

Global stabilization of a rigid body moving in a compressible viscous fluid

Arnab Roy

Basque Center for Applied Mathematics (BCAM) and Ikerbasque, Basque Foundation for Science

COPI2A Third Meeting, Castro Urdiales
1st December, 2025

1 Introduction

- FSI Examples
- Mathematical framework

2 What is known

3 Contributions

- Existence of strong solution
- Asymptotic behaviour
- Global Stabilization

Examples: Fluid-Structure interaction

- It is the interaction of some structure with an internal or surrounding fluid flow.
- Structures: Rigid/Elastic.
- Naval and Aerospace engineering: Airflow around an Aircraft, Submarine.
- Biology: Blood flow in arteries, Swimming of fish, micro-organism motion.
- Mathematical challenges: coupled PDE model, presence of strong nonlinearities and free boundaries due to motion of the structure.

Interesting Questions

Analysis on the interaction between Fluid and Structure:

- Existence and uniqueness of solutions (weak and strong).
- Contact issues: structure-boundary or structure-structure.
- Size of the solid goes to zero.
- Long time behaviour.
- **Control and Stabilization.**

Immersed structure: solids inside fluid

Figure: Submarine

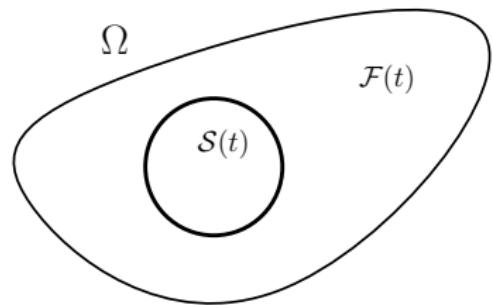


Figure: Rigid body inside a fluid domain

Problem Description

- Ω : Bounded domain in \mathbb{R}^3 .
- $\mathcal{S}(t)$: the closed rigid ball of radius 1 and of center $h(t)$.
- Fluid domain: $\mathcal{F}(t) = \Omega \setminus \overline{\mathcal{S}(t)}$.
- h_1 : fixed anchor point.
- The center of the ball is connected to the fixed anchor point h_1 by a spring and a mechanical damper.
- Initially the ball is away from boundary:

$$\text{dist}(\mathcal{S}(0), \partial\Omega) \geq \nu > 0.$$

Mathematical set up: fluid equation

- ρ : density, u : velocity, p : pressure of the fluid.
- The fluid flow is modeled by the compressible Navier-Stokes system ($t > 0$, $x \in \mathcal{F}(t)$):

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho u) = 0,$$

$$\rho \frac{\partial u}{\partial t} + \rho (u \cdot \nabla) u - \operatorname{div} \sigma(u, p) = 0.$$

- The Cauchy stress tensor is defined as:

$$\sigma(u, p) = 2\mu \mathbb{D}(u) + \alpha \operatorname{div} u \mathbb{I}_3 - p \mathbb{I}_3,$$

- $\mathbb{D}(u) = \frac{1}{2} (\nabla u + \nabla u^\top)$ denotes the symmetric part of the velocity gradient.
- λ, μ are the viscosity coefficients satisfying $\mu > 0$, $\lambda + \mu \geq 0$.
- The flow is isentropic - independent of temperature.
- It is in the barotropic regime where the relation between p and ρ is given by $p = a\rho^\gamma$, with $a > 0$ and the adiabatic constant $\gamma > \frac{3}{2}$.

Equation: Rigid ball

- Let $\ell = h'$ and ω be the linear and angular velocities of the rigid body.
- The balance of linear and angular momentum:

$$m\ell' = - \int_{\partial\mathcal{S}(t)} \sigma(u, p)N \, d\Gamma + w,$$

$$J\omega' = - \int_{\partial\mathcal{S}(t)} (x - h(t)) \times \sigma(u, p)N \, d\Gamma,$$

where w is the external control force, $N(t, x)$ is the unit normal to $\partial\mathcal{S}(t)$ at the point $x \in \partial\mathcal{S}(t)$, directed to the interior of the ball.

