On two optimization methods for optimal control

problems
Sequence of Quadratic Problems // SemiSmooth Newton Method

Mariano Mateos
(Universidad de Oviedo, Espafa)

Based on joint works with Eduardo Casas (U. de Cantabria)

Third COPI2A Meeting
Castro Urdiales, December 1, 2025

The author was supported by MICIU/AEI/10.13039/501100011033/ under research project PID2023-147610NB-100

1/56

ﬂ Introduction
@ Abstract framework

© The methods
@ Warning
@ SemiSmooth Newton method
@ SQP method

© More computational details
@ Solving PDEs
@ Finite dimensional optimization
@ A numerical experiment

2/56

ﬂ Introduction
@ Abstract framework

3/56

The abstract optimization problem

Problem (P)

®) min J(u) = T () + Slulbe,

u€ Uyg

o (X,S, i) measure space with p(X) < oo, Kk > 0.
o J is a function of class C?

T ACIP(X) >R

for some p € [2,+00]. Here A C LP(X) is an open set.
@ Uy C Aand
Uag={uelP(X): a<u<Pae [u]}
—o00 < < B < 4o0. If p> 2, we also require —oo < a < 8 < +00.
Notation: Bj(u) = {v e LP(X) : |lv—ullwux < p}.

4/56

Some control problems that fit in this framework

The framework is easy to generalize to vector controls u € T17_, L7 (X))

o Additive elliptic control problem governed by a semilinear equation, with
distributed and/or boundary control.

@ Distributed control of the instationary Navier-Stokes equations
o Distributed and/or boundary control of a parabolic equation
°

Time dependent control of a parabolic quasilinear equation

Boundary bilinear control of a semilinear parabolic equation ...

Eduardo Casas (2024). “Superlinear Convergence of a Semismooth Newton Method for Some
Optimization Problems with Applications to Control Theory”. In: SIAM Journal on Optimization 34.4,
pp. 3681-3698. pol: 10.1137/24M1644286

Eduardo Casas and Mariano Mateos (2025b). Quadratic convergence of an SQP method for some
optimization problems with applications to control theory. (To appear in SICON). arXiv: 2505.22750

5/56

https://doi.org/10.1137/24M1644286
https://arxiv.org/abs/2505.22750

A prototypical example

Problem (E)

. 1 2 K2

u“gb’;‘df(”) = §||Yu = Yalli) + EHUHL?(Q)

where y, € H}(Q) N C(Q) is the solution of
—Ay+b-Vy+f(,y)=uinQ, y=0o0nT.

and

U = {u € *(Q): a<u(x)<pBforaa xeQ}

e Q C R d < 3, bounded domain with Lipschitz boundary .
o be P(Q)4 p>2divb € LX(Q), ys € [2(Q)
o f:Q xR — R a Carathéodory function, f(-,0) € L?(2), monotone
non-decreasing, of class C? and such that 3)2,yf(x, y) is locally Lipschitz w.r.t. y .
Casas, Eduardo, Mateos, Mariano, and Résch, Arnd (2020). “Analysis of control problems of nonmontone

semilinear elliptic equations”. In: ESAIM: COCV 26, p. 80. por: 10.1051/cocv/2020032

6/56

https://doi.org/10.1051/cocv/2020032

Some remarks about the example problem (E)

o X = Q, pis the Lebesgue measure, p = 2.
e Forevery u € A= L?(Q) there exists a unique y, € H}() N C(Q) solution of

—Ay+b-Vy+f(,y)=uinQ, y=0onT.

@ The control-to-state mapping G(u) = vy, is of class C2.

Derivative of the control-to-state mapping

For all u,v € [*(Q), z,, = G'(u)v € H)(2) N C(R) is the unique solution of

—Az+bVz+0,f(,y))z=vinQ, z=0o0nT.

o T(u) = 2llyu — yallZgy J(W) = Hlvi — vallagey + %11t

e Corollary: J is of class C?

7/56

The first derivative of the objective functional

For the abstract problem, we assume:
@ There exists a C' mapping ® : A — L°°(X) such that

j/(u)v:/d)(u)vd,uVue,Aand Vv € LP(X).
X

For the example: For every u € L*(Q) there exists a unique adjoint state

vy € H}(Q) N C(Q) solution of

—Ap —diviby] + 0, f(, yu)p =yu —yain, p =0onT.

The mapping ®(u) = @, is of class C' from L?(Q) into L>°(2) and integration by
parts shows that

J(u)v = /(gpu + ku)vdx Yu € L*(Q) and Vv € L*(Q).
Q

8/56

The second derivative

Remark: J is of class C2. Vu € A, J"(u) : LP(X) x LP(X) — R is a symmetric
and continuous bilinear form and satisfies

T () (s v3) = / [()] vz dp = / O (Wvlndn Yv,v € 1P(X). (1)
X X
We will write 7" (u)v? = J"(u)(v, v).
For the example: Classical form of the second derivative:
J (u)v? = / [(1 — (pua)z,yf(.7yu))ziv + K,Vz] dx.
0 :

But ... we will use the so-called second-adjoint-state. For all u, v € [*(Q),

Nuy = ®'(u)v € H)(Q) N C(Q) is the unique solution of
—An —div[bn] + 9y f (-, yu)n = (1 — ‘puaf/yf(’s Yu))Zuyin €, m=0onT.

