

The moment method applied to the N-dimensional heat equation

Manuel González-Burgos,
UNIVERSIDAD DE SEVILLA

COPI2A: Control, Problemas Inversos y Aprendizaje Automático
Castro Urdiales, December 2025

Objective

To revisit the moment method and apply this method to obtain the distributed null controllability for the N -dimensional heat equation. We also want to analyze the so-called control cost.

- 1 A distributed controllability problem for the N -dimensional heat equation
- 2 The case $\Omega \equiv \omega$: Global controls
- 3 Biorthogonal families in $L^2(\omega \times (0, T))$
 - First step. The restriction operator
 - Second step. Conclusion
- 4 A consequence on the control cost for the N -dimensional heat equation

1. A distributed controllability problem for the N -dimensional heat equation

[AMMAR KHODJA, BENABDALLAH, G.-B., MORANCEY, DE TERESA],
arXiv:2406.05104.

1. A controllability problem for the heat equation

Fix $N \geq 2$, $\Omega \subset \mathbb{R}^N$, a **regular bounded domain**, $\omega \subset \Omega$, an arbitrary nonempty open set, and $T > 0$.

Null controllability problem

Given $y_0 \in L^2(\Omega)$, find a control $v \in L^2(\omega \times (0, T))$ such that the solution $y \in C^0([0, T]; L^2(\Omega))$ of

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_\omega v & \text{in } Q_T := \Omega \times (0, T), \\ y = 0 & \text{on } \Sigma_T := \partial\Omega \times (0, T), \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

satisfies $y(\cdot, T) = 0$ in Ω (**Null Controllability** of system (1) at time $T > 0$).

1_ω is the characteristic function on ω .

1. A controllability problem for the heat equation

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_{\omega} \mathbf{v} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

If system (1) is **null controllable** at time $T > 0$:

Control cost

We define the **control cost** for system (1) at time T as

$$\mathcal{K}(T, \omega) = \sup_{\|y_0\|_{L^2(\Omega)} = 1} \left(\inf_{\mathbf{v} \in \mathcal{Z}_T(y_0, \Omega)} \|\mathbf{v}\|_{L^2(Q_T)} \right), \quad \forall T > 0,$$

where

$$\mathcal{Z}_T(y_0, \omega) := \{\mathbf{v} \in L^2(Q_T) : y(\cdot, T) = 0\} \neq \emptyset.$$

In particular, we want to analyze

$$\mathcal{C}(\omega) = \limsup_{T \rightarrow 0} (T \log(\mathcal{K}(T, \omega))) \iff \mathcal{K}(T, \omega) \sim \exp \left(\frac{\mathcal{C}(\omega)}{T} \right).$$

1. A controllability problem for the heat equation

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_{\omega} v & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

Previous results, several techniques

- ① $N = 1$; [FATTORINI-RUSSELL] (1971). **Moment method** for an equivalent boundary controllability problem (more details later).
- ② $N \geq 2$; [LEBEAU-ROBBIANO] (1996). **Spectral inequalities** for the eigenfunctions of the Dirichlet-Laplace operator in Ω (more details later).
- ③ $N \geq 2$; [FURSIKOV-IMANUVILOV] (1996). **Global Carleman inequalities** for the adjoint problem to (1).

Objective:

Combine the moment method for the heat equation in a N -dimensional framework and the strategy of Lebeau-Robbiano in order to solve the problem.

1. A controllability problem for the heat equation

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_{\omega} v & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

How to attack the null controllability problem of (1)?

Moment method

Main tool:

Eigenvalues and eigenvectors of the Dirichlet-Laplace operator on $\Omega \subset \mathbb{R}^N$:

- ① $\{\mu_m\}_{m \geq 1} \subset (0, \infty)$ is the sequence of eigenvalues;
- ② $\{\psi_m\}_{m \geq 1}$ is the associated sequence of normalized eigenfunctions in $L^2(\Omega)$.

1. A controllability problem for the heat equation

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_{\omega} \textcolor{red}{v} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

The idea of the **moment method** is simple: Given $y_0 \in L^2(\Omega)$ and $\textcolor{red}{v} \in L^2(\omega \times (0, T))$, then we can explicitly solve problem (1) using the basis of eigenfunctions $\{\psi_m\}_{m \geq 1}$. Thus,

Property: Moment problem

There exists a control $\textcolor{red}{v} \in L^2(\omega \times (0, T))$ s.t. $y(\cdot, T) = 0$ in Ω (y is the solution of (1)) if and only if there exists $\boxed{\textcolor{red}{v} \in L^2(\omega \times (0, T))}$ satisfying

$$\boxed{\int_0^T \int_{\omega} e^{-\mu_m(T-t)} \psi_m(x) \textcolor{red}{v}(x, t) dx dt = -e^{-\mu_m T} y_{0,m}}, \quad \forall m \geq 1,$$

where $y_{0,m}$ are the Fourier coefficients of y_0 associated to the orthonormal basis $\{\psi_m\}_{m \geq 1}$.

