
CO-EVOLUTION OF VIRUSES AND
GAMES
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Introduction to Evolutionary Game Theory

Classical Game Theory

The classical Game Theory (CGT), conceived by John von Neumann,
focus on one rational player, who interacts with other players as part
of a game.
They have to decide among different options or strategies, with the
aim of maximizing a reward, known as pay-off (non-cooperative
games), which depends on the other players strategies.
This does not enter in conflict with taking an strategy that benefits
all of the players: Nash Equilibria.
It is only the best result for each of the individual players, given the
rest of the strategies played by the others. This way any player has
any incentive on modifying its strategy.
A Nash Equilibria does not mean the best result for the global
population.
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Introduction to Evolutionary Game Theory

Evolutionary Game Theory

The Evolutionary Game Theory (EGT) was born to explain the
ritualized animal behaviour in a conflict situation: Why animals
behave chivalrously in some competitions for resources?
Some ethologists argued that this fact was due as benefit for the
species and tried to explain it within the classical theory of
cooperative games, without success.
John Maynard Smith asserted that this approach is incompatible with
the Darwinist thought: selection occurs at individual level.
This way, the own interest is rewarded while the common benefit does
not.
Maynard made use of CGT, realizing that the players do not need
to behave rationally.
It is only assumed that each of the players has an strategy.
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Introduction to Evolutionary Game Theory

Evolutionary Game Theory

In Biology the strategies are inherited traits. Players are born with
them and they cannot change them.
The success of a strategy or trait is determined by how good results it
in presence of competitive strategies, included itself, and the
frequencies of use of such strategies.
High paid strategies will extend among the population, through
learning, imitation, inheritance or even infection.
The reward, fitness or pay-off depends on coplayers strategies and
their frequencies, which at the same time, depend on the results of
previous games.
It results into a feedback cycle known as Replicator Dynamics.

Maynard Smith, J., Evolution and The Theory of Games, Cambridge University Press, Cambridge, MA, 1982.
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Introduction to Evolutionary Game Theory

Description of the finite replicator dynamics
Consider a population of N agents, who play with a finite set of pure
strategies or traits SM = {S1, · · · , SM}.
The state of the population at time t is described by the vector
(q1(t), · · · , qM(t))T , where qi(t) accounts for the proportion of
players playing strategy Si at time t.
Each strategy Si ∈ SM has assigned a linear continuous function
fi(q) = fi(q1, · · · , qM) : RM → R, representing its fitness or pay-off.
The fitness or pay-off matrix J ∈ MM×M collects the fitness of each
strategy by rows.
The replicator dynamics takes the form

d
dt

[
ln(qi(t))

]
= E [qi(t), q(t)] − E [q(t), q](t)

q′
i(t)

qi(t) =
M∑

j=1
Jijqj(t) −

M∑
k=1

M∑
j=1

Jkjqk(t)qj(t).
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Introduction to Evolutionary Game Theory

Necessity of continuous replicator dynamics

A wide range of biological process, as well as, economical o social, are
modeled considering a continuum set of strategies:

war of attrition
timing
duopolies and oligopolies
auctions modeling
price wars among different brands, etc

A continuum of strategies approach in the (finite) replicator, implies to
generate an ODE for each of the strategies, which now is a continuous set.
This generates problems related to measure theory.

J. Oechssler & F. Riedel, Journal of Economic Theory, 2001, 2002.

. I. Kavallaris, J. Lankeit, & M. Winkler On a degenerate nonlocal parabolic problem describing infinite dimensional replicator
dynamics., SIAM Journal on Mathematical Analysis, 2017.
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Introduction to Evolutionary Game Theory

Necessity of continuous replicator dynamics

In particular, in virology strategies correspond to viral variants or
genotypes.

While real viral populations consist of a finite number of variants, the
combinatorial diversity of possible mutations arising from high mutation
rates and large population sizes makes the genotype space efectively
continuous.

A quasispecies is a set of viral variants that are genetically very similar,
arising because the virus makes frequent errors during replication.

It is not only the fittest variant that evolves, but the entire ensemble,
which forms a kind of mutational cloud around a master genome.
However, it is essential to model gradual evolutionary changes in response
to selection pressures
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Discrete replicator dynamics: Agent based model

Description of a discrete dynamics model.