Using 7, (very helpful for computations!. We’ll see later why).

J (u)v? = /Q(m,v + kv)vdx.

9/56

Assumptions regarding the derivative of ®

@ For every u € A the linear mapping
&' (u) : LP(X) — L(X)

has an extension to a compact operator
&' (u) : L2(X) — LA(X).
For every ¢ > 0 there exists p = p.,, > 0 with Bj(u) C A such that
(@' (u) = ' (W)llgr) < ellvlizge Y € By(u) and Wy € L2(X).
@ There exist N > 0 and numbers 2 = py < p; < ... < py = p such that for every u € A, the linear mapping
&' (u) : LP(X) — L°(X)

defines also a continuous operator
&' (u) : LP=1(X) — LPI(X)

fori=1,...,N (denote pyr1 = 00).
@ Forevery u € A, there exists p, > 0 with Bpu(u) C Aand a constant L, ¢ such that

(1" (w) = () vy < Luo llw = ull oy [Vl oy

for all w € Bj,(u) and v € LP(X).

10/56

Local solution. First order optimality condition.

@ Let u be a local solution
(In the sense of L?(X) if 2 < p < oo, taking advantage of —co < a < 8 < 0.)

@ Any local solution satisfies the first order optimality condition
/(CD(H) + k0)(u—10)dp > 0Vu € Uyg.
X

We will use this form to write the Sequence of Quadratic Programs.

o Equivalently

®(@)(x)

u(x) = Proji, g (—KX> fora.a.[u]x € X

We will use this form to write the SemiSmooth Newton method.

11/56

Assumptions on the local solution

@ The local minimizer i € U,q satisfies the second order sufficient optimality
condition
J'(@)v* > 0Vv e G\ {0}

and the strict complementarity condition
u{x € X : u(x) € {a, B} and kt(x) + ®(7)(x) = 0} = 0.
Here, Cy is the cone of critical directions
v(x) > 0if a(x) = a,

Ci= {v € (X): { v(x) < 0if a(x) = B, ae. [u]}.
v(x) = 0if ®(u)(x) + Kku(x) #0

This is completely analog to the usual textbook assumption to obtain local
quadratic convergence of the SQP for finite-dimensional problems.

12/56

© The methods
@ Warning

13/56

rning

@ There are versions of these methods that exploit the complete optimality

system.
State equation State equation
(SQP) < Adjoint state equation (SSN) < Adjoint state equation
Variational inequality Projection equation

o The three variables (y, ¢, u) are treated independently.
o These versions are fully linearized. There is no need to solve non-linear PDEs.

Fredi Troltzsch (1999). “On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear
Parabolic Equations”. In: SIAM Journal on Control and Optimization 38.1, pp. 294-312. po:
10.1137/S0363012998341423

14/56

https://doi.org/10.1137/S0363012998341423
https://arxiv.org/abs/2505.24237

rning

@ There are versions of these methods that exploit the complete optimality

system.
State equation State equation
(SQP) < Adjoint state equation (SSN) < Adjoint state equation
Variational inequality Projection equation

o The three variables (y, ¢, u) are treated independently.
o These versions are fully linearized. There is no need to solve non-linear PDEs.

Fredi Troltzsch (1999). “On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear
Parabolic Equations”. In: SIAM Journal on Control and Optimization 38.1, pp. 294-312. po:
10.1137/S0363012998341423

@ In contrast, we will use u as the unique optimization variable.

@ A non-linear PDE must be solved at each step.

14/56

https://doi.org/10.1137/S0363012998341423
https://arxiv.org/abs/2505.24237

rning

@ There are versions of these methods that exploit the complete optimality

system.
State equation State equation
(SQP) < Adjoint state equation (SSN) < Adjoint state equation
Variational inequality Projection equation

o The three variables (y, ¢, u) are treated independently.
o These versions are fully linearized. There is no need to solve non-linear PDEs.

Fredi Troltzsch (1999). “On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear
Parabolic Equations”. In: SIAM Journal on Control and Optimization 38.1, pp. 294-312. po:
10.1137/S0363012998341423

@ In contrast, we will use u as the unique optimization variable.

@ A non-linear PDE must be solved at each step.

@ Robustness is gained regarding the choice of the initial point.

@ A smart combination of both worlds is possible to achieve the best

performance.

Eduardo Casas and Mariano Mateos (2025a). “Boundary bilinear control of semilinear parabolic PDEs:
quadratic convergence of the SQP method”. In: arXiv: 2505.24237 [math, OC]

14/56

https://doi.org/10.1137/S0363012998341423
https://arxiv.org/abs/2505.24237

© The methods

@ SemiSmooth Newton method

15/56

Semismoothness
(A farther layer of abstraction)

U s W N =

Definition 1 (Semismooth function)

Given two Banach spaces U and X, an open subset .4 of U, a continuous function
F: A— X, and a set-value mapping OF : A — P(L(U, X)) such that
OF(u) # 0 Vu € A, we say that F is dF-semismooth at & € A if

F(a+v) — F(@) — M
im sy IFEHY) — @) — Myl

V=0 MecoF (T+v) [vilu

=0.

