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Introduction FSI Examples

Examples: Fluid-Structure interaction

@ It is the interaction of some structure with an internal or surrounding fluid flow.

[

Structures: Rigid/Elastic.

[

Naval and Aerospace engineering: Airflow around an Aircraft, Submarine.

Biology: Blood flow in arteries, Swimming of fish, micro-organism motion.

Mathematical challenges: coupled PDE model, presence of strong nonlinearities and
free boundaries due to motion of the structure.
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Introduction FSI Examples

Interesting Questions

Analysis on the interaction between Fluid and Structure:

Existence and uniqueness of solutions (weak and strong).

o Contact issues: structure-boundary or structure-structure.

@ Size of the solid goes to zero.

Long time behaviour.

Control and Stabilization.
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Introduction FSI Examples

Immersed structure: solids inside fluid

F (1)

Figure: Submarine Figure: Rigid body inside a fluid
domain
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Introduction FSI Examples

Problem Description

Q: Bounded domain in R3.

@ S(t): the closed rigid ball of radius 1 and of center h(t).

@ Fluid domain: F(t) = Q\ S(t).

h1: fixed anchor point.

The center of the ball is connected to the fixed anchor point h; by a spring and a
mechanical damper.

Initially the ball is away from boundary:

dist(S(0),09) > v > 0.
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Introduction  Mathematical framework

Mathematical set up: fluid equation

@ p: density, u: velocity, p: pressure of the fluid.

@ The fluid flow is modeled by the compressible Navier-Stokes system
(t>0,ze F(t)):

% + div(pu) =0,

Ju

pa—l—p(u-V)u—diva(um) =0.

@ The Cauchy stress tensor is defined as:

o(u,p) = 2uD(u) + adivuls — pls,
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Introduction  Mathematical framework

D(u) = 3 (Vu+ Vu') denotes the symmetric part of the velocity gradient.
A, o are the viscosity coefficients satisfying >0, A+ p > 0.
The flow is isentropic - independent of temperature.

It is in the barotropic regime where the relation between p and p is given by
p=ap”, with a > 0 and the adiabatic constant v > 2.
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Introduction  Mathematical framework

Equation: Rigid ball

o Let £ = k' and w be the linear and angular velocities of the rigid body.

@ The balance of linear and angular momentum:

ml = — / o(u,p)N dI" + w,
aS(t)

Jw' = — / (z — h(t)) x o(u,p)N drl,
aS(t)

where w is the external control force, N (¢, x) is the unit normal to S(¢) at the
point © € dS(t), directed to the interior of the ball.

o If ps is the mass density of the ball, then the formulae for m and J are

4 2m
== J = "—Is.
m 37Tp5, 5 3
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Introduction

Initial and boundary conditions

Mathematical framework

We impose the no-slip boundary conditions:

u(t,z) =0 ¢t>0, z € ON.

o Continuity of velocity at the interface

u(t,z) = £(t) + w(t) x (z — h(t))

@ The initial conditions:

p(0,) = po(-)
h(0) = ho,

Arnab Roy (BCAM)

;o u(0,-) = uo()
£(0) = Lo,

Stabilization of FSI

t>0,z €9S(t).

in 7(0),
w(0) = wo.
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Introduction  Mathematical framework

Feedback Law

The control force w is given by a feedback law:

w(t) = kp(hy — h(t)) — kal(t).

@ This type of control is known as Proportional-Derivative (PD) controller.

@ The spring-damper is connected from the center of mass of the ball to the fixed
anchor point h; and it is attracting the ball towards the point h;.

@ We want to show lim;—, o h(t) = h1, whereas the velocities of the fluid and of the
rigid ball go to 0:

lim u(t) =0, lim A'(t) =0, lim w(t)=0.

t— 00 t— 00 t—o0
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What is known

Revisit some results

o T. Takahashi, M. Tucsnak, G. Weiss: 3d case rigid ball-viscous incompressible fluid
and obtain a stabilization result by using a spring-damper control.

o A. Roy, T. Takahashi: Rigid ball-compressible fluid. Stabilization result is obtained
under a smallness condition on the initial velocities and on the distance between the
initial position of the center of the ball and hi: Local stabilization.

— Several compatibility conditions (Hilbert space setup)

@ Aim: a stabilization result but without the requirement that the initial position of
the center of the ball is close to hi: Global stabilization.

— Remedy: L” — L? setup.
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Contributions Existence of strong solution

Strategy: Existence

@ The domains F(t), S(¢) are evolving w.r.t time: the domain of the fluid equation is
one of the unknowns.

@ Introducing Lagrangian variables:

— Rewrite the coupled system in a fixed cylindrical domain.

— Tackle the term u - Vp in the density equation.

@ Associate a linear problem with the nonlinear one, involving non-homogeneous
source terms.

o Establish the maximal L? regularity property for this linear problem.

@ Apriori estimate taking into account the PD controller.
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Contributions Existence of strong solution

Assumptions

Conditions on initial data and on (p, q):

2 < p< oo, 3 < g < oo,

hoeQ°, h1eQ’ fheR? woeR?
po € WHI(F(0), o € By VP(F(0))°, min po > 0.

Compatibility conditions
ug = 0 on 9Q and uo(y) = Lo + wo X (y — ho), y € 8S(0).

Let us define

Q%= {z € Q; dist(z,0) > 1}.