Consider a population of N agents or players.
At time t = 0 each agent Ai is assigned with an initial pure strategy,
identified with a real number σi(0) ∈ Ω = [−L, L], i ∈ {1, · · · , N}.
Agent’s strategies are allowed to change in time due to pairwise
interactions between agents engaged in the game. Consider the
function σ : {1, 2, . . . , N} × [0, ∞) → R, where σ(i , t) accounts for
the strategy of the i−th player at time t ⩾ 0.
Subdivide Ω in a family of M ∈ N intervals {Ij}M

j=1 of same length.
Denote the proportion of agents with strategy in the interval Ij as

s(j, t) = #{i : σ(i , t) ∈ Ij}
N , j ∈ {1, ...M}.

The continuous pay-off function J : Ω × Ω → R is adapted as follows:
he restriction J|Ik×Ij ≡ J(yk , yj) = Jkj is piecewise constant, such that
where yk ∈ Ik is for example the midpoint of the interval.
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Discrete replicator dynamics: Agent based model

Derivation of master equations for the discrete densities
For each j = 1, · · · , M, we would like to precise the expected change

s(j, t + ∆t) − s(j , t) in a small time interval [t, t + ∆t].

Assume that the probability that one interaction arises is determined by a
Poisson process of parameter λ = 1. Consequently, for ∆t small

The probability for an interaction to occur in the interval [t, t + ∆t] is
approximately equal to ∆t.
Two or more interactions take place with a neglectful probability
o(∆t).
Accordingly, with probability 1 − ∆t none interaction come to pass.

The master equation for s(j , t + ∆t):

s(j , t + ∆t) = (1 − ∆t)s(j , t) + ∆ts∗(j , t),

where s∗(j , t) is the expected value of the proportion of agents with
strategies at the interval Ij when an interaction occurs.
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Discrete replicator dynamics: Agent based model

Description of a pairwise interaction

Two agents A and B are randomly chosen among the N agents.

Agent A adopts the strategy of agent B, with a probability related to the
expected payoff of agent B strategy.

Precisely, the expected pay-off corresponding to a strategy belonging to
interval Ij can be expressed by

P(j , t) =
M∑

k=1
J(j, k)s(k, t),

where J(j , k) = Jjk stands for the (single) pay-off for an agent with a
strategy from interval Ij , when she plays against an agent whose strategy
corresponds to Ik .
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Discrete replicator dynamics: Agent based model

Description of a pairwise interaction
The value s∗(j , t) is determined according to the following three
possibilities:

1 s∗(j , t) = s(j, t) + 1
N :

Agent A adopts the strategy of agent B, with σ(A, t) ∈ [−L, L] \ Ij
and σ(B, t) ∈ Ij .
This occurs with probability∑

i ̸=j
s(i , t)s(j, t)P(j , t).

2 s∗(j , t) = s(j, t) − 1
N :,

Agent A adopts the strategy of agent B, with σ(A, t) ∈ Ij and
σ(B, t) ∈ [−L, L] \ Ij . This happens with probability

s(j, t)
∑
i ̸=j

s(i , t)P(i , t).

3 s∗(j , t) = s(j, t): The proportion Ij does not experience any changes.
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Discrete replicator dynamics: Agent based model

Description of a pairwise interaction
The value s∗(j , t) = s(j, t) occurs when:

1 We choose two agents with strategies in intervals other than Ij with
probability

(1 − s(j, t))2.

2 Both players have strategies belonging to Ij . This takes place with
probability

s(j, t)2.

3 σ(A, t) ∈ Ij and σ(B, t) ∈ [−L, L] \ Ij but A does not copy B. This
occurs with probability

s(j, t)
∑
i ̸=j

s(i , t)(1 − P(i , t)).
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Discrete replicator dynamics: Agent based model

Master equation for the discrete dynamics
Therefore,

s(j, t + ∆t) − s(j , t) = ∆t 1
N s(j, t)

P(j , t)
∑
i ̸=j

s(i , t) −
∑
i ̸=j

s(i , t)P(i , t)

 .