F is said OF-semismooth at A if it is OF-semismooth at every u € A.

Algorithm 1: Semismooth Newton method to solve F(u) = 0.

Initialize. Choose uy € A. Set j = 0.

for j > 0do
Choose M; € OF(u;) and solve M;v; = —F(u;).
Set uiy =uj+viand j=j+ 1.

end

16/56

Convergence conditions for the SSN

Suppose F is semismooth at u, a locally unique solution of F(u) = 0, and that for every
Jj >0, M; € OF(uj) is invertible and there exists C > 0 such that

IM; Ml 2ex,uy < CVj > 0.

Then there exists § > 0 such that for all uy € U with ||uy — ul|x < 0 the sequence
{uj}j>o converges superlinearly to G.

Semismoothness + Uniform boundness of the inverses = superlinear convergence.

17/56

Building the SemiSmooth Newton method for (E)

F: () = L(Q), F(u)(x) = u(x) — Projj, (%(X))

K

o First order optimality conditions: A local solution @ is a solution of F(u) = 0.

o In order to define OF(u) we introduce some additional functions.

¢ L12(Q) — 3(), &(u) = .,
T;Z} R— Ra 1)[}(1") = Proj[a,ﬁ](t)7

W) — (), W) = u(— D),

Notice that F(u) = u— V(u).

@ Vs called a superposition operator.

18/56

Computing OF.

o ¢ :R— R, ¢(t)=Projy, g(t) is a Lipschitz function. The subdifferential
in Clarke’s sense is

Oy(t) = {1} if t € (o, B), O9(1) = {0} if t & [, B, D(t) = [0, 1] if t € {ex, B}

o W(u) = (=24). For every u € 12(Q) we define (applying the chain rule)

K

oV(u) = {N € L(L3(Q), L*(Q)) : Nv(x) = h(x) - M Vv € 13(Q)
where h: 2 — R is any measurable function

such that h(x) € aw((Jx))}

V js OW-semismooth in L?(Q2) and hence the function F : L*(2) — L*(Q) is
OF-semismooth in L*(Q), where

OF(u) ={M=1—N:NecoV(u)}

Selection of the M,

o Define A : R — R so that A(t) € 9y (t) for every t € R, by
1 ifte(a,p),
(D) :{ (@, 5)

0 otherwise,
e Given u € L*(Q2), define h, : Q@ — R as

— ujlx i;u(x) o
() — 220))_{1 f el ¢ (a,),

K 0 otherwise.

@ If we define the inactive and active sets as
L=fre: 2 e@py m-n\L,

then h, is the characteristic function of the inactive set

hy = x,,
e Select M, € OF(u) as the linear operator M, : L*(Q) — L*(Q2) defined by
—&'(u)y Nu,v

MuVZV*XHU' V+Xnu

K

20/56

The algorithm up to now

Algorithm 2: Semismooth Newton method to solve F(u) = 0.

1 Initialize. Choose uy € L*(Q2). Set j = 0.

2 forj > 0do

3 Compute y; = G(u;) solving the nonlinear state equation
4 Compute p; = ®(u;) solving the linear adjoint equation

5 Set Aj = Af UA® andI; = Q\ A, where
AP = {xeQ:—pi(x) > w8}, AF ={x€Q:—pj(x) < ra}

—ui(x)+ if x € A]@
6 Set wi(x) = —F(u))(x) = { —uj(x) — @ ifx el;
—ui(x) + if x € A

Nuj.v

7 Solve v+ X, =

= w;. | Name v; the solution..

8 Setujy; =uj+vjandj=j+ 1.
9 end

21/56

7u v

Solving the linear system v + x, == = w

In the active set, the equation is reduced to v = w.

So we can write that v = X1,V T Xa,W

The mapping v = 1, is linear in v. S0 ny,y = Nu,x, v + Nuy, w

Name b = kw — Nu,x, w-1n the inactive set we can write the equation as

KX,V X0 lux, v = Xo,b-

This equation is the first order optimality condition of the unconstrained
quadratic problem [Notation: Equ is the extension by zero.]

min /(nuEQU—l—m) vdx—/ bu dx.

UGL2

Solve (Q) for ©. The solution of v 4 x, " = wis

K
v inl,
v= .
w inA,

22/56

The algorithm at this point

Algorithm 3: Semismooth Newton method to solve F(u) = 0.

1 Initialize. Choose uy € L*(2). Set j = 0.

2 forj > 0do

3 Compute y; = G(u;) solving the nonlinear state equation
4 Compute ¢; = ®(u;) solving the linear adjoint equation

5 Compute Ajﬂ and A" Set A; = Ajﬂ UAfand[; = Q\ A,
6 Set wi(x) = —F(u;)(x)

7 Compute z; = G’(uj))(AJ w; solving the linearized state equation

8 Compute 7; = d)’(uj)xAj w; solving the second adjoint state equation
9 Name b; = kw; —n;

10 Solve the unconstrained quadratic problem

(Q) min /(nuﬂgnv—i-m})vdx—/ bjv dx.

vel?(I;) 2

Name v; the solution.
1 Set uj = u;j + {

12 end

v; inlj

w, inA and j=j+ 1.

