
On two optimization methods for optimal control

problems

Sequence of Quadratic Problems // SemiSmooth Newton Method

Mariano Mateos

(Universidad de Oviedo, España)

Based on joint works with Eduardo Casas (U. de Cantabria)

Third COPI2A Meeting

Castro Urdiales, December 1, 2025

The author was supported by MICIU/AEI/10.13039/501100011033/ under research project PID2023-147610NB-I00

1 / 56

Outline

1 Introduction

Abstract framework

2 The methods

Warning

SemiSmooth Newton method

SQP method

3 More computational details

Solving PDEs

Finite dimensional optimization

A numerical experiment

2 / 56

Outline

1 Introduction

Abstract framework

2 The methods

Warning

SemiSmooth Newton method

SQP method

3 More computational details

Solving PDEs

Finite dimensional optimization

A numerical experiment

3 / 56

The abstract optimization problem

Problem (P)

(P) min
u∈Uad

J(u) := J (u) +
κ

2

∥u∥2L2(X),

(X ,S, µ) measure space with µ(X) <∞, κ > 0.

J is a function of class C2

J : A ⊂ Lp(X) → R

for some p ∈ [2,+∞]. Here A ⊂ Lp(X) is an open set.

Uad ⊂ A and

Uad = {u ∈ Lp(X) : α ≤ u ≤ β a.e. [µ]}

−∞ ≤ α < β ≤ +∞. If p > 2, we also require −∞ < α < β < +∞.

Notation: Bp
ρ(u) = {v ∈ Lp(X) : ∥v − u∥Lp(X) ≤ ρ}.

4 / 56

Some control problems that fit in this framework

Remark

The framework is easy to generalize to vector controls u ∈ Πn
j=1

Lp
j
(Xj).

Additive elliptic control problem governed by a semilinear equation, with

distributed and/or boundary control.

Distributed control of the instationary Navier-Stokes equations

Distributed and/or boundary control of a parabolic equation

Time dependent control of a parabolic quasilinear equation

Boundary bilinear control of a semilinear parabolic equation ...

Eduardo Casas (2024). “Superlinear Convergence of a Semismooth Newton Method for Some

Optimization Problems with Applications to Control Theory”. In: SIAM Journal on Optimization 34.4,

pp. 3681–3698. doi: 10.1137/24M1644286
Eduardo Casas and Mariano Mateos (2025b). Quadratic convergence of an SQP method for some

optimization problems with applications to control theory. (To appear in SICON). arXiv: 2505.22750

5 / 56

https://doi.org/10.1137/24M1644286
https://arxiv.org/abs/2505.22750

A prototypical example

Problem (E)

min
u∈Uad

J(u) :=
1

2

∥yu − yd∥2L2(Ω) +
κ

2

∥u∥2L2(Ω)

where yu ∈ H1

0
(Ω) ∩ C(Ω̄) is the solution of

−∆y + b · ∇y + f (·, y) = u in Ω, y = 0 on Γ.

and

Uad = {u ∈ L2(Ω) : α ≤ u(x) ≤ β for a.a. x ∈ Ω}

Ω ⊂ Rd
, d ≤ 3, bounded domain with Lipschitz boundary Γ.

b ∈ Lp̄(Ω)d , p̄ > 2, div b ∈ L2(Ω), yd ∈ L2(Ω)

f : Ω× R → R a Carathéodory function, f (·, 0) ∈ L2(Ω), monotone

non-decreasing, of class C2
and such that ∂2yy f (x, y) is locally Lipschitz w.r.t. y .

Casas, Eduardo, Mateos, Mariano, and Rösch, Arnd (2020). “Analysis of control problems of nonmontone

semilinear elliptic equations”. In: ESAIM: COCV 26, p. 80. doi: 10.1051/cocv/2020032

6 / 56

https://doi.org/10.1051/cocv/2020032

Some remarks about the example problem (E)

X = Ω, µ is the Lebesgue measure, p = 2.

For every u ∈ A = L2(Ω) there exists a unique yu ∈ H1

0
(Ω) ∩ C(Ω̄) solution of

−∆y + b · ∇y + f (·, y) = u in Ω, y = 0 on Γ.

The control-to-state mapping G(u) = yu is of class C2
.

Derivative of the control-to-state mapping

For all u, v ∈ L2(Ω), zu,v = G′(u)v ∈ H1

0
(Ω) ∩ C(Ω̄) is the unique solution of

−∆z + b∇z + ∂y f (·, yu)z = v in Ω, z = 0 on Γ.

J (u) = 1

2
∥yu − yd∥2L2(Ω). J(u) =

1

2
∥yu − yd∥2L2(Ω) +

κ
2
∥u∥2L2(Ω).

Corollary: J is of class C2

7 / 56

The first derivative of the objective functional

For the abstract problem, we assume:
1 There exists a C1

mapping Φ : A → L∞(X) such that

J ′(u)v =

∫
X
Φ(u)v dµ ∀u ∈ A and ∀v ∈ Lp(X).

For the example: For every u ∈ L2(Ω) there exists a unique adjoint state
φu ∈ H1

0
(Ω) ∩ C(Ω̄) solution of

−∆φ− div[bφ] + ∂y f (·, yu)φ = yu − yd in Ω, φ = 0 on Γ.

The mapping Φ(u) = φu is of class C1
from L2(Ω) into L∞(Ω) and integration by

parts shows that

J′(u)v =

∫
Ω

(φu + κu)v dx ∀u ∈ L2(Ω) and ∀v ∈ L2(Ω).

8 / 56

The second derivative

Remark: J is of class C2
. ∀u ∈ A, J ′′(u) : Lp(X)× Lp(X) −→ R is a symmetric

and continuous bilinear form and satisfies

J ′′(u)(v1, v2) =
∫
X
[Φ′(u)v1]v2 dµ =

∫
X
[Φ′(u)v2]v1 dµ ∀v1, v2 ∈ Lp(X). (1)

We will write J ′′(u)v2 = J ′′(u)(v, v).
For the example: Classical form of the second derivative:

J′′(u)v2 =
∫
Ω

[(
1− φu∂

2

yy f (·, yu)
)
z2u,v + κv2

]
dx.