- If ρ_S is the mass density of the ball, then the formulae for m and J are

$$m = \frac{4}{3}\pi\rho_S, \quad J = \frac{2m}{5}\mathbb{I}_3.$$

Initial and boundary conditions

We impose the no-slip boundary conditions:

- $u(t, x) = 0 \quad t > 0, x \in \partial\Omega.$
- Continuity of velocity at the interface

$$u(t, x) = \ell(t) + \omega(t) \times (x - h(t)) \quad t > 0, x \in \partial\mathcal{S}(t).$$

- The initial conditions:

$$\begin{aligned} \rho(0, \cdot) &= \rho_0(\cdot), & u(0, \cdot) &= u_0(\cdot) \quad \text{in } \mathcal{F}(0), \\ h(0) &= h_0, & \ell(0) &= \ell_0, & \omega(0) &= \omega_0. \end{aligned}$$

Feedback Law

The control force w is given by a feedback law:

$$w(t) = k_p(h_1 - h(t)) - k_d\ell(t).$$

- This type of control is known as Proportional-Derivative (PD) controller.
- The spring-damper is connected from the center of mass of the ball to the fixed anchor point h_1 and it is attracting the ball towards the point h_1 .
- We want to show $\lim_{t \rightarrow \infty} h(t) = h_1$, whereas the velocities of the fluid and of the rigid ball go to 0:

$$\lim_{t \rightarrow \infty} u(t) = 0, \quad \lim_{t \rightarrow \infty} h'(t) = 0, \quad \lim_{t \rightarrow \infty} \omega(t) = 0.$$

Revisit some results

- T. Takahashi, M. Tucsnak, G. Weiss: 3d case rigid ball-viscous incompressible fluid and obtain a stabilization result by using a spring-damper control.
- A. Roy, T. Takahashi: Rigid ball-compressible fluid. Stabilization result is obtained under a smallness condition on the initial velocities and on the distance between the initial position of the center of the ball and h_1 : [Local stabilization](#).

→ Several compatibility conditions ([Hilbert space setup](#))

- **Aim:** a stabilization result but without the requirement that the initial position of the center of the ball is close to h_1 : [Global stabilization](#).

→ Remedy: [\$L^p - L^q\$ setup](#).

Strategy: Existence

- The domains $\mathcal{F}(t)$, $\mathcal{S}(t)$ are evolving w.r.t time: the domain of the fluid equation is one of the unknowns.
- Introducing Lagrangian variables:
 - Rewrite the coupled system in a fixed cylindrical domain.
 - Tackle the term $u \cdot \nabla \rho$ in the density equation.
- Associate a linear problem with the nonlinear one, involving non-homogeneous source terms.
- Establish the maximal L^p regularity property for this linear problem.
- Apriori estimate taking into account the PD controller.

Assumptions

- Conditions on initial data and on (p, q) :

$$2 < p < \infty, \quad 3 < q < \infty, \quad \frac{1}{p} + \frac{1}{2q} \neq \frac{1}{2},$$

$$h_0 \in \Omega^0, \quad h_1 \in \Omega^0, \quad \ell_0 \in \mathbb{R}^3, \quad \omega_0 \in \mathbb{R}^3,$$

$$\rho_0 \in W^{1,q}(\mathcal{F}(0)), \quad u_0 \in B_{q,p}^{2(1-1/p)}(\mathcal{F}(0))^3, \quad \min_{\mathcal{F}(0)} \rho_0 > 0.$$

- Compatibility conditions

$$u_0 = 0 \text{ on } \partial\Omega \text{ and } u_0(y) = \ell_0 + \omega_0 \times (y - h_0), \quad y \in \partial\mathcal{S}(0).$$

