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The abstract optimization problem

Problem (P)

®)  min J(u) = T () + Slulbe,

u€ Uyg

o (X,S, i) measure space with p(X) < oo, Kk > 0.
o J is a function of class C?

T ACIP(X) >R

for some p € [2,+00]. Here A C LP(X) is an open set.
@ Uy C Aand
Uag={uelP(X): a<u<Pae [u]}
—o00 < < B < 4o0. If p> 2, we also require —oo < a < 8 < +00.
Notation: Bj(u) = {v e LP(X) : |lv—ullwux < p}.

4/56



Some control problems that fit in this framework

The framework is easy to generalize to vector controls u € T17_, L7 (X))

o Additive elliptic control problem governed by a semilinear equation, with
distributed and/or boundary control.

@ Distributed control of the instationary Navier-Stokes equations
o Distributed and/or boundary control of a parabolic equation
°

Time dependent control of a parabolic quasilinear equation

Boundary bilinear control of a semilinear parabolic equation ...

Eduardo Casas (2024). “Superlinear Convergence of a Semismooth Newton Method for Some
Optimization Problems with Applications to Control Theory”. In: SIAM Journal on Optimization 34.4,
pp. 3681-3698. pol: 10.1137/24M1644286

Eduardo Casas and Mariano Mateos (2025b). Quadratic convergence of an SQP method for some
optimization problems with applications to control theory. (To appear in SICON). arXiv: 2505.22750
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A prototypical example

Problem (E)

. 1 2 K2

u“gb’;‘df(”) = §||Yu = Yalli) + EHUHL?(Q)

where y, € H}(Q) N C(Q) is the solution of
—Ay+b-Vy+f(,y)=uinQ, y=0o0nT.

and

U = {u € *(Q): a<u(x)<pBforaa xeQ}

e Q C R d < 3, bounded domain with Lipschitz boundary .
o be P(Q)4 p>2divb € LX(Q), ys € [2(Q)
o f:Q xR — R a Carathéodory function, f(-,0) € L?(2), monotone
non-decreasing, of class C? and such that 3)2,yf(x, y) is locally Lipschitz w.r.t. y .
Casas, Eduardo, Mateos, Mariano, and Résch, Arnd (2020). “Analysis of control problems of nonmontone

semilinear elliptic equations”. In: ESAIM: COCV 26, p. 80. por: 10.1051/cocv/2020032
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https://doi.org/10.1051/cocv/2020032

Some remarks about the example problem (E)

o X = Q, pis the Lebesgue measure, p = 2.
e Forevery u € A= L?(Q) there exists a unique y, € H}() N C(Q) solution of

—Ay+b-Vy+f(,y)=uinQ, y=0onT.

@ The control-to-state mapping G(u) = vy, is of class C2.

Derivative of the control-to-state mapping

For all u,v € [*(Q), z,, = G'(u)v € H)(2) N C(R) is the unique solution of

—Az+bVz+0,f(,y))z=vinQ, z=0o0nT.

o T(u) = 2llyu — yallZgy J(W) = Hlvi — vallagey + %11t

e Corollary: J is of class C?
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The first derivative of the objective functional

For the abstract problem, we assume:
@ There exists a C' mapping ® : A — L°°(X) such that

j/(u)v:/d)(u)vd,uVue,Aand Vv € LP(X).
X

For the example: For every u € L*(Q) there exists a unique adjoint state

vy € H}(Q) N C(Q) solution of

—Ap —diviby] + 0, f(, yu)p =yu —yain, p =0onT.

The mapping ®(u) = @, is of class C' from L?(Q) into L>°(2) and integration by
parts shows that

J(u)v = /(gpu + ku)vdx Yu € L*(Q) and Vv € L*(Q).
Q
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The second derivative

Remark: J is of class C2. Vu € A, J"(u) : LP(X) x LP(X) — R is a symmetric
and continuous bilinear form and satisfies

T () (s v3) = / [ ()] vz dp = / O (Wvlndn Yv,v € 1P(X). (1)
X X
We will write 7" (u)v? = J"(u)(v, v).
For the example: Classical form of the second derivative:
J (u)v? = / [(1 — (pua)z,yf(.7yu))ziv + K,Vz] dx.
0 :

But ... we will use the so-called second-adjoint-state. For all u, v € [*(Q),

Nuy = ®'(u)v € H)(Q) N C(Q) is the unique solution of
—An —div[bn] + 9y f (-, yu)n = (1 — ‘puaf/yf(’s Yu))Zuyin €, m=0onT.

Using 7, (very helpful for computations!. We’ll see later why).