But ... we will use the so-called second-adjoint-state. For all u, v ∈ L2(Ω),
ηu,v = Φ′(u)v ∈ H1

0
(Ω) ∩ C(Ω̄) is the unique solution of

−∆η − div[bη] + ∂y f (·, yu)η = (1− φu∂
2

yy f (·, yu))zu,v in Ω, η = 0 on Γ.

Using ηu,v (very helpful for computations!. We’ll see later why).

J′′(u)v2 =
∫
Ω

(ηu,v + κv)v dx.

9 / 56

Assumptions regarding the derivative of Φ

2 For every u ∈ A the linear mapping

Φ′(u) : Lp(X) −→ L∞(X)

has an extension to a compact operator

Φ′(u) : L2(X) −→ L2(X).

For every ε > 0 there exists ρ = ρε,u > 0 with Bp
ρ(u) ⊂ A such that

∥(Φ′(u)− Φ′(w))v∥L2(X) ≤ ε∥v∥L2(X) ∀w ∈ Bp
ρ(u) and ∀v ∈ L2(X).

3 There exist N ≥ 0 and numbers 2 = p0 ≤ p1 ≤ . . . ≤ pN = p such that for every u ∈ A, the linear mapping

Φ′(u) : Lp(X) −→ L∞(X)

defines also a continuous operator
Φ′(u) : Lpi−1(X) −→ Lpi (X)

for i = 1, . . . ,N (denote pN+1 = ∞).

4 For every u ∈ A, there exists ρu > 0 with Bp
ρu(u) ⊂ A and a constant Lu,Φ′ such that

∥(Φ′(w)− Φ′(u)
)
v∥L∞(X) ≤ Lu,Φ′∥w − u∥Lp(X)∥v∥Lp(X)

for all w ∈ Bp
ρu(u) and v ∈ Lp(X).

10 / 56

Local solution. First order optimality condition.

Let ū be a local solution

(In the sense of L2(X) if 2 < p < ∞, taking advantage of −∞ < α < β < ∞.)

Any local solution satisfies the first order optimality condition∫
X
(Φ(ū) + κū)(u − ū) dµ ≥ 0 ∀u ∈ Uad.

We will use this form to write the Sequence of Quadratic Programs.

Equivalently

ū(x) = Proj[αβ]

(
−Φ(ū)(x)

κ

)
for a.a.[µ]x ∈ X

We will use this form to write the SemiSmooth Newton method.

11 / 56

Assumptions on the local solution

5 The local minimizer ū ∈ Uad satisfies the second order sufficient optimality

condition

J′′(ū)v2 > 0 ∀v ∈ Cū \ {0}

and the strict complementarity condition

µ{x ∈ X : ū(x) ∈ {α, β} and κū(x) + Φ(ū)(x) = 0} = 0.

Here, Cū is the cone of critical directions

Cū =
{
v ∈ L2(X) :


v(x) ≥ 0 if ū(x) = α,
v(x) ≤ 0 if ū(x) = β,
v(x) = 0 if Φ(ū)(x) + κū(x) ̸= 0

a.e. [µ]
}
.

Remark

This is completely analog to the usual textbook assumption to obtain local

quadratic convergence of the SQP for finite-dimensional problems.

12 / 56

Outline

1 Introduction

Abstract framework

2 The methods

Warning

SemiSmooth Newton method

SQP method

3 More computational details

Solving PDEs

Finite dimensional optimization

A numerical experiment

13 / 56

Warning

There are versions of these methods that exploit the complete optimality

system.

(SQP)

 State equation

Adjoint state equation

Variational inequality

(SSN)

 State equation

Adjoint state equation

Projection equation

The three variables (y, φ, u) are treated independently.

These versions are fully linearized. There is no need to solve non-linear PDEs.

Fredi Tröltzsch (1999). “On the Lagrange–Newton–SQP Method for the Optimal Control of Semilinear

Parabolic Equations”. In: SIAM Journal on Control and Optimization 38.1, pp. 294–312. doi:

10.1137/S0363012998341423

In contrast, we will use u as the unique optimization variable.

A non-linear PDE must be solved at each step.

Robustness is gained regarding the choice of the initial point.

A smart combination of both worlds is possible to achieve the best

performance.

Eduardo Casas and Mariano Mateos (2025a). “Boundary bilinear control of semilinear parabolic PDEs:

quadratic convergence of the SQP method”. In: arXiv: 2505.24237 [math.OC]
14 / 56

https://doi.org/10.1137/S0363012998341423
https://arxiv.org/abs/2505.24237

Warning

There are versions of these methods that exploit the complete optimality

system.

(SQP)

 State equation

Adjoint state equation

Variational inequality

(SSN)

 State equation

Adjoint state equation

Projection equation

The three variables (y, φ, u) are treated independently.

These versions are fully linearized. There is no need to solve non-linear PDEs.

Fredi Tröltzsch (1999). “On the Lagrange–Newton–SQP Method for the Optimal Control of Semilinear

Parabolic Equations”. In: SIAM Journal on Control and Optimization 38.1, pp. 294–312. doi:

10.1137/S0363012998341423

In contrast, we will use u as the unique optimization variable.

A non-linear PDE must be solved at each step.

Robustness is gained regarding the choice of the initial point.

A smart combination of both worlds is possible to achieve the best

performance.

Eduardo Casas and Mariano Mateos (2025a). “Boundary bilinear control of semilinear parabolic PDEs:

quadratic convergence of the SQP method”. In: arXiv: 2505.24237 [math.OC]
14 / 56

https://doi.org/10.1137/S0363012998341423
https://arxiv.org/abs/2505.24237

Warning

There are versions of these methods that exploit the complete optimality

system.

(SQP)

 State equation

Adjoint state equation

Variational inequality

(SSN)

 State equation

Adjoint state equation

Projection equation

The three variables (y, φ, u) are treated independently.