- Let us define

$$\Omega^0 := \{x \in \Omega ; \text{dist}(x, \partial\Omega) > 1\}.$$

- Let $k \in \mathbb{N}$. For every $0 < s < k$, $1 \leq p < \infty$, $1 \leq q < \infty$, define the Besov spaces by real interpolation of Sobolev spaces

$$B_{q,p}^s(\mathcal{F}) = (L^q(\mathcal{F}), W^{k,q}(\mathcal{F}))_{s/k,p}.$$

Functional Spaces

- If $T \in (0, \infty]$, we set

$$W_{p,q}^{1,2}((0, T); \mathcal{F}) = L^p(0, T; W^{2,q}(\mathcal{F})) \cap W^{1,p}(0, T; L^q(\mathcal{F})).$$

$$\|\cdot\|_{W_{p,q}^{1,2}((0, T); \mathcal{F})} := \|\cdot\|_{L^p(0, T; W^{2,q}(\mathcal{F}))} + \|\cdot\|_{W^{1,p}(0, T; L^q(\mathcal{F}))} + \|\cdot\|_{C_b^0([0, T); B_{q,p}^{2(1-1/p)}(\mathcal{F}))}.$$

- Functional spaces with time decay: $\beta \in \mathbb{R}$, $p \in [1, \infty]$ and \mathbb{X} a Banach space,

$$L_\beta^p(0, \infty; \mathbb{X}) =: \left\{ f \mid t \rightarrow e^{\beta t} f(t) \in L^p(0, \infty; \mathbb{X}) \right\}.$$

- Let $\Lambda(t, \cdot)$ be a C^1 -diffeomorphism from $\mathcal{F}(0)$ onto $\mathcal{F}(t)$. For all functions $v(t, \cdot) : \mathcal{F}(t) \rightarrow \mathbb{R}$, we denote $\widehat{v}(t, y) = v(t, \Lambda(t, y))$. Then for any $1 < p, q < \infty$ we define

$$L^p(0, T; L^q(\mathcal{F}(\cdot))) = \{v \mid \widehat{v} \in L^p(0, T; L^q(\mathcal{F}(0)))\}.$$

Existence result

Let $\bar{\rho} > 0$ be a given constant. Assume that Ω^0 is non empty, connected and $h_1 \in \Omega^0$, w is given by the feedback law with $k_p > 0$, $k_d > 0$. Then there exist $\beta > 0$ and $\delta > 0$, such that, for any $(\rho_0, u_0, h_0, \ell_0, \omega_0)$ satisfying the above conditions, with

$$\bar{\rho} = \frac{1}{|\mathcal{F}(0)|} \int_{\mathcal{F}(0)} \rho_0 \, dx,$$

$$\|\rho_0 - \bar{\rho}\|_{W^{1,q}(\mathcal{F}(0))} + \|u_0\|_{B_{q,p}^{2(1-1/p)}(\mathcal{F}(0))^3} + \|h_0 - h_1\|_{\mathbb{R}^3} + \|\ell_0\|_{\mathbb{R}^3} + \|\omega_0\|_{\mathbb{R}^3} \leq \delta,$$

the system admits a unique strong solution $(\rho, u, h, \ell, \omega)$ satisfying

$$\rho \in C_b^0([0, \infty); W^{1,q}(\mathcal{F}(\cdot))), \quad \nabla \rho \in W_{\beta}^{1,p}(0, \infty; L^q(\mathcal{F}(\cdot))),$$

$$u \in W_{p,q,\beta}^{1,2}((0, \infty); \mathcal{F}(\cdot)),$$

$$h - h_1 \in W_{\beta}^{2,p}(0, \infty; \mathbb{R}^3), \quad \ell \in W_{\beta}^{1,p}(0, \infty; \mathbb{R}^3), \quad \omega \in W_{\beta}^{1,p}(0, \infty; \mathbb{R}^3).$$

Moreover, $\rho(t, x) \geq \frac{\bar{\rho}}{2}$ for all $t \in (0, \infty)$, $x \in \overline{\mathcal{F}(t)}$ and $\text{dist}(\mathcal{S}(t), \partial\Omega) \geq \nu/2$ for all $t \in [0, \infty)$.

