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Introduction FSI Examples

Examples: Fluid-Structure interaction

It is the interaction of some structure with an internal or surrounding fluid flow.

Structures: Rigid/Elastic.

Naval and Aerospace engineering: Airflow around an Aircraft, Submarine.

Biology: Blood flow in arteries, Swimming of fish, micro-organism motion.

Mathematical challenges: coupled PDE model, presence of strong nonlinearities and
free boundaries due to motion of the structure.
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Introduction FSI Examples

Interesting Questions

Analysis on the interaction between Fluid and Structure:

Existence and uniqueness of solutions (weak and strong).

Contact issues: structure-boundary or structure-structure.

Size of the solid goes to zero.

Long time behaviour.

Control and Stabilization.
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Introduction FSI Examples

Immersed structure: solids inside fluid

Figure: Submarine

S(t)

F(t)
Ω

Figure: Rigid body inside a fluid
domain
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Introduction FSI Examples

Problem Description

Ω: Bounded domain in R3.

S(t): the closed rigid ball of radius 1 and of center h(t).

Fluid domain: F(t) = Ω \ S(t).

h1: fixed anchor point.

The center of the ball is connected to the fixed anchor point h1 by a spring and a
mechanical damper.

Initially the ball is away from boundary:

dist(S(0), ∂Ω) > ν > 0.
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Introduction Mathematical framework

Mathematical set up: fluid equation

ρ: density, u: velocity, p: pressure of the fluid.

The fluid flow is modeled by the compressible Navier-Stokes system
(t > 0, x ∈ F(t)):

∂ρ

∂t
+ div(ρu) = 0,

ρ
∂u

∂t
+ ρ (u · ∇)u− div σ(u, p) = 0.

The Cauchy stress tensor is defined as:

σ(u, p) = 2µD(u) + α div uI3 − pI3,
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Introduction Mathematical framework

D(u) = 1
2

(
∇u+∇u>

)
denotes the symmetric part of the velocity gradient.

λ, µ are the viscosity coefficients satisfying µ > 0, λ+ µ > 0.

The flow is isentropic - independent of temperature.

It is in the barotropic regime where the relation between p and ρ is given by
p = aργ , with a > 0 and the adiabatic constant γ > 3

2
.
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Introduction Mathematical framework

Equation: Rigid ball

Let ` = h′ and ω be the linear and angular velocities of the rigid body.

The balance of linear and angular momentum:

m`′ = −
∫

∂S(t)

σ(u, p)N dΓ + w,

Jω′ = −
∫

∂S(t)

(x− h(t))× σ(u, p)N dΓ,

where w is the external control force, N(t, x) is the unit normal to ∂S(t) at the
point x ∈ ∂S(t), directed to the interior of the ball.

If ρS is the mass density of the ball, then the formulae for m and J are

m =
4

3
πρS , J =

2m

5
I3.
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Introduction Mathematical framework

Initial and boundary conditions

We impose the no-slip boundary conditions:

u(t, x) = 0 t > 0, x ∈ ∂Ω.

Continuity of velocity at the interface

u(t, x) = `(t) + ω(t)× (x− h(t)) t > 0, x ∈ ∂S(t).

The initial conditions:

ρ(0, ·) = ρ0(·), u(0, ·) = u0(·) in F(0),

h(0) = h0, `(0) = `0, ω(0) = ω0.
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Introduction Mathematical framework

Feedback Law

The control force w is given by a feedback law:

w(t) = kp(h1 − h(t))− kd`(t).

This type of control is known as Proportional-Derivative (PD) controller.

The spring-damper is connected from the center of mass of the ball to the fixed
anchor point h1 and it is attracting the ball towards the point h1.

We want to show limt→∞ h(t) = h1, whereas the velocities of the fluid and of the
rigid ball go to 0:

lim
t→∞

u(t) = 0, lim
t→∞

h′(t) = 0, lim
t→∞

ω(t) = 0.
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What is known

Revisit some results

T. Takahashi, M. Tucsnak, G. Weiss: 3d case rigid ball-viscous incompressible fluid
and obtain a stabilization result by using a spring-damper control.

A. Roy, T. Takahashi: Rigid ball-compressible fluid. Stabilization result is obtained
under a smallness condition on the initial velocities and on the distance between the
initial position of the center of the ball and h1: Local stabilization.