23/56

Solving the unconstrained quadratic problem (Q)

;
min f/(n,,,EQU—l—/w)vdx—/ bu dx.
L

vel?(L,) 2 1,

Side remark: Before solving this, notice that, since Equ = 0 in A,, we have

J//(u)(EQU)Z - /(nu,EQU + K?’U)’U dx.
Ty
In finite dimension, if we had H, the Hessian matrix at u, then (Q) would read as

1
min —v’ (H+ kv —b'v
vERN 2

and this would be just a matter of solving the linear system
(H+rhv=>b
But, as many authors point out at this point, H is too expensive to compute. Since

Hij:/(nu,fnei)ejdX7

u

for a problem with N dof, you have to solve N” linear pdes to get H.

24/56

Solving the unconstrained quadratic problem (Q)

;
min f/(n,,,EQU—l—/w)vdx—/ bu dx.
L

UELZ(HU) 2 1,
@ Define the linear operator H : L*(I,) — L*(1,), [Ry, is a restriction operator].
Hv = R]L,nu,EQv

@ Denoting (-, -) the scalar product in L?(T), our problem reads

. 1
(Q) Loin E([H + kllv,v) — (b, v).

@ SSC+strict complementarity = H + kl is a symmetric, positive definite
operator. Use the conjugate gradient method to solve (Q) at the price of one
evaluation of Huv per iteration.

@ Cost of evaluation of Hvu. Solve two linear PDEs:
—Az+bVz+0,f(-,yu)z=EquinQ, z=0onT,

—An —div[bn] + 9,f (-, yu)n = (1 = 9u0y,f (-, yu))2inQ, p=0o0nT.

24/56

Further considerations

o Under no-gap second order conditions and a strict complementarity condition,
the algorithm converges locally superlinearly.

o If the equation is linear, then the SemiSmooth Newton method is equivalent to
a Primal Dual Active Set Strategy.

@ When solving finite dimensional approximations, there are three
remarkable facts:

@ For linear equations —so called linear-quadratic control problems- the
problem is solved in a finite number of iterations. Each iteration is uniquely
characterized by its active and inactive sets, so if these do not change from one
iteration to the next one, we stop.

@ For nonlinear equations, once the active and inactive sets are localized, the
observed order of convergence is quadratic.

© The number of iterations is independent of the number of variables
(mesh-independence principle, observed in experiments; | don’t think it has
been proved in this context).

25/56

© The methods

@ SQP method

26/56

Generalized equations

@ Let & be a local solution (In the sense of L2(X) if 2 < p < oo, taking advantage of
—co<a<f <o)

@ Any local solution satisfies the first order optimality condition
/(¢(a) 4+ w)(u—T)dp > 0Vu € Uy,
X

o Let F: A — LP(X) be given by F(u) = ®(u) + ku.

@ Normal cone of Uyq at u

N(u) = {we L*(X fx v—u)dp <O0Vv € Uy}t ifu€ Uy,
YN0 if ud Uyg.

Generalized equation

0 € F(@) + N(a)

27/56

The SQP method

o Generalized Newton’s method: Given uy € A, for j > 0 uj;4 solves
0 € F(uj) + F'(u)(ujr —) + N(ujyr)

o This generalized equation is the first order optimality condition of the
constrained quadratic problem

o1
(Q) min 2" (u)(u— w)’ +J (u)u.
e (Q;) may have no solution or may have more than one solution. Instead, we

will look for local solutions.

Remark: To solve (Q;) we do the change v = u — u; and use

j"(uj)vzz/ﬂ(nv+nuj7‘,)vdx j’(uj)v:/ﬂ(mujJrgouj)vdx

28/56

The algorithm

Algorithm 4: SQP method to solve (E).

Initialize. Choose uy € L*(Q2). Set j = 0.

forj > 0do

Compute y; = G(u;) solving the nonlinear state equation
Compute ¢; = ®(u;) solving the linear adjoint equation
Find a local solution of the constrained quadratic problem

g W N =

(Q;) . 1/ (,Lgv+7]uj"v)vdx+/ (Hu,-+<,9j)vdx
JQ -

min
vEU—{u;} 2 Q

Name v; the obtained solution.
6 Set ujyy =u;+vjand j=j+ 1.
7 end

Theorem 4

Under no-gap second order sufficient optimality conditions and a strict
complementarity condition, the method converges quadratically to u both in L*(Q) and
L>°(RQ2) provided an initial point uy is given in a proper neighborhood of u in the sense

of L*(Q).

29/56

Solving (Q;)

(Q) | 1/Q(m+nu,v)vdx+/ (ks +) v

min
a—u(x)<v(x)<B—u(x) 2 Q

@ Some authors write (Q’) as a linear-quadratic optimal control problem. Let’s
do it more interesting, more general, and easier.

e Let (X, S, ;1) be measure space, H € L(L*(X)) a self-adjoint operator,
b € [2(X), a(x) and 3(x) measurable functions (maybe taking 4co values),
and K > 0.