After time rescaling, since
∑M

i=1 s(i , t) = 1 and

P(j , t) =
M∑

k=1
J(j, k)s(k, t),

we obtain the following approximation of the equations describing the
classic discrete replicator dynamics for j = 1, · · · , M.

sj(t + ∆t) − sj(t)
∆t = sj(t)

[ M∑
k=1

Jj,ksk(t) −
M∑

i=1

M∑
k=1

Ji ,ksi(t)sk(t)
]

.
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Discrete replicator dynamics: Agent based model

Heuristic deduction of the continuous dynamics
Our aim is to pass to the limit as the finite set of M pure strategies tends
to cover the whole [−L, L]. Hence, the length of the intervals h = 2L/M,
h → 0 as M → +∞.

We need to pass from discrete and finite proportions of players s(j, t), to
infinite number of players described by a global density

u : [−L, L] × [0, T ) → R+
0 ,

such that for every t ∈ [0, T ) it holds∫ L

−L
u(x , t)dx = 1 and s(j , t) =

∫
Ij

u(x , t)dx ∼ hu(yj , t), j = 1, · · · M.

Then,
sj(t + ∆t) − sj(t)

h∆t = sj(t)
h

[ M∑
k=1

hJj,k
sk(t)

h −
M∑

i=1

M∑
k=1

h2Ji ,k
si(t)

h
sk(t)

h

]
.

ut(x , t) = u(x , t)
[∫

Ω
J(x , y)u(y , t)dy −

∫
Ω

∫
Ω
J(y , z)u(z , t)dz u(y , t)dy

]
.
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Replicator dynamics on a continuous set of pure strategies

Existence and uniqueness result
Let Ω ∈ RN be a bounded and regular domain. Assume that u0 ∈ C(Ω)
and the kernel J : Ω × Ω → R, satisfying J ∈ C(Ω × Ω). We define the
space Xt0 = C([0, t0]; C(Ω)) endowed with the norm

∥u∥Xt0
= max

t∈[0,t0]
∥u(·, t)∥L∞(Ω),

which makes Xt0 a Banach Space.
Let T > 0 and t0 ∈ [0, T ). A function u ∈ Xt0 is a solution to the
continuous dynamics, if it satisfies for all x ∈ Ω and t ∈ [0, t0] that

u(x , t) = u0(x) +
∫ t

0
u(x , s)

∫
Ω
J(x , y)u(y , s)dyds

−
∫ t

0
u(x , s)

∫
Ω

∫
Ω
J(y , z)u(z , s)dz u(y , s)dyds =: Fu0u(x , t).

Given some R > 0, there exists t0 small enough such that Fu0 is a strict
contraction in the ball B(u0, R) ⊂ Xt0
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Replicator dynamics on a continuous set of pure strategies

Existence and uniqueness result
Let u0 ∈ C(Ω) and J ∈ C(Ω × Ω). There exists a unique solution
u ∈ C1([0, T ); C(Ω) to the continuous dynamics.
Define the following operators

A(x , t) =
∫

Ω
J(x , y)u(y , t)dy , a(t) =

∫
Ω

∫
Ω

J(y , z)u(y , t)u(z , t)dy dz ,

and then
ut(x , t) = u(x , t)

(
A(x , t) − a(t)

)
.

Conservation of mass if ∥u0∥L1(Ω) = 1, is well observed
d
dt

∫
Ω

u(x , t)dx =
∫

Ω
u(x , t)[A(x , t) − a(t)] dx = a(t)

[
1 −

∫
Ω

u(x , t)dx
]

.

Moreover, ∥A(·, t)∥L∞(Ω) ⩽ ∥J∥L∞(Ω×Ω) and a(t) ⩽ ∥J∥L∞(Ω×Ω), hence
Gronwall’s Lemma gives

∥u(·, t)∥L∞(Ω) ⩽ ∥u0∥L∞(Ω)e
2t∥J∥L∞(Ω×Ω) for any t > 0.
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Replicator dynamics on a continuous set of pure strategies

Numerical discretization of the continuous equation

Bridging Maynard’s replicator dynamics and integro-differential equations
via numerical analysis:

Consider u0 ∈ C2(Ω), ∥u0∥L1(Ω) = 1, J ∈ C2(Ω × Ω) and let
u ∈ C3([0, ∞); C2(Ω)) be the solution to the continuous dynamics
corresponding to the initial datum u0.