Result on long time behaviour

Under the assumptions and notation in the above Theorem, we have

$$\begin{aligned} \|\rho(t, \cdot) - \bar{\rho}\|_{W^{1,q}(\mathcal{F}(t))} + \|u(t, \cdot)\|_{B_{q,p}^{2(1-1/p)}(\mathcal{F}(t))^3} + \|h(t) - h_1\|_{\mathbb{R}^3} \\ + \|\ell(t)\|_{\mathbb{R}^3} + \|\omega(t)\|_{\mathbb{R}^3} \leq C\delta e^{-\beta t}, \end{aligned}$$

where the constant C is independent of $t > 0$. In particular,

$$\begin{aligned} \lim_{t \rightarrow \infty} \|\rho(t, \cdot) - \bar{\rho}\|_{W^{1,q}(\mathcal{F}(t))} = 0, \quad \lim_{t \rightarrow \infty} \|u(t, \cdot)\|_{B_{q,p}^{2(1-1/p)}(\mathcal{F}(t))^3} = 0, \\ \lim_{t \rightarrow \infty} h(t) = h_1, \quad \lim_{t \rightarrow \infty} \ell(t) = 0, \quad \lim_{t \rightarrow \infty} \omega(t) = 0. \end{aligned}$$

Linearized system

Linearise the system around $(\bar{\rho}, 0, 0, 0, 0)$.

$$\partial_t \rho + \bar{\rho} \operatorname{div} u = f_1 \text{ in } (0, \infty) \times \mathcal{F},$$

$$\partial_t u - \operatorname{div} \sigma_l(\rho, u) = f_2 \text{ in } (0, \infty) \times \mathcal{F},$$

$$u = 0 \text{ on } (0, \infty) \times \partial\Omega,$$

$$u = \ell + \omega \times y \text{ on } (0, \infty) \times \partial\mathcal{S},$$

$$\frac{d}{dt} h = \ell \text{ in } (0, \infty),$$

$$\frac{d}{dt} \ell + m^{-1} k_p h + m^{-1} k_d \ell = -m^{-1} \int_{\partial\mathcal{S}} \sigma_l(\rho, u) n \, d\Gamma + g_1 \text{ in } (0, \infty),$$

$$\frac{d}{dt} \omega = -J(0)^{-1} \int_{\partial\mathcal{S}} y \times \sigma_l(\rho, u) n \, d\Gamma + g_2 \text{ in } (0, \infty),$$

$$\rho(0) = \rho_0, \quad u(0) = u_0, \text{ in } \mathcal{F},$$

$$h(0) = h_0 - h_1, \quad \ell(0) = \ell_0, \quad \omega(0) = \omega_0,$$

where

$$\sigma_l(\rho, u) = \frac{2\mu}{\bar{\rho}} \mathbb{D}u + \frac{1}{\bar{\rho}} \left(\lambda \operatorname{div} u - a\gamma(\bar{\rho})^{\gamma-1} \rho \right) I_3, \quad \mathbb{D}(u) = \frac{1}{2} (\nabla u + \nabla u^\top).$$

Fluid-structure operator

Given $(\ell, \omega) \in \mathbb{C}^3 \times \mathbb{C}^3$, let us consider the following problem

$$\begin{cases} -\frac{\mu}{\rho} \Delta W - \frac{\alpha+\mu}{\rho} \nabla \operatorname{div} W = 0 \text{ in } \mathcal{F}, \\ W = \ell + \omega \times y \text{ on } \partial \mathcal{S}, \quad W = 0 \text{ on } \partial \Omega. \end{cases}$$

We can define the Dirichlet operator

$$D_s \in \mathcal{L}(\mathbb{C}^3 \times \mathbb{C}^3; W^{2,q}(\mathcal{F})^3), \quad D_s(\ell, \omega) = W.$$

For $q \in (1, \infty)$, let us set

$$\mathcal{X} = W^{1,q}(\mathcal{F}) \times L^q(\mathcal{F})^3 \times \mathbb{C}^3 \times \mathbb{C}^3 \times \mathbb{C}^3.$$