These versions are fully linearized. There is no need to solve non-linear PDEs.

Fredi Tröltzsch (1999). “On the Lagrange–Newton–SQP Method for the Optimal Control of Semilinear

Parabolic Equations”. In: SIAM Journal on Control and Optimization 38.1, pp. 294–312. doi:

10.1137/S0363012998341423

In contrast, we will use u as the unique optimization variable.

A non-linear PDE must be solved at each step.

Robustness is gained regarding the choice of the initial point.

A smart combination of both worlds is possible to achieve the best

performance.

Eduardo Casas and Mariano Mateos (2025a). “Boundary bilinear control of semilinear parabolic PDEs:

quadratic convergence of the SQP method”. In: arXiv: 2505.24237 [math.OC]
14 / 56

https://doi.org/10.1137/S0363012998341423
https://arxiv.org/abs/2505.24237

Outline

1 Introduction

Abstract framework

2 The methods

Warning

SemiSmooth Newton method

SQP method

3 More computational details

Solving PDEs

Finite dimensional optimization

A numerical experiment

15 / 56

Semismoothness

(A farther layer of abstraction)

Definition 1 (Semismooth function)

Given two Banach spaces U and X , an open subset A of U, a continuous function
F : A −→ X , and a set-value mapping ∂F : A −→ P(L(U,X)) such that

∂F (u) ̸= ∅ ∀u ∈ A, we say that F is ∂F -semismooth at ū ∈ A if

lim
v→0

sup
M∈∂F (ū+v)

∥F (ū + v)− F (ū)−Mv||X
∥v∥U

= 0.

F is said ∂F -semismooth at A if it is ∂F -semismooth at every u ∈ A.

Algorithm 1: Semismooth Newton method to solve F (u) = 0.

1 Initialize. Choose u0 ∈ A. Set j = 0.

2 for j ≥ 0 do
3 Choose Mj ∈ ∂F (uj) and solve Mjvj = −F (uj).
4 Set uj+1 = uj + vj and j = j + 1.

5 end

16 / 56

Convergence conditions for the SSN

Theorem 2

Suppose F is semismooth at ū, a locally unique solution of F (u) = 0, and that for every
j ≥ 0, Mj ∈ ∂F (uj) is invertible and there exists C > 0 such that

∥M−1

j ∥L(X ,U) ≤ C ∀j ≥ 0.

Then there exists δ > 0 such that for all u0 ∈ U with ∥u0 − u∥X < δ the sequence
{uj}j≥0 converges superlinearly to ū.

In short

Semismoothness + Uniform boundness of the inverses⇒ superlinear convergence.

17 / 56

Building the SemiSmooth Newton method for (E)

F : L2(Ω) → L2(Ω), F (u)(x) = u(x)− Proj[α,β]

(
−φu(x)
κ

)

First order optimality conditions: A local solution ū is a solution of F (u) = 0.

In order to define ∂F (u) we introduce some additional functions.

Φ : L2(Ω) −→ L2(Ω), Φ(u) = φu,

ψ : R −→ R, ψ(t) = Proj[α,β](t),

Ψ : L2(Ω) −→ L2(Ω), Ψ(u)(x) = ψ(
−Φ(u)(x)

κ
).

Notice that F (u) = u −Ψ(u).

Ψ is called a superposition operator.

18 / 56

Computing ∂F .

ψ : R −→ R, ψ(t) = Proj[α,β](t) is a Lipschitz function. The subdifferential
in Clarke’s sense is

∂ψ(t) = {1} if t ∈ (α, β), ∂ψ(t) = {0} if t ̸∈ [α, β], ∂ψ(t) = [0, 1] if t ∈ {α, β}.

Ψ(u) = ψ(−Φ(u)
κ). For every u ∈ L2(Ω) we define (applying the chain rule)

∂Ψ(u) =
{
N ∈ L(L2(Ω), L2(Ω)) : Nv(x) = h(x) · −[Φ′(u)v](x)

κ
∀v ∈ L2(Ω)

where h : Ω −→ R is any measurable function

such that h(x) ∈ ∂ψ
(−Φ(u)(x)

κ

)
}.

Theorem 3

Ψ is ∂Ψ-semismooth in L2(Ω) and hence the function F : L2(Ω) −→ L2(Ω) is
∂F -semismooth in L2(Ω), where

∂F (u) = {M = I − N : N ∈ ∂Ψ(u)}.

19 / 56

Selection of the Mu

Define λ : R −→ R so that λ(t) ∈ ∂ψ(t) for every t ∈ R, by

λ(t) =
{

1 if t ∈ (α, β),
0 otherwise,

Given u ∈ L2(Ω), define hu : Ω → R as

hu(x) = λ(
−Φ(u)(x)

κ
) =

{
1 if

−φu(x)
κ ∈ (α, β),

0 otherwise.

If we define the inactive and active sets as

Iu = {x ∈ Ω :
−φu(x)
κ

∈ (α, β)} Au = Ω \ Iu,

then hu is the characteristic function of the inactive set

hu = χIu
.

Select Mu ∈ ∂F (u) as the linear operator Mu : L2(Ω) → L2(Ω) defined by

Muv = v − χIu
· −Φ′(u)v

κ
= v + χIu

· ηu,v
κ

20 / 56

The algorithm up to now

Algorithm 2: Semismooth Newton method to solve F (u) = 0.

1 Initialize. Choose u0 ∈ L2(Ω). Set j = 0.

2 for j ≥ 0 do
3 Compute yj = G(uj) solving the nonlinear state equation
4 Compute φj = Φ(uj) solving the linear adjoint equation
5 Set Aj = Aβ

j ∪ Aα
j and Ij = Ω \ Aj , where

Aβ
j = {x ∈ Ω : −φj(x) ≥ κβ}, Aα

j = {x ∈ Ω : −φj(x) ≤ κα}

6 Set wj(x) = −F (uj)(x) =


−uj(x) + β if x ∈ Aβ

j

−uj(x)− φj(x)
κ if x ∈ Ij

−uj(x) + α if x ∈ Aα
j

7 Solve v + χIj

ηuj ,v

κ = wj . Name vj the solution..