Let qh the piecewise-constant function satisfying Maynard system of
ODEs, with M = 1/(2h) strategies and qh(x , 0) = Ih(u0) a
piecewise-constant approxiamtion of qh.

Then, for any τ > 0,
max

t∈[0,τ ]

∥∥∥∥qh(t)
h − u(t)

∥∥∥∥
L2(Ω)

⩽ exp(Cτ)O(h2).

N. Kontorovsky, MPL, J. P. Pinasco Replicator dynamics for continuous strategies: bridging agent-based models and
integro-differential equations via numerical analysis, Preprint
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Replicator dynamics and rational games

Two players symmetric games
Consider a symmetric game (players are not distinguished) with two
players: Player I and Player II, with the same finite discrete sets of pure
strategies, S.
Let J ∈ MM×M be the payoff matrix for Player I (JT for Player I ) being
M the cardinality of S.
A mixed strategy is defined as

M∑
j=1

pjσj , where σ1, · · · σM ∈ S and
M∑

j=1
pj = 1.

The respective simplex of mixed strategies is defined as:

SM = {p ∈ RM :
M∑

i=1
pi = 1}

The state p ∈ SM is a Nash equilibria iff pT Jp ⩾ qT Jp, for all q ∈ SM .

. J. Hopfbauer, & K. Sigmund Evolutionary game dynamics., Bulletin of the AMS, 2003.
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Replicator dynamics and rational games

Folk’s Theorem and Nash Equilibria

Evolutionary Equilibria include and generalize Nash Equilibria:
Every symmetric Nash equilibrium is also an equilibrium of the
replicator dynamics.
But not conversely: the replicator dynamics also identify unstable
equilibria or another states not identified by Nash equilibria.

The Replicator Dynamics Select “Stable” Equilibria
Classical game theory only states: “if everyone plays this profile, no one
wants to deviate.” But

how does the system reach such a profile?
Is it robust to small perturbations?
could another population invade it?

Replicator dynamics answer these questions:A stable equilibrium of the
replicator dynamics corresponds to an evolutionarily stable Nash
equilibrium (ESS).
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Cooperators versus defectors games

Co-existence of cooperators and defectors viruses

Certain virus variants evolve to exploit co-infecting viruses’ gene products.

Experimentally, they determined a payoff matrix that aligns with the
Prisoner’s Dilemma, where defection yields higher individual payoffs at low
defector frequency, but decreases overall fitness as defection becomes
prevalent.

Biologically, a predominance of defectors risks population extinction,
suggesting that other evolutionary mechanisms should be operating to
support the persistence of cooperators.

P. E. Turner and L. Chao, Sex and the evolution of intrahost competition in RNA virus Φ6, Genetics, 1998.

P. E. Turner and L. Chao, Prisoner’s dilemma in an RNA virus, Nature, 1999
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Cooperators versus defectors games

Prisioner’s Dilemma
It is a classic game scenario showing why two rational individuals may fail
to cooperate even when cooperation is mutually beneficial.
Two prisoners each choose to either

Q (cooperate): remain silent
D (defect): betray the other.

The payoffs satisfy: T > R > P > S, where T is the temptation payoff, R
the reward for mutual cooperation, P the punishment for mutual
defection, and S the sucker’s payoff.
The general symbolic matrix is:

Cooperate (Q) Defect (D)
Cooperate (Q) (R, R) (S, T )

Defect (D) (T , S) (P, P)
The unique Nash equilibrium is mutual defection (D, D).
Rational self-interest leads both to defect, producing a worse collective
outcome.
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Cooperators versus defectors games

Co-existence of cooperators and defectors viruses

Further research showed that viruses acting as cooperators, can escape the
Prisioners dilemma through clonal selection at low multiplicity of infection,
resulting in a stable mixed polymorphism where cooperators and defectors
coexist.

Consequently, the payoff matrix shifts to favor evolved cooperators over
cheaters, preventing cheater viruses from dominating the population.

When they measured the fitness of the evolved cooperators they obtained
a different matrix with the structure of Snowdrift (SD) game and it has a
mixed Nash equilibrium.