Fluid-structure operator $\mathcal{A}_{FS} : \mathcal{D}(\mathcal{A}_{FS}) \rightarrow \mathcal{X}$ defined by

$$\begin{aligned} \mathcal{D}(\mathcal{A}_{FS}) = \Big\{ & (\rho, u, h, \ell, \omega) \in W^{1,q}(\mathcal{F}) \times W^{2,q}(\mathcal{F})^3 \times \mathbb{C}^3 \times \mathbb{C}^3 \times \mathbb{C}^3; \\ & u - D_s(\ell, \omega) \in \mathcal{D}(A_u) \Big\}, \end{aligned}$$

where

$$\mathcal{D}(A_u) = W^{2,q}(\mathcal{F}) \cap W_0^{1,q}(\mathcal{F}), \quad A_u = \frac{\mu}{\rho} \Delta + \frac{\alpha + \mu}{\rho} \nabla \operatorname{div}.$$

$$\mathcal{A}_{\text{FS}} = \mathcal{A}_{\text{FS}}^0 + \mathcal{B}_{\text{FS}},$$

with

$$\mathcal{A}_{\text{FS}}^0 \begin{bmatrix} \rho \\ u \\ h \\ \ell \\ \omega \end{bmatrix} = \begin{bmatrix} -\bar{\rho} \operatorname{div} u \\ A_u(u - D_s(\ell, \omega)) \\ 0 \\ 0 \\ 0 \end{bmatrix},$$

$$\mathcal{B}_{\text{FS}} \begin{bmatrix} \rho \\ u \\ h \\ \ell \\ \omega \end{bmatrix} = \begin{bmatrix} 0 \\ -a\gamma(\bar{\rho})^{\gamma-1} \\ \ell \\ -m^{-1} \int_{\partial S} \sigma_l(\rho, u) n \, d\Gamma - m^{-1} k_p h - m^{-1} k_d \ell \\ -J(0)^{-1} \int_{\partial S} y \times \sigma_l(\rho, u) n \, d\Gamma \end{bmatrix}.$$

Global Stabilization: h_0 is not close to h_1

Under the assumptions of above Theorem, there exists $\delta > 0$, depending only on Ω , k_p , k_d such that for any $(\rho_0, u_0, h_0, \ell_0, \omega_0)$ satisfying the assumptions and

$$\|\rho_0 - \bar{\rho}\|_{W^{1,q}(\mathcal{F}(0))} + \|u_0\|_{B_{q,p}^{2(1-1/p)}(\mathcal{F}(0))^3} + \|\ell_0\|_{\mathbb{R}^3} + \|\omega_0\|_{\mathbb{R}^3} \leq \frac{\delta}{2},$$

there exists a piecewise constant function $s : [0, \infty) \rightarrow \Omega$ satisfying $\text{dist}(s(t), \partial\Omega) > 1$, for all $t \geq 0$, such that the strong solution of the system with switching feedback law

$$w(t) = k_p(s(t) - h(t)) - k_d h'(t), \quad t \geq 0,$$

satisfies the stability properties

$$\begin{aligned} \lim_{t \rightarrow \infty} \|\rho(t, \cdot) - \bar{\rho}\|_{W^{1,q}(\mathcal{F}(t))} &= 0, & \lim_{t \rightarrow \infty} \|u(t, \cdot)\|_{B_{q,p}^{2(1-1/p)}(\mathcal{F}(t))^3} &= 0, \\ \lim_{t \rightarrow \infty} h(t) &= h_1, & \lim_{t \rightarrow \infty} h'(t) &= 0, & \lim_{t \rightarrow \infty} \omega(t) &= 0. \end{aligned}$$

References

- D. Maity, A. Roy, and T. Takahashi. Global Stabilization of a rigid body moving in a compressible viscous fluid. *Fluids Under Control: The Prague-Sum Workshop Lectures*. Cham: Springer International Publishing, 2023.
- A. Roy, and T. Takahashi. Stabilization of a rigid body moving in a compressible viscous fluid. *Journal of Evolution Equations* 21.1 (2021): 167-200.

Thank You