, u1, ).
0

Steps of the proof:

® linearization of the problem
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Local controllability to the ground state solution

Let x > 0 and p € 2N. Suppose that Assumptions on Q is satisfied. Then, (NHE-1D) is locally exactly
controllable to the ground state solution ¢y, in any positive time. In other words, for any T > 0 there
exists Rt > 0 such that, for any

Yo € {¢ € H¥(T,R) : ||t — collsu < Rr},

there exists (u1, u2) € H*((0, T),R?) such that 9(T; 0, u) = co, where u = (%,0,...,0, u1, ).
0

Steps of the proof:
® linearization of the problem

® resolution of a moment problem to prove controllability of the linearized system
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Local controllability to the ground state solution

Let x > 0 and p € 2N. Suppose that Assumptions on Q is satisfied. Then, (NHE-1D) is locally exactly
controllable to the ground state solution ¢y, in any positive time. In other words, for any T > 0 there
exists Rt > 0 such that, for any

Yo € {¢ € H¥(T,R) : ||t — collsu < Rr},

there exists (u1, u2) € H*((0, T),R?) such that 9(T; 0, u) = co, where u = (%,0,...,0, u1, ).
0

Steps of the proof:
® linearization of the problem
® resolution of a moment problem to prove controllability of the linearized system
P decoupling of the moment problem into two (Assumptions on Q)
P construction of a smooth control
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Local controllability to the ground state solution

Let x > 0 and p € 2N. Suppose that Assumptions on Q is satisfied. Then, (NHE-1D) is locally exactly
controllable to the ground state solution ¢y, in any positive time. In other words, for any T > 0 there
exists Rt > 0 such that, for any

Yo € {¢ € H¥(T,R) : ||t — collsu < Rr},

there exists (u1, u2) € H*((0, T),R?) such that ¢(T; o, u) = co, where u = (%,0,...,0, u1, ).
0

Steps of the proof:
® linearization of the problem
® resolution of a moment problem to prove controllability of the linearized system
P decoupling of the moment problem into two (Assumptions on Q)
P construction of a smooth control
® use such control in the non-linear system and estimate of the distance of the solution w.r.t. the target
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Local controllability to the ground state solution

Let x > 0 and p € 2N. Suppose that Assumptions on @ is satisfied. Then, (NHE-1D) is locally exactly
controllable to the ground state solution ¢y, in any positive time. In other words, for any T > 0 there
exists Rt > 0 such that, for any

Yo € {4 € H(T,R) : ¢ — alln < Rr},
there exists (u1, u2) € H*((0, T),R?) such that 9(T; 0, u) = co, where u = (%,0,...,0, u1, ).
)

Steps of the proof:
® linearization of the problem
® resolution of a moment problem to prove controllability of the linearized system
P decoupling of the moment problem into two (Assumptions on Q)
P construction of a smooth control
® use such control in the non-linear system and estimate of the distance of the solution w.r.t. the target
® jteration of the procedure in a suitable sequence of time steps, whose series converges
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Local controllability to the ground state solution

Let x > 0 and p € 2N. Suppose that Assumptions on @ is satisfied. Then, (NHE-1D) is locally exactly
controllable to the ground state solution ¢y, in any positive time. In other words, for any T > 0 there
exists Rt > 0 such that, for any

Yo € {4 € H(T,R) : ¢ — alln < Rr},
there exists (u1, u2) € H*((0, T),R?) such that 9(T; 0, u) = co, where u = (%,0,...,0, u1, ).
)

Steps of the proof:
® linearization of the problem
® resolution of a moment problem to prove controllability of the linearized system
P decoupling of the moment problem into two (Assumptions on Q)
P construction of a smooth control
® use such control in the non-linear system and estimate of the distance of the solution w.r.t. the target
® jteration of the procedure in a suitable sequence of time steps, whose series converges

® proof that the distance of the solution w.r.t. the target is zero a time T
=
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Outline

2. Controllability in small time of nonlinear parabolic problems

2.4 Global small time exact controllability
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Global small time controllability to the ground state solution

Let d =1, k > 0 and p € 2N. Suppose that Q1,...,Qq € C(T,R) and

{1,cos x, sinx} C Ho.
Assume moreover that @ = 1, 1, o € H*(T,R) and
(p1, C0>L2(’JI‘) # 0, (p2, C0>L2(’JI‘) =0,
Jb1,q1 >0 : )\Zl |<,u1,Ck>L2(T)| > b1, and <N175k>1_2(1r) =0, Vke N*,
b2, q2 >0 : )\Zz ’(/j,z,sk>L2(T)| > by, and (/1,2, Ck>L2('Jr) =0, Vke N*

Then, (NHE-1D) is exactly controllable to the ground state solution ¢ in any positive time from any

positive state. More precisely, for any T > 0 and 19 € H*(T,R) such that ¥ > 0, there exists
u € L*((0, T),R9*?), such that

W(T; %o, u) = co.
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Global small time controllability to the ground state solution

Let d =1, k > 0 and p € 2N. Suppose that Q1,...,Qq € C(T,R) and

{1,cos x, sinx} C Ho.
Assume moreover that @ = 1, 1, o € H*(T,R) and
(1, @) 2(ry # 0, (p2; @) 2(ry = 0,
Ib1,q1 >0 : AP |(,u1,ck>,_z(T)| > b1, and (u1,sk)2ry =0, VkeN,
by, q2 >0 1 AP [(u2, sk)iz(my| = b2, and (ua, ck)izry =0, Vk €N
Then, (NHE-1D) is exactly controllable to the ground state solution ¢ in any positive time from any

positive state. More precisely, for any T > 0 and ¢ € H3('JI‘, R) el (e gy > 0, e ol
u € L*((0, T),R9*?), such that

W(T; %o, u) = co.

. J

Example of a suitable potential:
Q(x) = (1, cos x,sin x, x> (21 — x)*, x*(x — 7)*(x — 27)%).
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