8 Set uj+1 = uj + vj and j = j + 1.

9 end

21 / 56

Solving the linear system v + χIu
ηu,v
κ = w

In the active set, the equation is reduced to v = w .

So we can write that v = χIu
v + χAu

w .

The mapping v 7→ ηu,v is linear in v . So ηu,v = ηu,χIu
v + ηu,χAu

w .

Name b = κw − ηu,χAu
w . In the inactive set we can write the equation as

κχIu
v + χIu

ηu,χIu
v = χIu

b.

This equation is the first order optimality condition of the unconstrained

quadratic problem [Notation: EΩυ is the extension by zero.]

(Q) min
υ∈L2(Iu)

1

2

∫
Iu
(ηu,EΩυ + κυ)υ dx −

∫
Iu
bυ dx.

Solve (Q) for ῡ. The solution of v + χIu
ηu,v

κ = w is

v =

{
ῡ in Iu
w in Au

22 / 56

The algorithm at this point

Algorithm 3: Semismooth Newton method to solve F (u) = 0.

1 Initialize. Choose u0 ∈ L2(Ω). Set j = 0.

2 for j ≥ 0 do
3 Compute yj = G(uj) solving the nonlinear state equation
4 Compute φj = Φ(uj) solving the linear adjoint equation
5 Compute Aβ

j and Aα
j . Set Aj = Aβ

j ∪ Aα
j and Ij = Ω \ Aj ,

6 Set wj(x) = −F (uj)(x)
7 Compute zj = G′(uj)χAj

wj solving the linearized state equation

8 Compute ηj = Φ′(uj)χAj
wj solving the second adjoint state equation

9 Name bj = κwj − ηj
10 Solve the unconstrained quadratic problem

(Q) min
υ∈L2(Ij)

1

2

∫
Ij
(ηuj,EΩυ + κυ)υ dx −

∫
Iu
bjυ dx.

Name υj the solution.

11 Set uj+1 = uj +
{

υj in Ij
wj in Aj

and j = j + 1.

12 end

23 / 56

Solving the unconstrained quadratic problem (Q)

(Q) min
υ∈L2(Iu)

1

2

∫
Iu
(ηu,EΩυ + κυ)υ dx −

∫
Iu
bυ dx.

Side remark: Before solving this, notice that, since EΩυ = 0 in Au, we have

J′′(u)(EΩυ)
2 =

∫
Iu
(ηu,EΩυ + κυ)υ dx.

In finite dimension, if we had H, the Hessian matrix at u, then (Q) would read as

min
υ∈RN

1

2

υT (H + κI)υ − bTυ

and this would be just a matter of solving the linear system

(H + κI)υ = b

But, as many authors point out at this point, H is too expensive to compute. Since

Hij =

∫
Iu
(ηu,EΩei)ej dx,

for a problem with N dof, you have to solve N2

linear pdes to get H.
24 / 56

Solving the unconstrained quadratic problem (Q)

(Q) min
υ∈L2(Iu)

1

2

∫
Iu
(ηu,EΩυ + κυ)υ dx −

∫
Iu
bυ dx.

Define the linear operator H : L2(Iu) → L2(Iu), [RIu is a restriction operator].

Hυ = RIuηu,EΩυ

Denoting (·, ·) the scalar product in L2(I), our problem reads

(Q) min
υ∈L2(Iu)

1

2

([H + κI]υ, υ)− (b, υ).

SSC+strict complementarity⇒ H + κI is a symmetric, positive definite

operator. Use the conjugate gradient method to solve (Q) at the price of one

evaluation of Hυ per iteration.

Cost of evaluation of Hυ. Solve two linear PDEs:

−∆z + b∇z + ∂y f (·, yu)z = EΩυ in Ω, z = 0 on Γ,

−∆η − div[bη] + ∂y f (·, yu)η = (1− φu∂
2

yy f (·, yu))z in Ω, η = 0 on Γ.

24 / 56

Further considerations

Under no-gap second order conditions and a strict complementarity condition,

the algorithm converges locally superlinearly.

If the equation is linear, then the SemiSmooth Newton method is equivalent to

a Primal Dual Active Set Strategy.

When solving finite dimensional approximations, there are three
remarkable facts:

1 For linear equations –so called linear-quadratic control problems– the

problem is solved in a finite number of iterations. Each iteration is uniquely

characterized by its active and inactive sets, so if these do not change from one

iteration to the next one, we stop.

2 For nonlinear equations, once the active and inactive sets are localized, the

observed order of convergence is quadratic.
3 The number of iterations is independent of the number of variables

(mesh-independence principle, observed in experiments; I don’t think it has

been proved in this context).

25 / 56

Outline

1 Introduction

Abstract framework

2 The methods

Warning

SemiSmooth Newton method

SQP method

3 More computational details

Solving PDEs

Finite dimensional optimization

A numerical experiment

26 / 56

Generalized equations

Let ū be a local solution (In the sense of L2(X) if 2 < p < ∞, taking advantage of

−∞ < α < β < ∞.)

Any local solution satisfies the first order optimality condition∫
X
(Φ(ū) + κū)(u − ū) dµ ≥ 0 ∀u ∈ Uad.

Let F : A → Lp(X) be given by F (u) = Φ(u) + κu.

Normal cone of Uad at u

N(u) =
{

{w ∈ L2(X) :
∫
X w(v − u)dµ ≤ 0 ∀v ∈ Uad} if u ∈ Uad,

∅ if u ̸∈ Uad.

Generalized equation

0 ∈ F (ū) + N(ū)

27 / 56

The SQP method

Generalized Newton’s method: Given u0 ∈ A, for j ≥ 0 uj+1 solves

0 ∈ F (uj) + F ′(uj)(uj+1 − uj) + N(uj+1)

This generalized equation is the first order optimality condition of the

constrained quadratic problem

(Qj) min
u∈Uad

1

2

J′′(uj)(u − uj)2 + J′(uj)u.