J (u)v? = /Q(m,v + kv)vdx.
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Assumptions regarding the derivative of ®

@ For every u € A the linear mapping
&' (u) : LP(X) — L(X)

has an extension to a compact operator
&' (u) : L2(X) — LA(X).
For every ¢ > 0 there exists p = p.,, > 0 with Bj(u) C A such that
(@' (u) = ' (W)llgr) < ellvlizge Y € By(u) and Wy € L2(X).
@ There exist N > 0 and numbers 2 = py < p; < ... < py = p such that for every u € A, the linear mapping
&' (u) : LP(X) — L°(X)

defines also a continuous operator
&' (u) : LP=1(X) — LPI(X)

fori=1,...,N (denote pyr1 = 00).
@ Forevery u € A, there exists p, > 0 with Bpu(u) C Aand a constant L, ¢ such that

(1" (w) = () vy < Luo llw = ull oy [Vl oy

for all w € Bj,(u) and v € LP(X).
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Local solution. First order optimality condition.

@ Let u be a local solution
(In the sense of L?(X) if 2 < p < oo, taking advantage of —co < a < 8 < 0.)

@ Any local solution satisfies the first order optimality condition
/(CD(H) + k0)(u—10)dp > 0Vu € Uyg.
X

We will use this form to write the Sequence of Quadratic Programs.

o Equivalently

®(@)(x)

u(x) = Proji, g (—KX> fora.a.[u]x € X

We will use this form to write the SemiSmooth Newton method.
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Assumptions on the local solution

@ The local minimizer i € U,q satisfies the second order sufficient optimality
condition
J'(@)v* > 0Vv e G\ {0}

and the strict complementarity condition
u{x € X : u(x) € {a, B} and kt(x) + ®(7)(x) = 0} = 0.
Here, Cy is the cone of critical directions
v(x) > 0if a(x) = a,

Ci= {v € (X): { v(x) < 0if a(x) = B, ae. [u]}.
v(x) = 0if ®(u)(x) + Kku(x) #0

This is completely analog to the usual textbook assumption to obtain local
quadratic convergence of the SQP for finite-dimensional problems.
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© The methods
@ Warning
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rning

@ There are versions of these methods that exploit the complete optimality

system.
State equation State equation
(SQP) < Adjoint state equation (SSN) < Adjoint state equation
Variational inequality Projection equation

o The three variables (y, ¢, u) are treated independently.
o These versions are fully linearized. There is no need to solve non-linear PDEs.

Fredi Troltzsch (1999). “On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear
Parabolic Equations”. In: SIAM Journal on Control and Optimization 38.1, pp. 294-312. po:
10.1137/S0363012998341423
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@ In contrast, we will use u as the unique optimization variable.

@ A non-linear PDE must be solved at each step.
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@ In contrast, we will use u as the unique optimization variable.

@ A non-linear PDE must be solved at each step.

@ Robustness is gained regarding the choice of the initial point.

@ A smart combination of both worlds is possible to achieve the best

performance.

Eduardo Casas and Mariano Mateos (2025a). “Boundary bilinear control of semilinear parabolic PDEs:
quadratic convergence of the SQP method”. In: arXiv: 2505.24237 [math, OC]
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© The methods

@ SemiSmooth Newton method
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Semismoothness
(A farther layer of abstraction)

U s W N =

Definition 1 (Semismooth function)

Given two Banach spaces U and X, an open subset .4 of U, a continuous function
F: A— X, and a set-value mapping OF : A — P(L(U, X)) such that
OF(u) # 0 Vu € A, we say that F is dF-semismooth at & € A if

F(a+v) — F(@) — M
im sy IFEHY) — @) — Myl

V=0 MecoF (T+v) [vilu

=0.

F is said OF-semismooth at A if it is OF-semismooth at every u € A.

Algorithm 1: Semismooth Newton method to solve F(u) = 0.

Initialize. Choose uy € A. Set j = 0.

for j > 0do
Choose M; € OF(u;) and solve M;v; = —F(u;).
Set uiy =uj+viand j=j+ 1.

end
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Convergence conditions for the SSN

Suppose F is semismooth at u, a locally unique solution of F(u) = 0, and that for every
Jj >0, M; € OF(uj) is invertible and there exists C > 0 such that

IM; Ml 2ex,uy < CVj > 0.

Then there exists § > 0 such that for all uy € U with ||uy — ul|x < 0 the sequence
{uj}j>o converges superlinearly to G.

Semismoothness + Uniform boundness of the inverses = superlinear convergence.
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Building the SemiSmooth Newton method for (E)

F: () = L(Q), F(u)(x) = u(x) — Projj, (%(X))

K

o First order optimality conditions: A local solution @ is a solution of F(u) = 0.

o In order to define OF(u) we introduce some additional functions.

¢ L12(Q) — 3(), &(u) = .,
T;Z} R— Ra 1)[}(1") = Proj[a,ﬁ](t)7

W) — (), W) = u(— D),

Notice that F(u) = u— V(u).