→ Several compatibility conditions (Hilbert space setup)

Aim: a stabilization result but without the requirement that the initial position of
the center of the ball is close to h1: Global stabilization.

→ Remedy: Lp − Lq setup.
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Contributions Existence of strong solution

Strategy: Existence

The domains F(t), S(t) are evolving w.r.t time: the domain of the fluid equation is
one of the unknowns.

Introducing Lagrangian variables:

→ Rewrite the coupled system in a fixed cylindrical domain.

→ Tackle the term u · ∇ρ in the density equation.

Associate a linear problem with the nonlinear one, involving non-homogeneous
source terms.

Establish the maximal Lp regularity property for this linear problem.

Apriori estimate taking into account the PD controller.
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Contributions Existence of strong solution

Assumptions

Conditions on initial data and on (p, q):

2 < p <∞, 3 < q <∞, 1

p
+

1

2q
6= 1

2
,

h0 ∈ Ω0, h1 ∈ Ω0, `0 ∈ R3, ω0 ∈ R3,

ρ0 ∈W 1,q(F(0)), u0 ∈ B2(1−1/p)
q,p (F(0))3, min

F(0)
ρ0 > 0.

Compatibility conditions

u0 = 0 on ∂Ω and u0(y) = `0 + ω0 × (y − h0), y ∈ ∂S(0).

Let us define
Ω0 := {x ∈ Ω ; dist(x, ∂Ω) > 1} .

Let k ∈ N. For every 0 < s < k, 1 6 p <∞, 1 6 q <∞, define the Besov spaces by
real interpolation of Sobolev spaces

Bsq,p(F) = (Lq(F),W k,q(F))s/k,p .
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Contributions Existence of strong solution

Functional Spaces

If T ∈ (0,∞], we set

W 1,2
p,q ((0, T );F) = Lp(0, T ;W 2,q(F)) ∩W 1,p(0, T ;Lq(F)).

‖·‖
W

1,2
p,q ((0,T );F)

:= ‖·‖Lp(0,T ;W2,q(F))+‖·‖W1,p(0,T ;Lq(F))+‖·‖C0
b
([0,T );B

2(1−1/p)
q,p (F))

.

Functional spaces with time decay: β ∈ R, p ∈ [1,∞] and X a Banach space,

Lpβ(0,∞;X) =:
{
f | t→ eβtf(t) ∈ Lp(0,∞;X)

}
.

Let Λ(t, ·) be a C1-diffeomorphism from F(0) onto F(t). For all functions
v(t, ·) : F(t)→ R, we denote v̂(t, y) = v(t,Λ(t, y)). Then for any 1 < p, q <∞ we
define

Lp(0, T ;Lq(F(·)) = {v | v̂ ∈ Lp(0, T ;Lq(F(0)))} .
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Contributions Existence of strong solution

Existence result

Let ρ > 0 be a given constant. Assume that Ω0 is non empty, connected and h1 ∈ Ω0, w
is given by the feedback law with kp > 0, kd > 0. Then there exist β > 0 and δ > 0,
such that, for any (ρ0, u0, h0, `0, ω0) satisfying the above conditions, with

ρ =
1

|F(0)|

∫
F(0)

ρ0 dx,

‖ρ0 − ρ‖W1,q(F(0)) + ‖u0‖B2(1−1/p)
q,p (F(0))3

+ ‖h0 − h1‖R3 + ‖`0‖R3 + ‖ω0‖R3 6 δ,

the system admits a unique strong solution (ρ, u, h, `, ω) satisfying

ρ ∈ C0
b ([0,∞);W 1,q(F(·))), ∇ρ ∈W 1,p

β (0,∞;Lq(F(·))),

u ∈W 1,2
p,q,β((0,∞);F(·)),

h− h1 ∈W 2,p
β (0,∞;R3), ` ∈W 1,p

β (0,∞;R3), ω ∈W 1,p
β (0,∞;R,3 ).