(Qj) may have no solution or may have more than one solution. Instead, we

will look for local solutions.

Remark: To solve (Qj) we do the change v = u − uj and use

J′′(uj)v2 =
∫
Ω

(
κv + ηuj,v

)
v dx J′(uj)v =

∫
Ω

(
κuj + φuj

)
v dx

28 / 56

The algorithm

Algorithm 4: SQP method to solve (E).

1 Initialize. Choose u0 ∈ L2(Ω). Set j = 0.

2 for j ≥ 0 do
3 Compute yj = G(uj) solving the nonlinear state equation
4 Compute φj = Φ(uj) solving the linear adjoint equation
5 Find a local solution of the constrained quadratic problem

(Q′
j) min

v∈Uad−{uj}

1

2

∫
Ω

(
κv + ηuj,v

)
v dx +

∫
Ω

(
κuj + φj

)
v dx

Name vj the obtained solution.

6 Set uj+1 = uj + vj and j = j + 1.

7 end

Theorem 4

Under no-gap second order sufficient optimality conditions and a strict
complementarity condition, the method converges quadratically to ū both in L2(Ω) and
L∞(Ω) provided an initial point u0 is given in a proper neighborhood of ū in the sense
of L2(Ω).

29 / 56

Solving (Q′
j)

(Q′) min
α−u(x)≤v(x)≤β−u(x)

1

2

∫
Ω

(
κv + ηu,v

)
v dx +

∫
Ω

(
κu + φ

)
v dx

Some authors write (Q′) as a linear-quadratic optimal control problem. Let’s

do it more interesting, more general, and easier.
Let (X ,S, µ) be measure space, H ∈ L(L2(X)) a self-adjoint operator,
b ∈ L2(X), α̃(x) and β̃(x) measurable functions (maybe taking ±∞ values),

and κ > 0.

(Q′) min
α̃(x)≤v(x)≤β̃(x)

1

2

(Hv + κv, v) + (b, v).

In our case Hv = ηu,v and b = κu + φ, α̃(x) = α− u(x), β̃(x) = β − u(x).

To solve the constrained quadratic problem ...

Use SemiSmooth Newton method ‼‼

30 / 56

Solving (Q′
j)

(Q′) min
α−u(x)≤v(x)≤β−u(x)

1

2

∫
Ω

(
κv + ηu,v

)
v dx +

∫
Ω

(
κu + φ

)
v dx

Some authors write (Q′) as a linear-quadratic optimal control problem. Let’s

do it more interesting, more general, and easier.
Let (X ,S, µ) be measure space, H ∈ L(L2(X)) a self-adjoint operator,
b ∈ L2(X), α̃(x) and β̃(x) measurable functions (maybe taking ±∞ values),

and κ > 0.

(Q′) min
α̃(x)≤v(x)≤β̃(x)

1

2

(Hv + κv, v) + (b, v).

In our case Hv = ηu,v and b = κu + φ, α̃(x) = α− u(x), β̃(x) = β − u(x).

To solve the constrained quadratic problem ...

Use SemiSmooth Newton method ‼‼

30 / 56

SemiSmooth Newton method to solve constrained

quadratic problems

Algorithm 5: SemiSmooth method to solve a constrained quadratic problem.

1 Initialize. Choose v0 ∈ L2(X). Set n = 0.

2 Compute Φn = Hvn + b; Set An = Aβ
n ∪ Aα

n and In = X \ An, where

Aβ
n = {x ∈ X : −Φn(x) ≥ κβ̃(x)}, Aα

n = {x ∈ X : −Φn(x) ≤ κα̃(x)}.

3 for n ≥ 0 do

4 Set wn(x) =


−vn(x) + β̃(x) if x ∈ Aβ

n

−vn(x)− Φn(x)
κ if x ∈ In

−vn(x) + α̃(x) if x ∈ Aα
n

5 Compute ηn = HχAn
wn and set bn = χIn

wn − χIn
ηn

6 Solve, for ῡn the unconstrained quadratic problem min
υ∈L2(In)

1

2

(RInHEXυ + κυ, υ)− (b, υ)

7 Set vn+1 = wn in An and vn+1 = ῡn in In.
8 Compute Φn+1 = Hvn+1 + b, Aβ

n+1
, Aα

n+1
, An+1 and In+1

9 For finite-dimensional problems: stop if Aβ
n = Aβ

n+1
and Aα

n = Aα
n+1

10 Set n = n+ 1

11 end

31 / 56

Outline

1 Introduction

Abstract framework

2 The methods

Warning

SemiSmooth Newton method

SQP method

3 More computational details

Solving PDEs

Finite dimensional optimization

A numerical experiment

32 / 56

Routines we need: (1) solving nonlinear PDEs

1 Given u, we need a routine to compute yu = G(u), this is, to solve the

nonlinear equation

−∆y + b · ∇y + f (·, y) = u in Ω, y = 0 on Γ.

I use Newton’s method for the equation F(y) = 0, where

F(y) = −∆y + b · ∇y + f (·, y)− u = 0.

Notice that

F ′(y)z = −∆z + b · ∇z + ∂y f (·, y)z = 0.

So, naming z = yk+1 − yk , the Newton equation

F ′(yk)z = −F(yk)

can be written, doing the proper cancellations in the linear terms, as

−∆yk+1 + b · ∇yk+1 + ∂y f (·, yk)yk+1 = u − f (·, yk) + ∂y f (·, yk)yk

33 / 56

FEM approximation

Let K be the stiffness matrix such that Ky models −∆y

Let T be the transport matrix such that T y models b · ∇y
Notice that T Ty models − div[bφ]
Name A = K + T
LetM0 be the mass matrix such thatM0u models the rhs u.

At each step, we have to assemble a mass matrixMk
that models the

action of ∂y f (x, yk)

Mk
i,j =

∫
Ω

ei(x)∂y f (x, ykh (x))ej(x) dx.

And also assemble a vector fk to model f (x, yk)

fkj =

∫
Ω

f (x, ykh (x))ej(x) dx.