@ Vs called a superposition operator.
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Computing OF.

o ¢ :R— R, ¢(t)=Projy, g(t) is a Lipschitz function. The subdifferential
in Clarke’s sense is

Oy(t) = {1} if t € (o, B), O9(1) = {0} if t & [, B, D(t) = [0, 1] if t € {ex, B}

o W(u) = (=24). For every u € 12(Q) we define (applying the chain rule)

K

oV(u) = {N € L(L3(Q), L*(Q)) : Nv(x) = h(x) - M Vv € 13(Q)
where h: 2 — R is any measurable function

such that h(x) € aw( ( Jx ))}

V js OW-semismooth in L?(Q2) and hence the function F : L*(2) — L*(Q) is
OF-semismooth in L*(Q), where

OF(u) ={M=1—N:NecoV(u)}




Selection of the M,

o Define A : R — R so that A(t) € 9y (t) for every t € R, by
1 ifte(a,p),
(D) :{ (@, 5)

0 otherwise,
e Given u € L*(Q2), define h, : Q@ — R as

— ujlx i;u(x) o
() — 220 ))_{1 f el ¢ (a, ),

K 0 otherwise.

@ If we define the inactive and active sets as
L=fre: 2 e@py  m-n\L,

then h, is the characteristic function of the inactive set

hy = x,,
e Select M, € OF(u) as the linear operator M, : L*(Q) — L*(Q2) defined by
—&'(u)y Nu,v

MuVZV*XHU' V+Xnu

K
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The algorithm up to now

Algorithm 2: Semismooth Newton method to solve F(u) = 0.

1 Initialize. Choose uy € L*(Q2). Set j = 0.

2 forj > 0do

3 Compute y; = G(u;) solving the nonlinear state equation
4 Compute p; = ®(u;) solving the linear adjoint equation

5 Set Aj = Af UA® andI; = Q\ A, where
AP = {xeQ:—pi(x) > w8}, AF ={x€Q:—pj(x) < ra}

—ui(x)+ if x € A]@
6 Set wi(x) = —F(u))(x) = { —uj(x) — @ ifx el;
—ui(x) + if x € A

Nuj.v

7 Solve v+ X, =

= w;. | Name v; the solution..

8 Setujy; =uj+vjandj=j+ 1.
9 end
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7u v

Solving the linear system v + x, == = w

In the active set, the equation is reduced to v = w.

So we can write that v = X1,V T Xa,W

The mapping v = 1, is linear in v. S0 ny,y = Nu,x, v + Nuy, w

Name b = kw — Nu,x, w-1n the inactive set we can write the equation as

KX,V X0 lux, v = Xo,b-

This equation is the first order optimality condition of the unconstrained
quadratic problem [Notation: Equ is the extension by zero.]

min /(nuEQU—l—m) vdx—/ bu dx.

UGL2

Solve (Q) for ©. The solution of v 4 x, " = wis

K
v inl,
v= .
w inA,
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The algorithm at this point

Algorithm 3: Semismooth Newton method to solve F(u) = 0.

1 Initialize. Choose uy € L*(2). Set j = 0.

2 forj > 0do

3 Compute y; = G(u;) solving the nonlinear state equation
4 Compute ¢; = ®(u;) solving the linear adjoint equation

5 Compute Ajﬂ and A" Set A; = Ajﬂ UAfand[; = Q\ A,
6 Set wi(x) = —F(u;)(x)

7 Compute z; = G’(uj))(AJ w; solving the linearized state equation

8 Compute 7; = d)’(uj)xAj w; solving the second adjoint state equation
9 Name b; = kw; —n;

10 Solve the unconstrained quadratic problem

(Q) min /(nuﬂgnv—i-m})vdx—/ bjv dx.

vel?(I;) 2

Name v; the solution.
1 Set uj = u;j + {

12 end

v; inlj

w, inA and j=j+ 1.
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Solving the unconstrained quadratic problem (Q)

;
min f/(n,,,EQU—l—/w)vdx—/ bu dx.
L

vel?(L,) 2 1,

Side remark: Before solving this, notice that, since Equ = 0 in A,, we have

J//(u)(EQU)Z - /(nu,EQU + K?’U)’U dx.
Ty
In finite dimension, if we had H, the Hessian matrix at u, then (Q) would read as

1
min —v’ (H+ kv —b'v
vERN 2

and this would be just a matter of solving the linear system
(H+rhv=>b
But, as many authors point out at this point, H is too expensive to compute. Since

Hij:/(nu,fnei)ejdX7

u

for a problem with N dof, you have to solve N” linear pdes to get H.
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Solving the unconstrained quadratic problem (Q)

;
min f/(n,,,EQU—l—/w)vdx—/ bu dx.
L

UELZ(HU) 2 1,
@ Define the linear operator H : L*(I,) — L*(1,), [Ry, is a restriction operator].
Hv = R]L,nu,EQv

@ Denoting (-, -) the scalar product in L?(T), our problem reads

. 1
(Q) Loin E([H + kllv,v) — (b, v).