Let k€ N. Forevery 0 < s <k, 1 <p< oo, 1< q< oo, define the Besov spaces by
real interpolation of Sobolev spaces

B (F) = (LYF), WHUF))sp -
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Contributions Existence of strong solution

Functional Spaces

o If T € (0, 00], we set

Wo2((0,T); F) = LP(0, T; W»(F)) N WP (0, T; L(F)).

H'sz};g((o,T);f) = ”'HLP(O,T;WZMZ(}'))"_H'”Wl’P(O,T;Lq(}'))"_H'||Cé)([07T);B§)(11)—1/P)<]_—>>-

o Functional spaces with time decay: 8 € R, p € [1, 0] and X a Banach space,
L5(0,00;X) =: {f |t — et f(t) e Lp(O,oo;X)}.
o Let A(t,-) be a C*-diffeomorphism from F(0) onto F(t). For all functions

v(t,-) : F(t) = R, we denote 1(t,y) = v(t, A(t,y)). Then for any 1 < p,q < 0o we
define

LP(O,T; LY(F () ={v | v € L7(0,T; L*(F(0)))} -
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Contributions Existence of strong solution

Existence result

Let 5 > 0 be a given constant. Assume that Q° is non empty, connected and h, € Q°, w
is given by the feedback law with k, > 0, kq > 0. Then there exist 5 > 0 and 6 > 0,
such that, for any (po, uo, ho, £o,wo) satisfying the above conditions, with

1
p= | poda,

|F(0)] J (0
llpo = Pllw.acz o) + [woll g2a-1/2) 1 gy)s + 1ho = Ralles + [[£olles + flwollzs <6,

the system admits a unique strong solution (p, u, h, ¢, w) satisfying
p € Cy([0,00); WH(F(-))), Vp € W5 (0,005 L(F (")),
u € W, 7 5((0,00); F()),
h—hi € WaP(0,00;R%), €€ WiP(0,00;R?), w e WyP(0,00;R,?).

Moreover, p(t,xz) > = for all t € (0,00), z € F(t) and dist(S(¢),0Q) > v/2 for all

t € [0, 00).

IR
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Contributions  Asymptotic behaviour

Result on long time behaviour

Under the assumptions and notation in the above Theorem, we have

lp(t, ) = Pllwrarw) + 1wt M g2a-1/m 50 + 118(E) = hallps

+ 16O lrs + lw(®)ps < Coe™,

where the constant C is independent of ¢ > 0. In particular,

Jim ot ) = Pllwracrany = 0, Jim [ult )21/ 0 = 0

lim h(t) = hi, lim £(t) =0, lim w(t) = 0.
t— 00 t—o0 t—o0
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Contributions  Asymptotic behaviour

Linearized system

Linearise the system around (p, 0,0, 0, 0).

Otp + pdivu = f1 in (0,00) X F,
Oru — divoy(p, u) = f2 in (0,00) X F,
u =10 on (0,00) x 09,
u=4~L+w xyon (0,00) X IS,
d

ah = £ in (0, c0),
ié+m71k:ph+n”fllcd€: —m~! o1(p,u)n dI' + g1 in (0, 00),
g(.u = —J(O)fl/ y x or(p,u)n dT" + g2 in (0, 00),
dt s
p(0) = po, u(0) = ug, in F,
h(O) = ho - hl, E(O) = 40, w(O) = Wo,
where

oi(p,u) = 2%'u]D)u + % (Adivu — a’y(ﬁ)’y_lp) Is, D(u) = %(Vu +Vu').
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Contributions  Asymptotic behaviour

Fluid-structure operator

Given (£,w) € C* x C3, let us consider the following problem

—%AW—&%WdivW:om F,
W=~{0+wxyondS, W =0ondf.

We can define the Dirichlet operator
Ds € L(C* x C*; W>UF)®),  Ds(t,w) =W.
For g € (1,00), let us set
X =W"YF) x LYF)? x C* x C* x C*.

Fluid-structure operator Ars : D(Ars) — X defined by

D(Ars) = {(p, u, h, 6,w) € WHI(F) x W29(F)® x C* x C* x C?;
u— Ds(l,w) € D(AL.)},
where

D(A) = WU(F) Wy '(F), A, = %A n %ww.
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Contributions  Asymptotic behaviour

Ars = Ags + Brs,
with
—pdiv u
Ay (u — Ds(0,w))

AES 0 5

E s
I

0
0
0

—ay(p)" "

L

B
ks —m~! / o1(p,u)n dT' — m™ 'kph — m ™ 'kq/
as

€ s>

—J(O)fl/ y X o(p,u)n dI’
88
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Contributions  Global Stabilization

Global Stabilization: hg is not close to h;

Under the assumptions of above Theorem, there exists § > 0, depending only on €, ky,
ka such that for any (po, uo, ho, fo,wo) satisfying the assumptions and

NS,

)

llpo = Pllwrar) + ol g2a-1/m 2 ())s + 1€0lles + llwolles <

there exists a piecewise constant function s : [0, 00) — Q satisfying dist(s(¢),09Q) > 1,
for all ¢ > 0, such that the strong solution of the system with switching feedback law

w(t) = kp(s(t) — h(t)) — kah'(t), >0,

WV

satisfies the stability properties

Jim (o) = Pllwracrey = 0, Jim [t ) za-1m r(p 0 = 0

lim h(t) = h1, lim A'(t) =0, lim w(t)=0.
t— o0 t—o0 t—00
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Contributions  Global Stabilization
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