34 / 56

Solving the linear systems

At each step we have to solve the linear system

[A+Mk]y = M0u+Mkyk − fk .

Since we have a transport term, the matrix is not symmetric. Use an LU

decomposition. I use the following trick in Matlab, which uses a scaling diagonal

matrix D, row permutation p and column permutation q

[L,U,p,q,D] = lu(A+Mk,'vector'); D = spdiags(D); D = D(p);

We can solve (A+Mk)y = b, with a very efficient one-liner, that solves two very

sparse triangular systems.

y(q,1) = U\(L\(D.\b(p)))

We stop the method when ∥ykh − yk+1

h ∥ is “small”. This means thatMk ≈ Mk+1
, so

we store in memory the last L,U,p,q,D. You will see now how helpful this is.

35 / 56

Routines we need: (2) solving the linearized PDE

Given u, yu, and v , we need a routine to compute zu,v = G′(u)v

−∆z + b · ∇z + ∂y f (·, yu)z = v

The yu that appears here is the one that comes from Newton’s method!. So the

system to solve is

[A+Mk+1]z = M0v

SinceMk+1 ≈ Mk
, we use the same coefficient matrix that we have already used

and factorized! Name b = M0v and do

z(q,:) = U\(L\(D.\b(p,:)))

Remark:

We will also use this with Matlab fmincon, which will need to compute zu,v for several
directions v at the same time, hence the :.

36 / 56

Routines we need: (3) solving the adjoint equations

Given u, yu, we need a routine to compute φu

−∆φ− div[bφ] + ∂y f (·, yu)φ = yu − yd

Given u, yu, φu, v and zu,v , we need a routine to compute ηu,v

−∆η − div[bη] + ∂y f (·, yu)η = (1− φuf ′′(yu))zu,v

The coefficient matrix that appears in the FEM approximation of these equations is

the transpose of [A+Mk+1]. We can take advantage of the factorization that we

have using Matlab’s forward slash (mrdivide).

LetM be the mass matrix such that ∥yh∥2L2(Ω) = yTMy.
For the adjoint state, name b = M(y − yd) and solve

phi(p,1) = ((b(q)'/U)/L)'./D;

37 / 56

Second adjoint state

For the second adjoint state, I assemble another mass matrixM

Mi,j =

∫
Ω

ei(x) (1− φh(x)∂2yy f (x, yh(x))) ej(x) dx

and name b = Mz. Then solve

eta(p,:) = ((b(q,:)'/U)/L)'./D;

Remark:

We will have to computeMz for several z, so it is better to assemble firstM than assembling

b = Mz directly.

We will also use this with Matlab fmincon, which needs to compute ηu,v for several directions v
at the same time, hence the :.

38 / 56

Assembling all those matrices

One of the keys to fast computation is the ability to assemble efficiently all

those mass matrices that change at every iteration.

Numerical integration formulas must be used. Just the trapezoid or the

midpoint formula may not do the work.

We may have to integrate difficult functions like∫
T
ei(x)φh(x)eyh(x)ej(x) dx, or

∫
T
ei(x)φh(x)yh(x)|yh(x)|ej(x) dx

We may have singularities near non-convex corners.

An equilibrium must be found among the number of points and the accuracy. I

use either the mid-edges formula (3 nodes, order 2) or a seven-point formula of

order 5.

Ronald Cools (2022). Encyclopaedia of Cubature Formulas. url:

https://nines.cs.kuleuven.be/ecf/
39 / 56

https://nines.cs.kuleuven.be/ecf/

Outline

1 Introduction

Abstract framework

2 The methods

Warning

SemiSmooth Newton method

SQP method

3 More computational details

Solving PDEs

Finite dimensional optimization

A numerical experiment

40 / 56

Discretize, then optimize

Assume y ∈ RNy
and u ∈ RNu

.

J(u) =
1

2

(y − yd)TM(y − yd) +
κ

2

uTDu,

where uTDu is/approximates ∥uh∥2L2(Ω)

Ay + f(y) = M0u
Az+ F ′(y)z = M0v

ATφ+ F ′(y)φ = M(y − yd)
ATη + F ′(y)η = Mz

J′(u)v =vT (MT
0
φ+ κDu)

J′′(u)v =vT (MT
0
η + κDv)

41 / 56

Can we use a diagonal D?

We can choose D diagonal in the following cases:

1 Uh = Uh,0 is formed by piecewise constant approximations of the controls.

2 Uh = Uh,1 is formed by piecewise linear approximations of the controls, and we

use the composite trapezoid rule to approximate

∫
Ω
uh(x)2 dx.

The relation between discrete optimal control and discrete optimal adjoint

state is respectively, as follows

1 ūh(x) = Proj[α,β]

(Qhφ̄h
κ

)
where Qh : L1(Ω) → Uh is the projection in the sense of

L2(Ω) onto Uh.

2 ūh(x) = Proj[α,β]

(Chφ̄h
κ

)
where Ch : L1(Ω) → Uh is the Carstensen interpolation

operator.

In both cases we have that Qhφ̄h ̸= φ̄h and Chφ̄h ̸= φ̄h. This has the following

effects:

The approximation error O(h2) in L2(Ω) of the FEM is lost. We will have O(h) in
the first case and o(h) in the second case.

In the case α ≤ 0 ≤ β, we have that ū = 0 on Γ. This is also lost. In general

ūh ̸≡ 0 on Γ.

42 / 56

Ideas about semismooth Newton

Usin that D is diagonal.

Instead of writing the first order optimality conditions written as

ūi = Proj[α,β]

(
−[M0φ̄]i
κdii

)
,

I prefer to denote αi = κdiiα and βi = κdiiβ, and write

κdii ūi = Proj[αi,βi] (−[M0φ̄]i)

So the function F for the SemiSmooth Newton method is given by

[F(u)]i = κdiiui − Proj[αi,βi] (−[M0φ]i)

In the algorithm one has to be careful, because now w is defined by

−κdiiwi = −[F(u)]i . Also the solution of unconstrained quadratic program requires

the use of a preconditioner. κD does the work!