1
(Q) min _ —(Hv+kv,v)+ (b,v).
G(x)<v(x)<B(x)

o Inour case Hv = 1, and b = rku + ¢, &(x) = a — u(x), B(x) = 5 — u(x).

To solve the constrained quadratic problem ...

(Q) | 1/9(m+nu,v)vdx+/ (ks +) v

min
a—u(x)<v(x)<B—u(x) 2 Q

@ Some authors write (Q’) as a linear-quadratic optimal control problem. Let’s
do it more interesting, more general, and easier.

e Let (X, S, ;1) be measure space, H € L(L*(X)) a self-adjoint operator,
b € [2(X), a(x) and 3(x) measurable functions (maybe taking 4co values),
and K > 0.

1
(Q) min _ —(Hv+kv,v)+ (b,v).
G(x)<v(x)<B(x)

o Inour case Hv = 1, and b = rku + ¢, &(x) = a — u(x), B(x) = 5 — u(x).

To solve the constrained quadratic problem ...

Use SemiSmooth Newton method !!!

30/56

SemiSmooth Newton method to solve constrained

quadratic problems

Algorithm 5: SemiSmooth method to solve a constrained quadratic problem.

1 Initialize. Choose vy € L?(X). Set n= 0.
2 Compute ®, = Hv, + b; Set A, = Af UA% and I, = X\ A,, where

Al ={xeX: —b,(x)> KB(X)}, AY={xe X: —d,(x) < ra(x)}.

3 forn> 0do

—va(x) + B(x) ifxe AP

4 Set w,(x) = —Va(x) — ®u (X) if x €1,
fv,,(x)Jroz() ifxeA?

5 Compute 1, = Hx,, w, and set b, = X; Wn — X3, 7n

6 Solve, for ©, the unconstrained quadratic problem ml(r}1)2 (R]In HExv + kv, v) — (b,v)
vEL

7 Set Vyp1 = wyin Ay and v, = T, in I,

s | Compute ®ppq = Hvpyr + b AT LAY, Anyy and 11,,+I

9 For finite-dimensional problems: stop if AS = n+, and A = Ay,

10 Setn=n-+1
11 end

31/56

© More computational details
@ Solving PDEs

32/56

Routines we need: (1) solving nonlinear PDEs

@ Given u, we need a routine to compute y, = G(u), this is, to solve the
nonlinear equation

—Ay+b-Vy+f(,y)=uinQ, y=0onT.
I use Newton’s method for the equation F(y) = 0, where
Fly)=—By+b-Vy+f(,y)—u=0.

Notice that
F(y)z=—-Dz+b-Vz+9,[(-,y)z=0.

So, naming z = y+1 — Y, the Newton equation

Fl(y)z = —F(y)

can be written, doing the proper cancellations in the linear terms, as
DYkt T b Vi + 0, f (s vy = u = f(yi) + 0, (5 vy

33/56

FEM approximation

o Let K be the stiffness matrix such that Ky models —Ay

o Let 7 be the transport matrix such that Ty models b - Vy
Notice that 7"y models — div[by]

o Name A=K+ T
@ Let M, be the mass matrix such that Myu models the rhs u.

o At each step, we have to assemble a mass matrix M* that models the
action of 0, f(x, y«)

My = [el b () dx
And also assemble a vector §* to model f(x, yi)

fi = /Qf(X, yh(x))ei(x) dx.

34/56

Solving the linear systems

At each step we have to solve the linear system
[A+ My = Mou + MFyk — 5%

Since we have a transport term, the matrix is not symmetric. Use an LU
decomposition. | use the following trick in MATLAB, which uses a scaling diagonal
matrix D, row permutation p and column permutation g

[L,U,p,q,D] = lu(A+Mk, 'vector'); D = spdiags(D); D = D(p);

We can solve (A+Mk)y = b, with a very efficient one-liner, that solves two very
sparse triangular systems.

y(a,1) = U\N(L\(D.\b(p)))

We stop the method when ||yf — yL<+1 || is “small”. This means that M* ~ M+ so
we store in memory the last L, U, p, g, D. You will see now how helpful this is.

35/56

Routines we need: (2) solving the linearized PDE

Given u, y,, and v, we need a routine to compute z,, = G'(u)v
—Az+b-Vz+0,f(,y))z=v

The y, that appears here is the one that comes from Newton’s method!. So the
system to solve is

[A + Mk+1]Z = M()V

Since M**' ~ MK, we use the same coefficient matrix that we have already used
and factorized! Name b = Mv and do

z(q,:) = UN(L\(D.\b(p,:)))

Remark:

@ We will also use this with Matlab fmincon, which will need to compute z,,, for several
directions v at the same time, hence the :.

36/56

Routines we need: (3) solving the adjoint equations

Given u, y,, we need a routine to compute ¢,
—Dp —divibo] + 0y f (-, yu)p = yu — ya
Given u, y,, ¢y, v and z,,,, we need a routine to compute 7, ,
—An —div[bn] + 9,f (- yu)n = (1 = uf " (yu)) Zu,v

The coefficient matrix that appears in the FEM approximation of these equations is
the transpose of [A + M**1]. We can take advantage of the factorization that we
have using MATLAB’s forward slash (mrdivide).