@ SSC+strict complementarity = H + kl is a symmetric, positive definite
operator. Use the conjugate gradient method to solve (Q) at the price of one
evaluation of Huv per iteration.

@ Cost of evaluation of Hvu. Solve two linear PDEs:
—Az+bVz+0,f(-,yu)z=EquinQ, z=0onT,

—An —div[bn] + 9,f (-, yu)n = (1 = 9u0y,f (-, yu))2inQ, p=0o0nT.
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Further considerations

o Under no-gap second order conditions and a strict complementarity condition,
the algorithm converges locally superlinearly.

o If the equation is linear, then the SemiSmooth Newton method is equivalent to
a Primal Dual Active Set Strategy.

@ When solving finite dimensional approximations, there are three
remarkable facts:

@ For linear equations —so called linear-quadratic control problems- the
problem is solved in a finite number of iterations. Each iteration is uniquely
characterized by its active and inactive sets, so if these do not change from one
iteration to the next one, we stop.

@ For nonlinear equations, once the active and inactive sets are localized, the
observed order of convergence is quadratic.

© The number of iterations is independent of the number of variables
(mesh-independence principle, observed in experiments; | don’t think it has
been proved in this context).
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© The methods

@ SQP method
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Generalized equations

@ Let & be a local solution (In the sense of L2(X) if 2 < p < oo, taking advantage of
—co<a<f <o)

@ Any local solution satisfies the first order optimality condition
/(¢(a) 4+ w)(u—T)dp > 0Vu € Uy,
X

o Let F: A — LP(X) be given by F(u) = ®(u) + ku.

@ Normal cone of Uyq at u

N(u) = {we L*(X fx v—u)dp <O0Vv € Uy}t ifu€ Uy,
YN0 if ud Uyg.

Generalized equation

0 € F(@) + N(a)
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The SQP method

o Generalized Newton’s method: Given uy € A, for j > 0 uj;4 solves
0 € F(uj) + F'(u)(ujr — ) + N(ujyr)

o This generalized equation is the first order optimality condition of the
constrained quadratic problem

o1
(Q)  min 2" (u)(u— w)’ +J (u)u.
e (Q;) may have no solution or may have more than one solution. Instead, we

will look for local solutions.

Remark: To solve (Q;) we do the change v = u — u; and use

j"(uj)vzz/ﬂ(nv+nuj7‘,)vdx j’(uj)v:/ﬂ(mujJrgouj)vdx
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The algorithm

Algorithm 4: SQP method to solve (E).

Initialize. Choose uy € L*(Q2). Set j = 0.

forj > 0do

Compute y; = G(u;) solving the nonlinear state equation
Compute ¢; = ®(u;) solving the linear adjoint equation
Find a local solution of the constrained quadratic problem

g W N =

(Q;) . 1/ (,Lgv+7]uj"v)vdx+/ (Hu,-+<,9j)vdx
JQ -

min
vEU—{u;} 2 Q

Name v; the obtained solution.
6 Set ujyy =u;+vjand j=j+ 1.
7 end

Theorem 4

Under no-gap second order sufficient optimality conditions and a strict
complementarity condition, the method converges quadratically to u both in L*(Q) and
L>°(RQ2) provided an initial point uy is given in a proper neighborhood of u in the sense

of L*(Q).
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Solving (Q;)

(Q) | 1/Q(m+nu,v)vdx+/ (ks + ) v

min
a—u(x)<v(x)<B—u(x) 2 Q

@ Some authors write (Q’) as a linear-quadratic optimal control problem. Let’s
do it more interesting, more general, and easier.

e Let (X, S, ;1) be measure space, H € L(L*(X)) a self-adjoint operator,
b € [2(X), a(x) and 3(x) measurable functions (maybe taking 4co values),
and K > 0.

1
(Q) min _ —(Hv+kv,v)+ (b,v).
G(x)<v(x)<B(x)

o Inour case Hv = 1, and b = rku + ¢, &(x) = a — u(x), B(x) = 5 — u(x).

To solve the constrained quadratic problem ...




(Q) | 1/9(m+nu,v)vdx+/ (ks + ) v

min
a—u(x)<v(x)<B—u(x) 2 Q

@ Some authors write (Q’) as a linear-quadratic optimal control problem. Let’s
do it more interesting, more general, and easier.

e Let (X, S, ;1) be measure space, H € L(L*(X)) a self-adjoint operator,
b € [2(X), a(x) and 3(x) measurable functions (maybe taking 4co values),
and K > 0.