.L. Chao and S. F. Elena, Nonlinear trade-offs allow the cooperation game to evolve from Prisoner’s Dilemma to Snowdrift,
Proceedings of the Royal Society B: Biological Sciences, 2017.

P. E. Turner and L. Chao, Escape from prisoner’s dilemma in RNA phage Φ6, The American Naturalist, 2003.
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Cooperators versus defectors games

Snowdrift Game

Imagine you and another person are driving and encounter a snowdrift
blocking the road. You can:

Q (cooperate): get out and clear the snow.
D (defect): stay in the car without helping.

The joint benefit is that if at least one clears the snow, both can pass, but
clearing it has a cost. Assume that (B > C > 0)

B = benefit of having the road cleared, C = cost of clearing the snow,

A typical Snowdrift payoff matrix is:

Cooperate (Q) Defect (D)
Cooperate (Q) (B − C/2, B − C/2) (B − C , B)

Defect (D) (B, B − C) (0, 0)

Mayte P érez-Llanos (University of Seville) Co-Evolution of Viruses and games Castro-Urdiales, November 2025 23 / 29



Cooperators versus defectors games

Evolutionary payoffs
We consider the homotopy J (x , y , t) = Q(t)J1(x , y) + (1−Q(t))J2(x , y):

J1(x , y) = 2x − 2y + 2 − xy ;
J2(x , y) = x − y + 3 − 3xy .Observe that

J1 generalizes the structure of a PD, in the sense that being a
defector at x = 1 is the only Nash equilibrium, despite the fact that
x = 0 offers a better payoff,
while J2 generalizes the SD game, and admits a mixed Nash
equilibrium.

The function Q(u, t) accounts for the public goods contributed by a viral
population,

Q(u, t) =
∫ 1

0
q(x)u(x , t)dx =

∫ 1

0
(1 − x)u(x , t)dx

Here, q(x) represents the contribution by each genotype x , and refers to
molecular products shared during replication that benefit other genotypes.
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Numerical simulations

Figure: Time evolution of the initial condition u0(x) = 2(1 − x) according the
previous payoff being Ji , i = 1, 2 and q(x) = 1 − x .
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Numerical simulations

Figure: Time evolution of the initial condition u0(x) = 4 on [0, 0.2] and
u0(x) = 0.25 on (0.2, 1] according the previous payoff
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Future objectives

Long term behaviour

From a strictly mathematical point of view, the long-term behavior of
solutions presents many interesting problems:

Since the space of strategies is compact an convex, we can expect the
existence of at least one Nash equilibria, via Brauer fix point Theorem.
For finite replicator dynamics the number of Nash equilibria could
increase with the dimension of the ODE system. We could explore the
number of Nash equilibria for finite systems with evolving payoff
matrices.
We can expect some Folk Theorem, where Nash equilibria are
stationary points of the dynamics, and asymptotically stable equilibria
of the dynamics are Nash equilibria when the initial data are strictly
positive.

Mayte P érez-Llanos (University of Seville) Co-Evolution of Viruses and games Castro-Urdiales, November 2025 27 / 29



Future objectives

Mutations to new viral genotypes

A key limitation of our model is that it does not explicitly model the
generation of new viral genotypes through mutation.

However, the continuous strategy space accounts for the vast diversity of
viral variants. Future extensions could incorporate mutation explicitly by
adding a Laplacian operator to the model, enabling the exploration of new
strategies.

The singular term u in front of the evolution operator prevents the growth
of strategies that are not present in the initial datum, so we can reach
steady states that are not Nash equilibria, as in the finite-dimensional case.

The inclusion of stochastic effects, such as random mutations, can alter
the dynamics, potentially leading to more complex evolutionary outcomes.
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Future objectives

Control problems

Control theory arises naturally in these types of problems.

In fact, it is precisely what virologists aim to achieve. One would want to
regulate the payoffs.

For example, if the focal trait is virulence, rather than defectors and
cooperators, we would seek to reduce the payoff only for the more virulent
types, while leaving the non-virulent types unaffected.

This selective pressure would naturally allow the less virulent population to
dominate the more virulent one.
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