Let M be the mass matrix such that Hthfz(Q) =y My.
For the adjoint state, name b = M(y — y4) and solve

phi(p,1) = ((b(q)'/U)/L)"'./D;

37/56

Second adjoint state

For the second adjoint state, | assemble another mass matrix 9t

M= A ei(x) (1= @n(x)35,f (x, yn(x))) €;(x) dx
and name b = Miz. Then solve

eta(p,:) = ((b(qg,:)'/U)/L)"'./D;
Remark:

@ We will have to compute Iz for several z, so it is better to assemble first M than assembling
b = Mz directly.

@ We will also use this with Matlab fmincon, which needs to compute 7,y for several directions v
at the same time, hence the :.

38/56

Assembling all those matrices

@ One of the keys to fast computation is the ability to assemble efficiently all
those mass matrices that change at every iteration.
o Numerical integration formulas must be used. Just the trapezoid or the
midpoint formula may not do the work.
e We may have to integrate difficult functions like

/T e(x)n(x)e" e (x) dx, or / e (x)on()yn () yn () (x) dlx

e We may have singularities near non-convex corners.
@ An equilibrium must be found among the number of points and the accuracy. |
use either the mid-edges formula (3 nodes, order 2) or a seven-point formula of
order 5.

Ronald Cools (2022). Encyclopaedia of Cubature Formulas. URL:

https://nines.cs.kuleuven.be/ecf/ 1056

https://nines.cs.kuleuven.be/ecf/

© More computational details

@ Finite dimensional optimization

40/56

Discretize, then optimize

Assume y € R™ and u € RM.
1 T K 1
Ju) = 2(y = ya) M(y = y4) + Su Du,

where u”Du is/approximates ||uh||f2(m

Ay +§(y) = Mou
Az + F'(y)z Mov
ATp + F'(y)e M(y — ya)
ATn+F'(yyn = Mz

J(u)v =vT(MJ @ + rDu)
J"(u)v =v'(Mgn + xDv)

41/56

Can we use a diagonal D?

@ We can choose D diagonal in the following cases:

@ Uy = Uny is formed by piecewise constant approximations of the controls.
@ Uk = Uy, is formed by piecewise linear approximations of the controls, and we
use the composite trapezoid rule to approximate fQ up(x)? dx.

o The relation between discrete optimal control and discrete optimal adjoint
state is respectively, as follows

@ uy(x) = Projy, 4 (Q*'j") where Q : L'(Q) — Uy is the projection in the sense of
L*(Q) onto Up.

Q Tn(x) = Projy, 4 (<:22) where Cy : L'(Q) — Uy is the Carstensen interpolation
operator.

@ In both cases we have that Q,@, # @, and Ch@h # @p. This has the following
effects:

o The approximation error O(h?) in L*(Q2) of the FEM is lost. We will have O(h) in
the first case and o(h) in the second case.

o Inthe case @ < 0 < f3, we have that u = 0 on I". This is also lost. In general
up,ZO0onT.

42/56

Ideas about semismooth Newton

Usin that D is diagonal.
Instead of writing the first order optimality conditions written as

— . —[Mop]i
- (420

| prefer to denote «; = kd;a and §; = kd;; 3, and write
rd;t; = Projp,, g1 (—[Mo@)))
So the function F for the SemiSmooth Newton method is given by
[F(u)]i = diju; — Projj,, g1 (—=[Moe]i)

In the algorithm one has to be careful, because now w is defined by
—rkd;w; = —[F(u)];. Also the solution of unconstrained quadratic program requires
the use of a preconditioner. KD does the work!

43/56

What if D is not diagon

@ Uy = Uy is formed by piecewise linear approximations of the controls, and we
compute [, up(x)? dx = u” Mu, which is exact.

o In this case My = M and D = M. Order of convergence O(h*/?) is obtained.

@ The first order optimality condition

(u—a) (M@ +rMiu) >0Va<u<p

cannot be written in a componentwise form. We lose the pointwise projection
formula.

@ We can write the first order optimality condition using Lagrange multipliers
for the constraints a« < u < 3.

There exists A = Ag — A, such that
M@+ EMa+A=0

a<u<p

X5 >0,2,>0
@ 8)=0
MN(a—a)=0

44/56

Semismooth equation for not diagonal D.

@ For any ¢ > 0, the previous relations can be written as

M@+ kM +X=0

X =max{0,X + c(a — B)} + min{0, X + (&1 — o)}
o Define F: RY x RN — RN x RN as

Mp + kMu+ A

F(u,\) = A —max{0, A + c(u — B)} — min{0, A + c(u —)}

o Apply the SemiSmooth Newton method to this problem.

(Exercise for the reader).

45/56

© More computational details

@ A numerical experiment

46/56

Data for the example

@ Qs the L-shaped domain [—1,1]? \ [—1, 0]%. Notice that its biggest interior
angle isw = 37/2. Name A = w/w = 2/3.