1
(Q) min _ —(Hv+kv,v)+ (b,v).
G(x)<v(x)<B(x)

o Inour case Hv = 1, and b = rku + ¢, &(x) = a — u(x), B(x) = 5 — u(x).

To solve the constrained quadratic problem ...

Use SemiSmooth Newton method !!!
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SemiSmooth Newton method to solve constrained

quadratic problems

Algorithm 5: SemiSmooth method to solve a constrained quadratic problem.

1 Initialize. Choose vy € L?(X). Set n= 0.
2 Compute ®, = Hv, + b; Set A, = Af UA% and I, = X\ A,, where

Al ={xeX: —b,(x)> KB(X)}, AY={xe X: —d,(x) < ra(x)}.

3 forn> 0do

—va(x) + B(x) ifxe AP

4 Set w,(x) = —Va(x) — ®u (X) if x €1,
fv,,(x)Jroz( ) ifxeA?

5 Compute 1, = Hx,, w, and set b, = X; Wn — X3, 7n

6 Solve, for ©, the unconstrained quadratic problem ml(r}1 )2 (R]In HExv + kv, v) — (b,v)
vEL

7 Set Vyp1 = wyin Ay and v, = T, in I,

s | Compute ®ppq = Hvpyr + b AT LAY, Anyy and 11,,+I

9 For finite-dimensional problems: stop if AS = n+, and A = Ay,

10 Setn=n-+1
11 end
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© More computational details
@ Solving PDEs
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Routines we need: (1) solving nonlinear PDEs

@ Given u, we need a routine to compute y, = G(u), this is, to solve the
nonlinear equation

—Ay+b-Vy+f(,y)=uinQ, y=0onT.
I use Newton’s method for the equation F(y) = 0, where
Fly)=—By+b-Vy+f(,y)—u=0.

Notice that
F(y)z=—-Dz+b-Vz+9,[(-,y)z=0.

So, naming z = y+1 — Y, the Newton equation

Fl(y)z = —F(y)

can be written, doing the proper cancellations in the linear terms, as
DYkt T b Vi + 0, f (s vy = u = f( yi) + 0, (5 vy
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FEM approximation

o Let K be the stiffness matrix such that Ky models —Ay

o Let 7 be the transport matrix such that Ty models b - Vy
Notice that 7"y models — div[by]

o Name A=K+ T
@ Let M, be the mass matrix such that Myu models the rhs u.

o At each step, we have to assemble a mass matrix M* that models the
action of 0, f(x, y«)

My = [ el b () dx
And also assemble a vector §* to model f(x, yi)

fi = /Qf(X, yh(x))ei(x) dx.
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Solving the linear systems

At each step we have to solve the linear system
[A+ My = Mou + MFyk — 5%

Since we have a transport term, the matrix is not symmetric. Use an LU
decomposition. | use the following trick in MATLAB, which uses a scaling diagonal
matrix D, row permutation p and column permutation g

[L,U,p,q,D] = lu(A+Mk, 'vector'); D = spdiags(D); D = D(p);

We can solve (A+Mk)y = b, with a very efficient one-liner, that solves two very
sparse triangular systems.

y(a,1) = U\N(L\(D.\b(p)))

We stop the method when ||yf — yL<+1 || is “small”. This means that M* ~ M+ so
we store in memory the last L, U, p, g, D. You will see now how helpful this is.
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Routines we need: (2) solving the linearized PDE

Given u, y,, and v, we need a routine to compute z,, = G'(u)v
—Az+b-Vz+0,f(,y))z=v

The y, that appears here is the one that comes from Newton’s method!. So the
system to solve is

[A + Mk+1]Z = M()V

Since M**' ~ MK, we use the same coefficient matrix that we have already used
and factorized! Name b = Mv and do

z(q,:) = UN(L\(D.\b(p,:)))

Remark:

@ We will also use this with Matlab fmincon, which will need to compute z,,, for several
directions v at the same time, hence the :.
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Routines we need: (3) solving the adjoint equations

Given u, y,, we need a routine to compute ¢,
—Dp —divibo] + 0y f (-, yu)p = yu — ya
Given u, y,, ¢y, v and z,,,, we need a routine to compute 7, ,
—An —div[bn] + 9,f (- yu)n = (1 = uf " (yu)) Zu,v

The coefficient matrix that appears in the FEM approximation of these equations is
the transpose of [A + M**1]. We can take advantage of the factorization that we
have using MATLAB’s forward slash (mrdivide).