43 / 56

What if D is not diagonal?

Uh = Uh,1 is formed by piecewise linear approximations of the controls, and we

compute

∫
Ω
uh(x)2 dx = uTMu, which is exact.

In this caseM0 = M and D = M. Order of convergence O(h3/2) is obtained.
The first order optimality condition

(u− ū)T (Mφ̄+ κMū) ≥ 0 ∀α ≤ u ≤ β

cannot be written in a componentwise form. We lose the pointwise projection

formula.

We can write the first order optimality condition using Lagrange multipliers

for the constraints α ≤ u ≤ β.
There exists λ̄ = λ̄β − λ̄α such that

Mφ̄+ κMū+ λ̄ = 0

α ≤ ū ≤ β

λ̄β ≥ 0, λ̄α ≥ 0

λ̄T
β(ū− β) = 0

λ̄T
α(ū−α) = 0

44 / 56

Semismooth equation for not diagonal D.

For any c > 0, the previous relations can be written as

Mφ̄+ κMū+ λ̄ = 0

λ̄ = max{0, λ̄+ c(ū− β)}+min{0, λ̄+ c(ū−α)}

Define F : RN × RN −→ RN × RN
as

F(u,λ) =
[

Mφ+ κMu+ λ
λ−max{0,λ+ c(u− β)} −min{0,λ+ c(u−α)}

]
Apply the SemiSmooth Newton method to this problem.

(Exercise for the reader).

45 / 56

Outline

1 Introduction

Abstract framework

2 The methods

Warning

SemiSmooth Newton method

SQP method

3 More computational details

Solving PDEs

Finite dimensional optimization

A numerical experiment

46 / 56

Data for the example

Ω is the L-shaped domain [−1, 1]2 \ [−1, 0]2. Notice that its biggest interior
angle is ω = 3π/2. Name λ = π/ω = 2/3.

We select data to have a non-monotone and non-coercive nonlinear operator:

f (x, y) = y3|y|. b(x) = δr1+γ(cos θ, sin(θ)). Here (r, θ) are the polar
coordinates, and we select δ = 6 and γ = −1.25.

yd(x) = (1− x2)(1− y2)rλ sin(λθ).

κ = 10
−4

, α = 0, β = 10 (really ill posed!).

47 / 56

Discretization choices

Finite element method. Lagrange P1 functions for the state and the adjoint

state.

Graded mesh family obtained by the “bisection method”. Grading parameter

µ = 2/3.

The controls are discretized also with Lagrange P1 elements. The term ∥u∥2L2(Ω)

is discretized using the composite trapezoid rule, which means uTDu where D
is the diagonal lumped mass matriz:

dii =
∫
Ω

ei dx.

48 / 56

Choosing the initial point

To solve the problem with meshsize h, use a sequence of (nested) meshes of

sizes h1 ≥ h2 ≥ . . . ≥ hN = h.

Also, use a sequence κ1 ≥ κ2 ≥ . . . κN = κ.

For the problem of size hi with Tikhonov parameter κi , use as initial point the
solution of the problem of size hi−1, with κi−1.

The problem h1 with κ1 is of small size and not ill posed. In our case u0 ≡ 0

works.

49 / 56

Solution

50 / 56

Some results: (1) SemiSmooth Newton

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
SemiSmooth Newton method solving nonlinear equations

j & J(u) & delta_u & Fact & CG & #J & #Ab & #Aa \\
____ _______________________ _____________ ______ ______ ________ ______ ________

0 & 8.6591166282472015e-02 & Inf & 1 & 0 & 0 24 0 \\
1 & 8.5977499674872490e-02 & 5.2e-02 & 2 & 2 & 24 0 0 \\
2 & 8.5977499674872476e-02 & 2.5e-09 & 2 & 3 & 24 0 0 \\

.

.

.
kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
SemiSmooth Newton method solving nonlinear equations

j & J(u) & delta_u & Fact & CG & #J & #Ab & #Aa \\
____ _______________________ _____________ ______ ______ ________ ______ ________

0 & 1.5050899562244532e-03 & Inf & 2 & 0 & 86646 138045 14835 \\
1 & 1.5050875185621496e-03 & 3.1e-02 & 3 & 11 & 85947 138643 14936 \\
2 & 1.5050875082492838e-03 & 4.7e-03 & 3 & 14 & 85995 138452 15079 \\
3 & 1.5050875081594375e-03 & 7.6e-05 & 3 & 13 & 85993 138452 15081 \\
4 & 1.5050875081590892e-03 & 7.4e-10 & 3 & 18 & 85993 138452 15081 \\
5 & 1.5050875081590843e-03 & 9.6e-12 & 2 & 22 & 85993 138452 15081 \\
6 & 1.5050875081590817e-03 & 1.2e-13 & 1 & 22 & 85993 138452 15081 \\
7 & 1.5050875081590821e-03 & 1.8e-15 & 1 & 26 & 85993 138452 15081 \\

tiempo =

44.360280099999997

51 / 56

Some results: (2) Sequence of Quadratic Programs

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
SQP method solving nonlinear equations

n & J(u_n) & delta_u & Fact & QP & CG & #J & #Aa & #Ab \\
____ ________________________ __________ ______ ______ _______ ________ _______

0 & 8.6591166282472015e-02 & Inf & 1 & 0 & 0 & 0 24 0 \\
1 & 8.5977499674872490e-02 & 5.2e-02 & 2 & 1 & 2 & 24 0 0 \\
2 & 8.5977499674872476e-02 & 2.5e-09 & 2 & 1 & 3 & 24 0 0 \\

.

.