Moreover, ρ(t, x) >
ρ

2
for all t ∈ (0,∞), x ∈ F(t) and dist(S(t), ∂Ω) > ν/2 for all

t ∈ [0,∞).
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Contributions Asymptotic behaviour

Result on long time behaviour

Under the assumptions and notation in the above Theorem, we have

‖ρ(t, ·)− ρ‖W1,q(F(t)) + ‖u(t, ·)‖
B

2(1−1/p)
q,p (F(t))3

+ ‖h(t)− h1‖R3

+ ‖`(t)‖R3 + ‖ω(t)‖R3 6 Cδe−βt,

where the constant C is independent of t > 0. In particular,

lim
t→∞

‖ρ(t, ·)− ρ‖W1,q(F(t)) = 0, lim
t→∞

‖u(t, ·)‖
B

2(1−1/p)
q,p (F(t))3

= 0,

lim
t→∞

h(t) = h1, lim
t→∞

`(t) = 0, lim
t→∞

ω(t) = 0.
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Contributions Asymptotic behaviour

Linearized system

Linearise the system around (ρ, 0, 0, 0, 0).

∂tρ+ ρdivu = f1 in (0,∞)×F ,
∂tu− divσl(ρ, u) = f2 in (0,∞)×F ,

u = 0 on (0,∞)× ∂Ω,

u = `+ ω × y on (0,∞)× ∂S,
d

dt
h = ` in (0,∞),

d

dt
`+m−1kph+m−1kd` = −m−1

∫
∂S
σl(ρ, u)n dΓ + g1 in (0,∞),

d

dt
ω = −J(0)−1

∫
∂S
y × σl(ρ, u)n dΓ + g2 in (0,∞),

ρ(0) = ρ0, u(0) = u0, in F ,
h(0) = h0 − h1, `(0) = `0, ω(0) = ω0,

where

σl(ρ, u) =
2µ

ρ
Du+

1

ρ

(
λdivu− aγ(ρ)γ−1ρ

)
I3, D(u) =

1

2
(∇u+∇u>).
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Contributions Asymptotic behaviour

Fluid-structure operator

Given (`, ω) ∈ C3 × C3, let us consider the following problem{
−µ
ρ

∆W − α+µ
ρ
∇divW = 0 in F ,

W = `+ ω × y on ∂S, W = 0 on ∂Ω.

We can define the Dirichlet operator

Ds ∈ L(C3 × C3;W 2,q(F)3), Ds(`, ω) = W.

For q ∈ (1,∞), let us set

X = W 1,q(F)× Lq(F)3 × C3 × C3 × C3.

Fluid-structure operator AFS : D(AFS)→ X defined by

D(AFS) =
{

(ρ, u, h, `, ω) ∈W 1,q(F)×W 2,q(F)3 × C3 × C3 × C3 ;

u−Ds(`, ω) ∈ D(Au)
}
,

where

D(Au) = W 2,q(F) ∩W 1,q
0 (F), Au =

µ

ρ
∆ +

α+ µ

ρ
∇div.
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Contributions Asymptotic behaviour

AFS = A0
FS + BFS,

with

A0
FS


ρ
u
h
`
ω

 =


−ρdiv u

Au (u−Ds(`, ω))
0
0
0

 ,

BFS


ρ
u
h
`
ω

 =



0

−aγ(ρ)γ−1

`

−m−1

∫
∂S
σl(ρ, u)n dΓ−m−1kph−m−1kd`

−J(0)−1

∫
∂S
y × σl(ρ, u)n dΓ


.
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Contributions Global Stabilization

Global Stabilization: h0 is not close to h1

Under the assumptions of above Theorem, there exists δ > 0, depending only on Ω, kp,
kd such that for any (ρ0, u0, h0, `0, ω0) satisfying the assumptions and

‖ρ0 − ρ‖W1,q(F(0)) + ‖u0‖B2(1−1/p)
q,p (F(0))3

+ ‖`0‖R3 + ‖ω0‖R3 6
δ

2
,

there exists a piecewise constant function s : [0,∞)→ Ω satisfying dist(s(t), ∂Ω) > 1,
for all t > 0, such that the strong solution of the system with switching feedback law

w(t) = kp(s(t)− h(t))− kdh′(t), t > 0,

satisfies the stability properties

lim
t→∞

‖ρ(t, ·)− ρ‖W1,q(F(t)) = 0, lim
t→∞

‖u(t, ·)‖
B

2(1−1/p)
q,p (F(t))3

= 0,

lim
t→∞

h(t) = h1, lim
t→∞

h′(t) = 0, lim
t→∞

ω(t) = 0.
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Contributions Global Stabilization
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