Let M be the mass matrix such that Hthfz(Q) =y My.
For the adjoint state, name b = M(y — y4) and solve

phi(p,1) = ((b(q)'/U)/L)"'./D;
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Second adjoint state

For the second adjoint state, | assemble another mass matrix 9t

M= A ei(x) (1= @n(x)35,f (x, yn(x))) €;(x) dx
and name b = Miz. Then solve

eta(p,:) = ((b(qg,:)'/U)/L)"'./D;
Remark:

@ We will have to compute Iz for several z, so it is better to assemble first M than assembling
b = Mz directly.

@ We will also use this with Matlab fmincon, which needs to compute 7,y for several directions v
at the same time, hence the :.
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Assembling all those matrices

@ One of the keys to fast computation is the ability to assemble efficiently all
those mass matrices that change at every iteration.
o Numerical integration formulas must be used. Just the trapezoid or the
midpoint formula may not do the work.
e We may have to integrate difficult functions like

/T e(x)n(x)e" e (x) dx, or / e (x)on()yn () yn () (x) dlx

e We may have singularities near non-convex corners.
@ An equilibrium must be found among the number of points and the accuracy. |
use either the mid-edges formula (3 nodes, order 2) or a seven-point formula of
order 5.

Ronald Cools (2022). Encyclopaedia of Cubature Formulas. URL:

https://nines.cs.kuleuven.be/ecf/ 1056


https://nines.cs.kuleuven.be/ecf/

© More computational details

@ Finite dimensional optimization
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Discretize, then optimize

Assume y € R™ and u € RM.
1 T K 1
Ju) = 2(y = ya) M(y = y4) + Su Du,

where u”Du is/approximates ||uh||f2(m

Ay +§(y) = Mou
Az + F'(y)z Mov
ATp + F'(y)e M(y — ya)
ATn+F'(yyn = Mz

J(u)v =vT(MJ @ + rDu)
J"(u)v =v'(Mgn + xDv)
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Can we use a diagonal D?

@ We can choose D diagonal in the following cases:

@ Uy = Uny is formed by piecewise constant approximations of the controls.
@ Uk = Uy, is formed by piecewise linear approximations of the controls, and we
use the composite trapezoid rule to approximate fQ up(x)? dx.

o The relation between discrete optimal control and discrete optimal adjoint
state is respectively, as follows

@ uy(x) = Projy, 4 (Q*'j") where Q : L'(Q) — Uy is the projection in the sense of
L*(Q) onto Up.

Q Tn(x) = Projy, 4 (<:22) where Cy : L'(Q) — Uy is the Carstensen interpolation
operator.

@ In both cases we have that Q,@, # @, and Ch@h # @p. This has the following
effects:

o The approximation error O(h?) in L*(Q2) of the FEM is lost. We will have O(h) in
the first case and o(h) in the second case.

o Inthe case @ < 0 < f3, we have that u = 0 on I". This is also lost. In general
up,ZO0onT.
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Ideas about semismooth Newton

Usin that D is diagonal.
Instead of writing the first order optimality conditions written as

— . —[Mop]i
- (420

| prefer to denote «; = kd;a and §; = kd;; 3, and write
rd;t; = Projp,, g1 (—[Mo@)))
So the function F for the SemiSmooth Newton method is given by
[F(u)]i = diju; — Projj,, g1 (—=[Moe]i)

In the algorithm one has to be careful, because now w is defined by
—rkd;w; = —[F(u)];. Also the solution of unconstrained quadratic program requires
the use of a preconditioner. KD does the work!
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What if D is not diagon

@ Uy = Uy is formed by piecewise linear approximations of the controls, and we
compute [, up(x)? dx = u” Mu, which is exact.

o In this case My = M and D = M. Order of convergence O(h*/?) is obtained.

@ The first order optimality condition

(u—a) (M@ +rMiu) >0Va<u<p

cannot be written in a componentwise form. We lose the pointwise projection
formula.

@ We can write the first order optimality condition using Lagrange multipliers
for the constraints a« < u < 3.

There exists A = Ag — A, such that
M@+ EMa+A=0

a<u<p

X5 >0,2,>0
@ 8)=0
MN(a—a)=0
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Semismooth equation for not diagonal D.

@ For any ¢ > 0, the previous relations can be written as

M@+ kM +X=0

X =max{0,X + c(a — B)} + min{0, X + (&1 — o)}
o Define F: RY x RN — RN x RN as

Mp + kMu+ A

F(u,\) = A —max{0, A + c(u — B)} — min{0, A + c(u — )}

o Apply the SemiSmooth Newton method to this problem.

(Exercise for the reader).
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© More computational details

@ A numerical experiment
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Data for the example

@ Qs the L-shaped domain [—1,1]? \ [—1, 0]%. Notice that its biggest interior
angle isw = 37/2. Name A = w/w = 2/3.