.
kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
SQP method solving nonlinear equations

n & J(u_n) & delta_u & Fact & QP & CG & #J & #Aa & #Ab \\
____ ________________________ __________ ______ ______ _______ ________ _______

0 & 1.5050899562244540e-03 & Inf & 2 & 0 & 0 & 86646 138045 14835 \\
1 & 1.5050875096717187e-03 & 3.1e-02 & 3 & 2 & 22 & 85993 138452 15081 \\
2 & 1.5050875081708251e-03 & 2.2e-06 & 4 & 1 & 13 & 85993 138452 15081 \\
3 & 1.5050875081591864e-03 & 3.0e-08 & 4 & 1 & 21 & 85993 138452 15081 \\
4 & 1.5050875081590721e-03 & 3.5e-10 & 3 & 1 & 22 & 85993 138452 15081 \\
5 & 1.5050875081590713e-03 & 4.1e-12 & 2 & 1 & 22 & 85993 138452 15081 \\
6 & 1.5050875081590962e-03 & 4.9e-14 & 1 & 1 & 24 & 85993 138452 15081 \\

tiempo =

46.425035999999999

52 / 56

Some results: (3) SemiSmooth Newton using Lagrange

multipliers. No mass lumping!

Slightly different problem, hence slightly different solution, probably more accurate

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
SemiSmooth Newton method. Using multipliers and solving nonlinear equations
j & J(u) & delta_u & Fact & CG & #J & #Ab & #Aa \\

____ _______________________ _____________ ______ ______ ________ ______ ________
0 & 8.6591166282472015e-02 & Inf & 1 & 0 & 0 24 0 \\
1 & 8.6591166282472015e-02 & 0.0e+00 & 1 & 0 & 0 24 0 \\

.

.

.
kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
SemiSmooth Newton method. Using multipliers and solving nonlinear equations
j & J(u) & delta_u & Fact & CG & #J & #Ab & #Aa \\

____ _______________________ _____________ ______ ______ ________ ______ ________
0 & 1.5050391203894268e-03 & Inf & 2 & 0 & 85902 138602 15013 \\
1 & 1.5050370629104556e-03 & 4.2e-02 & 3 & 22 & 85901 138612 15013 \\
2 & 1.5050374656000616e-03 & 4.3e-02 & 2 & 29 & 85643 138721 15162 \\
3 & 1.5050374665947280e-03 & 9.7e-03 & 2 & 32 & 85434 138910 15182 \\
4 & 1.5050374665958775e-03 & 1.4e-09 & 3 & 25 & 85514 138830 15182 \\
5 & 1.5050374665958525e-03 & 2.8e-11 & 2 & 45 & 85469 138875 15182 \\
6 & 1.5050374665958462e-03 & 3.3e-13 & 1 & 45 & 85571 138773 15182 \\
7 & 1.5050374665958462e-03 & 1.2e-14 & 1 & 50 & 85531 138813 15182 \\

tiempo =

51.489184500000000

53 / 56

Some results: (4a) Matlab fmincon. Mass lumping.

Trust region method. Provide HessiaMultiply with a smart trick to pass a diagonal preconditioner.

Use zero initial point and let Matlab do all the work.

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.0854467 1.01e-05
1 0.0124817 1.55336 1.62e-06 14
2 0.00466646 0.715332 2.69e-07 19
3 0.00310525 0.954632 1.49e-07 19
4 0.00282616 0.22572 1.46e-07 19
5 0.00180709 1.35091 3.25e-08 18
6 0.0015767 0.871314 6.25e-09 20
.
32 0.00150509 5.07681e-14 6.06e-14 0
33 0.00150509 1.2692e-14 6.06e-14 0

Optimization stopped because the norm of the current step, 1.269202e-14, is
less than options.StepTolerance = 5.000000e-14.

tiempo =

1.376478881000000e+02

54 / 56

Some results: (4b) Matlab fmincon. Mass lumping.

Trust region method. Provide HessiaMultiply with a smart trick to pass a diagonal preconditioner. Use a

–refinement in h and continuation in κ– technique

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.0865912 0.0705
1 0.0859775 0.0179072 0.000245 4
2 0.0859775 6.6269e-05 6.02e-09 4
3 0.0859775 1.38571e-09 2.59e-17 4

Optimization completed: The first-order optimality measure, 2.592113e-17,
is less than options.OptimalityTolerance = 5.000000e-14, and no negative/zero
curvature is detected in the trust-region model.
.
.
kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.00150509 5.4e-10
1 0.00150509 0.000325074 3.8e-10 21
2 0.00150509 0.0209348 6.64e-12 21
3 0.00150509 0.0115229 9.45e-13 20
4 0.00150509 0.00591895 9.45e-13 21
.
.
20 0.00150509 2.31679e-13 9.45e-13 0
21 0.00150509 5.79199e-14 9.45e-13 0
22 0.00150509 1.448e-14 9.45e-13 0

Optimization stopped because the norm of the current step, 1.447997e-14, is
less than options.StepTolerance = 5.000000e-14.

tiempo =
66.902753500000003

55 / 56

Some results: (5) Matlab fmincon. No Mass Lumping

Trust region method. Provide HessiaMultiply with a smart trick to pass a diagonal preconditioner. Use a

–refinement in h and continuation in κ– technique

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.0865912 0.0705
1 0.0859153 0.0192294 0.011 12
2 0.0858572 0.101693 2.95e-05 12
.
.
16 0.0858497 0.000752885 1.6e-14 12

Optimization completed: The first-order optimality measure, 1.597934e-14,
is less than options.OptimalityTolerance = 5.000000e-14, and no negative/zero
curvature is detected in the trust-region model.
.
.
kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.00150504 7.52e-10
1 0.00150504 0.000323823 4.83e-10 51
2 0.00150504 0.000580233 1.29e-10 50
3 0.00150504 6.11812e-05 1.29e-10 50
4 0.00150504 1.52953e-05 1.29e-10 0
.
.
19 0.00150504 1.42449e-14 1.29e-10 0

Optimization stopped because the norm of the current step, 1.424486e-14, is
less than options.StepTolerance = 5.000000e-14.

tiempo =
81.967342200000004

56 / 56

	Introduction
	Abstract framework

	The methods
	Warning
	SemiSmooth Newton method
	SQP method

	More computational details
	Solving PDEs
	Finite dimensional optimization
	A numerical experiment