@ We select data to have a non-monotone and non-coercive nonlinear operator:
f(x,y) = y3lyl b(x) = 6r'*7(cos 6, sin(6)). Here (r, 0) are the polar
coordinates, and we select § = 6 and v = —1.25.

o ya(x) = (1—x¥)(1— y?)r*sin(A\0).

o k=10"% a=0,8 = 10 (really ill posed!).

47/56

Discretization choices

o Finite element method. Lagrange P1 functions for the state and the adjoint
state.

o Graded mesh family obtained by the “bisection method”. Grading parameter
w=2/3.
o The controls are discretized also with Lagrange P1 elements. The term Hu||i2(9)

is discretized using the composite trapezoid rule, which means u” Du where D
is the diagonal lumped mass matriz:

dii = / e; dx.
Q

48/56

Choosing the initial point

@ To solve the problem with meshsize h, use a sequence of (nested) meshes of
sizeshy > h, > ... > hy = h.

@ Also, use a sequence K1 > Ky > ... Ky = K.

@ For the problem of size h; with Tikhonov parameter x;, use as initial point the
solution of the problem of size h;_q, with x;_;.

@ The problem h; with k; is of small size and not ill posed. In our case uy =0
works.

49/56

Solution

Target state yq4

Optimal control

1
0 0
K

1
0 0
K

Optimal state

e

(-(Adjoint state)/Tikhonov

10

IS

)

0.45

0.35

0.25

0.15

0.05

Some results: (1) SemiSmooth Newton

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
SemiSmooth Newton method solving nonlinear equations

j & J(u) & delta_u & Fact & CG & #J & #Ab & #Aa \\
"0 & 8.6591166282472015e-02 & Inf & 1 & 0 & 0 24 0 \\

1 & 8.5977499674872490e-02 & 5.2e-02 & 2 & 2 & 24 0 0 \\

2 & 8.5977499674872476e-02 & 2.5e-09 & 2 & 3 & 24 0 0 \\

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
SemiSmooth Newton method solving nonlinear equations

j & J(u) & delta_u & Fact & CG & #J & #Ab & #Aa \\

0 & 1.5050899562244532e-03 & Inf & 2 & 0 & 86646 138045 14835 \\
1 & 1.5050875185621496e-03 & 3.1le-02 & 3 & 11 & 85947 138643 14936 \\
2 & 1.5050875082492838e-03 & 4.7e-03 & 3 & 14 & 85995 138452 15079 \\
3 & 1.5050875081594375e-03 & 7.6e-05 & 3 & 13 & 85993 138452 15081 \\
4 & 1.5050875081590892e-03 & 7.4e-10 & 3 & 18 & 85993 138452 15081 \\
5 & 1.5050875081590843e-03 & 9.6e-12 & 2 & 22 & 85993 138452 15081 \\
6 & 1.5050875081590817e-03 & 1.2e-13 & 1 & 22 & 85993 138452 15081 \\
7 & 1.5050875081590821e-03 & 1.8e-15 & 1 & 26 & 85993 138452 15081 \\

tiempo =

44.360280099999997

51/56

Some results: (2) Sequence of Quadratic Programs

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
SQP method solving nonlinear equations

n & J(u_n) & delta_u & Fact & QP & CG & #I & #Aa & #Ab \\
"0 & 8.6591166282472015e-02 & Inf & 1 & 0 & 0 & 0 24 0 \\
1 & 8.5977499674872490e-02 & 5.2e-02 & 2 & 1 & 2 & 24 0 0 \\
2 & 8.5977499674872476e-02 & 2.5e-09 & 2 & 1 & 3 & 24 0 0 \\

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
SQP method solving nonlinear equations

n & J(u_n) & delta_u & Fact & QP & CG & #J & #Aa & #Ab \\

0 & 1.5050899562244540e-03 & Inf & 2 & 0 & 0 & 86646 138045 14835 \\
1 & 1.5050875096717187e-03 & 3.1e-02 & 3 & 2 & 22 & 85993 138452 15081 \\
2 & 1.5050875081708251e-03 & 2.2e-06 & 4 & 1 & 13 & 85993 138452 15081 \\
3 & 1.5050875081591864e-03 & 3.0e-08 & 4 & 1 & 21 & 85993 138452 15081 \\
4 & 1.5050875081590721e-03 & 3.5e-10 & 3 & 1 & 22 & 85993 138452 15081 \\
5 & 1.5050875081590713e-03 & 4.1le-12 & 2 & 1 & 22 & 85993 138452 15081 \\
6 & 1.5050875081590962e-03 & 4.9e-14 & 1 & 1 & 24 & 85993 138452 15081 \\

tiempo =

46.425035999999999

52/56

Some results: (3) SemiSmooth Newton using Lagrange

multipliers. No mass lumping!