@ We select data to have a non-monotone and non-coercive nonlinear operator:
f(x,y) = y3lyl b(x) = 6r'*7(cos 6, sin(6)). Here (r, 0) are the polar
coordinates, and we select § = 6 and v = —1.25.

o ya(x) = (1—x¥)(1— y?)r*sin(A\0).

o k=10"% a=0,8 = 10 (really ill posed!).
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Discretization choices

o Finite element method. Lagrange P1 functions for the state and the adjoint
state.

o Graded mesh family obtained by the “bisection method”. Grading parameter
w=2/3.
o The controls are discretized also with Lagrange P1 elements. The term Hu||i2(9)

is discretized using the composite trapezoid rule, which means u” Du where D
is the diagonal lumped mass matriz:

dii = / e; dx.
Q
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Choosing the initial point

@ To solve the problem with meshsize h, use a sequence of (nested) meshes of
sizeshy > h, > ... > hy = h.

@ Also, use a sequence K1 > Ky > ... Ky = K.

@ For the problem of size h; with Tikhonov parameter x;, use as initial point the
solution of the problem of size h;_q, with x;_;.

@ The problem h; with k; is of small size and not ill posed. In our case uy =0
works.
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Solution

Target state yq4

Optimal control

1
0 0
K

1
0 0
K

Optimal state

e

(-(Adjoint state)/Tikhonov

10

IS

)

0.45

0.35

0.25

0.15

0.05




Some results: (1) SemiSmooth Newton

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
SemiSmooth Newton method solving nonlinear equations

j & J(u) & delta_u & Fact & CG & #J & #Ab & #Aa \\
"0 & 8.6591166282472015e-02 & Inf & 1 & 0 & 0 24 0 \\

1 & 8.5977499674872490e-02 & 5.2e-02 & 2 & 2 & 24 0 0 \\

2 & 8.5977499674872476e-02 & 2.5e-09 & 2 & 3 & 24 0 0 \\

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
SemiSmooth Newton method solving nonlinear equations

j & J(u) & delta_u & Fact & CG & #J & #Ab & #Aa \\

0 & 1.5050899562244532e-03 & Inf & 2 & 0 & 86646 138045 14835 \\
1 & 1.5050875185621496e-03 & 3.1le-02 & 3 & 11 & 85947 138643 14936 \\
2 & 1.5050875082492838e-03 & 4.7e-03 & 3 & 14 & 85995 138452 15079 \\
3 & 1.5050875081594375e-03 & 7.6e-05 & 3 & 13 & 85993 138452 15081 \\
4 & 1.5050875081590892e-03 & 7.4e-10 & 3 & 18 & 85993 138452 15081 \\
5 & 1.5050875081590843e-03 & 9.6e-12 & 2 & 22 & 85993 138452 15081 \\
6 & 1.5050875081590817e-03 & 1.2e-13 & 1 & 22 & 85993 138452 15081 \\
7 & 1.5050875081590821e-03 & 1.8e-15 & 1 & 26 & 85993 138452 15081 \\

tiempo =

44.360280099999997
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Some results: (2) Sequence of Quadratic Programs

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
SQP method solving nonlinear equations

n & J(u_n) & delta_u & Fact & QP & CG & #I & #Aa & #Ab \\
"0 & 8.6591166282472015e-02 & Inf & 1 & 0 & 0 & 0 24 0 \\
1 & 8.5977499674872490e-02 & 5.2e-02 & 2 & 1 & 2 & 24 0 0 \\
2 & 8.5977499674872476e-02 & 2.5e-09 & 2 & 1 & 3 & 24 0 0 \\

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
SQP method solving nonlinear equations

n & J(u_n) & delta_u & Fact & QP & CG & #J & #Aa & #Ab \\

0 & 1.5050899562244540e-03 & Inf & 2 & 0 & 0 & 86646 138045 14835 \\
1 & 1.5050875096717187e-03 & 3.1e-02 & 3 & 2 & 22 & 85993 138452 15081 \\
2 & 1.5050875081708251e-03 & 2.2e-06 & 4 & 1 & 13 & 85993 138452 15081 \\
3 & 1.5050875081591864e-03 & 3.0e-08 & 4 & 1 & 21 & 85993 138452 15081 \\
4 & 1.5050875081590721e-03 & 3.5e-10 & 3 & 1 & 22 & 85993 138452 15081 \\
5 & 1.5050875081590713e-03 & 4.1le-12 & 2 & 1 & 22 & 85993 138452 15081 \\
6 & 1.5050875081590962e-03 & 4.9e-14 & 1 & 1 & 24 & 85993 138452 15081 \\

tiempo =

46.425035999999999
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Some results: (3) SemiSmooth Newton using Lagrange

multipliers. No mass lumping!

Slightly different problem, hence slightly different solution, probably more accurate

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
SemiSmooth Newton method. Using multipliers and solving nonlinear equations

i & T(w) & delta_u & Fact & CG &  #J & #Ab &  #Aa \\
"0 & 8.6591166282472015€-02 & Inf & 1 & 0 & 0 24 0 \\
1 & 8.6591166282472015e-02 & 0.0e+00 & 1& 0& 0 24 0 \\

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
SemiSmooth Newton method. Using multipliers and solving nonlinear equations

j & J(u) & delta_u & Fact & CG & #J & #Ab &  #Aa \\

0 & 1.5050391203894268e-03 & Inf & 2 & 0 & 85902 138602 15013 \\
1 & 1.5050370629104556e-03 & 4.2e-02 & 3 & 22 & 85901 138612 15013 \\
2 & 1.5050374656000616e-03 & 4.3e-02 & 2 & 29 & 85643 138721 15162 \\
3 & 1.5050374665947280e-03 & 9.7e-03 & 2 & 32 & 85434 138910 15182 \\
4 & 1.5050374665958775e-03 & 1.4e-09 & 3 & 25 & 85514 138830 15182 \\
5 & 1.5050374665958525e-03 & 2.8e-11 & 2 & 45 & 85469 138875 15182 \\
6 & 1.5050374665958462e-03 & 3.3e-13 & 1 & 45 & 85571 138773 15182 \\
7 & 1.5050374665958462e-03 & 1.2e-14 & 1 & 50 & 85531 138813 15182 \\

tiempo =
51.489184500000000
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Some results: (4a) Matlab fmincon. Mass lumping.

Trust region method. Provide HessiaMultiply with a smart trick to pass a diagonal preconditioner.

Use zero initial point and let Matlab do all the work.

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.0854467 1.01e-05

1 0.0124817 1.55336 1.62e-06 14
2 0.00466646 0.715332 2.69e-07 19
3 0.00310525 0.954632 1.49e-07 19
4 0.00282616 0.22572 1.46e-07 19
5 0.00180709 1.35091 3.25e-08 18
6 0.0015767 0.871314 6.25e-09 20
32 0.00150509 5.07681e-14 6.06e-14 0
33 0.00150509 1.2692e-14 6.06e-14 0

Optimization stopped because the norm of the current step, 1.269202e-14, is
less than options.StepTolerance = 5.000000e-14.

tiempo =

1.376478881000000e+02

54/56



Some results: (4b) Matlab fmincon. Mass lumping

Trust region method. Provide HessiaMultiply with a smart trick to pass a diagonal preconditioner. Use a
—refinement in h and continuation in k- technique

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations
0 0.0865912 0.0705
1 0.0859775 0.0179072 0.000245 4
2 0.0859775 6.6269e-05 6.02e-09 4
3 0.0859775 1.38571e-09 2.59%e-17 4

Optimization completed: The first-order optimality measure, 2.592113e-17,
is less than options.OptimalityTolerance = 5.000000e-14, and no negative/zero
curvature is detected in the trust-region model.

kappa = 1.0000e-04
Mesh data: refinements =
Matlab fmincon

dim Y_h = 237368, dim U_h = 239526.

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.00150509 5.4e-10
1 0.00150509 0.000325074 3.8e-10 21
2 0.00150509 0.0209348 6.64e-12 21
3 0.00150509 0.0115229 9.45e-13 20
4 0.00150509 0.00591895 9.45e-13 21

20 0.00150509 2.31679e-13 9.45e-13 0

21 0.00150509 5.79199%e-14 9.45e-13 0

22 0.00150509 1.448e-14 9.45e-13 0

Optimization stopped because the norm of the current step, 1.447997e-14, is
less than options.StepTolerance = 5.000000e-14.

tiempo =
66.902753500000003
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Some results: (5) Matlab fmincon. No Mass Lumping

Trust region method. Provide HessiaMultiply with a smart trick to pass a diagonal preconditioner. Use a
—refinement in h and continuation in k- technique

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations
0.0865912 0.0705
1 0.0859153 0.0192294 0.011 12
2 0.0858572 0.101693 2.95e-05 12
16 0.0858497 0.000752885 1.6e-14 12

Optimization completed: The first-order optimality measure, 1.597934e-14,
is less than options.OptimalityTolerance = 5.000000e-14, and no negative/zero
curvature is detected in the trust-region model.

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.00150504 7.52e-10
1 0.00150504 0.000323823 4.83e-10 51
2 0.00150504 0.000580233 1.29e-10 50
3 0.00150504 6.11812e-05 1.29%e-10 50
4 0.00150504 1.52953e-05 1.29e-10 0

19 0.00150504 1.42449%e-14 1.29%e-10 0

Optimization stopped because the norm of the current step, 1.424486e-14, is
less than options.StepTolerance = 5.000000e-14.

tiempo =
81.967342200000004
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