Slightly different problem, hence slightly different solution, probably more accurate

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
SemiSmooth Newton method. Using multipliers and solving nonlinear equations

i & T(w) & delta_u & Fact & CG & #J & #Ab & #Aa \\
"0 & 8.6591166282472015€-02 & Inf & 1 & 0 & 0 24 0 \\
1 & 8.6591166282472015e-02 & 0.0e+00 & 1& 0& 0 24 0 \\

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
SemiSmooth Newton method. Using multipliers and solving nonlinear equations

j & J(u) & delta_u & Fact & CG & #J & #Ab & #Aa \\

0 & 1.5050391203894268e-03 & Inf & 2 & 0 & 85902 138602 15013 \\
1 & 1.5050370629104556e-03 & 4.2e-02 & 3 & 22 & 85901 138612 15013 \\
2 & 1.5050374656000616e-03 & 4.3e-02 & 2 & 29 & 85643 138721 15162 \\
3 & 1.5050374665947280e-03 & 9.7e-03 & 2 & 32 & 85434 138910 15182 \\
4 & 1.5050374665958775e-03 & 1.4e-09 & 3 & 25 & 85514 138830 15182 \\
5 & 1.5050374665958525e-03 & 2.8e-11 & 2 & 45 & 85469 138875 15182 \\
6 & 1.5050374665958462e-03 & 3.3e-13 & 1 & 45 & 85571 138773 15182 \\
7 & 1.5050374665958462e-03 & 1.2e-14 & 1 & 50 & 85531 138813 15182 \\

tiempo =
51.489184500000000

53/56

Some results: (4a) Matlab fmincon. Mass lumping.

Trust region method. Provide HessiaMultiply with a smart trick to pass a diagonal preconditioner.

Use zero initial point and let Matlab do all the work.

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.0854467 1.01e-05

1 0.0124817 1.55336 1.62e-06 14
2 0.00466646 0.715332 2.69e-07 19
3 0.00310525 0.954632 1.49e-07 19
4 0.00282616 0.22572 1.46e-07 19
5 0.00180709 1.35091 3.25e-08 18
6 0.0015767 0.871314 6.25e-09 20
32 0.00150509 5.07681e-14 6.06e-14 0
33 0.00150509 1.2692e-14 6.06e-14 0

Optimization stopped because the norm of the current step, 1.269202e-14, is
less than options.StepTolerance = 5.000000e-14.

tiempo =

1.376478881000000e+02

54/56

Some results: (4b) Matlab fmincon. Mass lumping

Trust region method. Provide HessiaMultiply with a smart trick to pass a diagonal preconditioner. Use a
—refinement in h and continuation in k- technique

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations
0 0.0865912 0.0705
1 0.0859775 0.0179072 0.000245 4
2 0.0859775 6.6269e-05 6.02e-09 4
3 0.0859775 1.38571e-09 2.59%e-17 4

Optimization completed: The first-order optimality measure, 2.592113e-17,
is less than options.OptimalityTolerance = 5.000000e-14, and no negative/zero
curvature is detected in the trust-region model.

kappa = 1.0000e-04
Mesh data: refinements =
Matlab fmincon

dim Y_h = 237368, dim U_h = 239526.

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.00150509 5.4e-10
1 0.00150509 0.000325074 3.8e-10 21
2 0.00150509 0.0209348 6.64e-12 21
3 0.00150509 0.0115229 9.45e-13 20
4 0.00150509 0.00591895 9.45e-13 21

20 0.00150509 2.31679e-13 9.45e-13 0

21 0.00150509 5.79199%e-14 9.45e-13 0

22 0.00150509 1.448e-14 9.45e-13 0

Optimization stopped because the norm of the current step, 1.447997e-14, is
less than options.StepTolerance = 5.000000e-14.

tiempo =
66.902753500000003

55/56

Some results: (5) Matlab fmincon. No Mass Lumping

Trust region method. Provide HessiaMultiply with a smart trick to pass a diagonal preconditioner. Use a
—refinement in h and continuation in k- technique

kappa = 1.0000e+00
Mesh data: refinements = 1, dim Y_h = 8, dim U_h = 24.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations
0.0865912 0.0705
1 0.0859153 0.0192294 0.011 12
2 0.0858572 0.101693 2.95e-05 12
16 0.0858497 0.000752885 1.6e-14 12

Optimization completed: The first-order optimality measure, 1.597934e-14,
is less than options.OptimalityTolerance = 5.000000e-14, and no negative/zero
curvature is detected in the trust-region model.

kappa = 1.0000e-04
Mesh data: refinements = 8, dim Y_h = 237368, dim U_h = 239526.
Matlab fmincon

Norm of First-order
Iteration f(x) step optimality CG-iterations

0 0.00150504 7.52e-10
1 0.00150504 0.000323823 4.83e-10 51
2 0.00150504 0.000580233 1.29e-10 50
3 0.00150504 6.11812e-05 1.29%e-10 50
4 0.00150504 1.52953e-05 1.29e-10 0

19 0.00150504 1.42449%e-14 1.29%e-10 0

Optimization stopped because the norm of the current step, 1.424486e-14, is
less than options.StepTolerance = 5.000000e-14.

tiempo =
81.967342200000004

56/56

	Introduction
	Abstract framework

	The methods
	Warning
	SemiSmooth Newton method
	SQP method

	More computational details
	Solving PDEs
	Finite dimensional optimization
	A numerical experiment