1. A controllability problem for the heat equation

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_{\omega} \textcolor{red}{v} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

Moment problem:

Given $y_0 \in L^2(\Omega)$, find $\boxed{\textcolor{red}{v} \in L^2(\omega \times (0, T))}$ s. t.

$$(2) \quad \int_0^T \int_{\omega} e^{-\mu_m(T-t)} \psi_m(x) \textcolor{red}{v}(x, t) dx dt = -e^{-\mu_m T} y_{0,m}, \quad \forall m \geq 1,$$

($y_{0,m}$ Fourier coefficients of y_0).

1. A controllability problem for the heat equation

Biorthogonal families in $L^2(\omega \times (0, T))$

Let us introduce the function defined by:

$$\mathbf{F}_m(x, t) := e^{-\mu_m t} \psi_m(x), \quad \forall m \geq 1, \quad (x, t) \in \Omega \times (0, T).$$

$\{\mathbf{Q}_m\}_{m \geq 1}$ is a **biorthogonal family** in $L^2(\omega \times (0, T))$ to $\{\mathbf{F}_m\}_{m \geq 1}$ if

$$\int_0^T \int_{\omega} \mathbf{F}_m(x, t) \mathbf{Q}_n(x, t) dx dt = \delta_{mn}, \quad \forall m, n \geq 1.$$

Then, a formal solution of the moment problem (2) is given by

$$\mathbf{v}(x, t) = - \sum_{m \geq 1} e^{-\mu_m T} y_{0,m} \mathbf{Q}_m(x, T-t), \quad \forall (x, t) \in \omega \times (0, T).$$

- ① **Existence** of biorthogonal sequences to $\{\mathbf{F}_m\}_{m \geq 1}$ in $L^2(\omega \times (0, T))$?
- ② **Convergence** in $L^2(\omega \times (0, T))$ of the previous series?

1. A controllability problem for the heat equation

$$\mathbf{F}_m(x, t) := e^{-\mu_m t} \psi_m(x), \quad \forall m \geq 1, \quad (x, t) \in \Omega \times (0, T).$$

Remark

The existence of a biorthogonal family to $\{\mathbf{F}_m\}_{m \geq 1}$ in $L^2(\omega \times (0, T))$ is equivalent to the property (**minimality**):

$$\mathbf{F}_m \notin \overline{\text{span} \left\{ \mathbf{F}_n|_{\omega \times (0, T)} : n \neq m \right\}}^{\|\cdot\|_{L^2(\omega \times (0, T))}}, \quad m, n \geq 1.$$

A simpler case

Let us first analyze the simplest case: $\omega \equiv \Omega$ (global control).

In this case we will use that $\{\psi_m\}_{m \geq 1}$ is an **orthonormal basis** of $L^2(\Omega)$.

2. The case $\omega \equiv \Omega$: Global controls

2. The case $\omega \equiv \Omega$: Global controls

$$(1) \quad \begin{cases} \partial_t y - \Delta y = \textcolor{red}{v} & \text{in } Q_T := \Omega \times (0, T), \\ y = 0 & \text{on } \Sigma_T := \partial\Omega \times (0, T), \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

with $\textcolor{red}{v} \in L^2(Q_T)$. The null controllability of system (1) is equivalent to: find $\textcolor{red}{v} \in L^2(Q_T)$ such that

$$(2) \quad \int_0^T \int_{\Omega} e^{-\mu_m(T-t)} \psi_m(x) \textcolor{red}{v}(x, t) dx dt = -e^{-\mu_m T} y_{0,m}, \quad \forall m \geq 1,$$

($y_{0,m}$ Fourier coefficients of y_0).

Objective:

Find a biorthogonal family in $\boxed{L^2(Q_T)}$ of $\{\textcolor{red}{F}_m\}_{m \geq 1}$
 $(\textcolor{red}{F}_m(x, t) := e^{-\mu_m t} \psi_m(x))$.

2. The case $\omega \equiv \Omega$: Global controls

Existence + estimate: the main result when $\omega \equiv \Omega$

Theorem

Assume $\mathcal{B} = \{\psi_m\}_{m \geq 1}$ is an orthonormal basis of $L^2(\Omega)$. Then, $\forall \varepsilon \in [0, T)$, \exists a sequence $\{q_m^\varepsilon\}_{m \geq 1}$ biorthogonal in $L^2(Q_T)$ to $\{F_m\}_{m \geq 1}$ satisfying

$$\begin{cases} \text{Supp } (q_m^\varepsilon) \subset [\varepsilon, T] \times \overline{\Omega}, \\ \|q_m^\varepsilon\|_{L^2(Q_T)}^2 \leq 2e \left(\frac{1}{T - \varepsilon} + \mu_m \right) e^{2\varepsilon\mu_m}, \quad \forall m \geq 1. \end{cases}$$

Proof: For simplicity, let us assume that $\varepsilon = 0$. Then,

$$q_m^0(x, t) = \frac{1}{C_m^T} e^{-\mu_m t} \psi_m(x), \quad (x, t) \in Q_T, \quad \text{with } C_m^T = \int_0^T e^{-2\mu_m t} dt, \quad m \geq 1,$$

and we can prove

$$\frac{1}{C_m^T} \leq 2e \left(\frac{1}{T} + \mu_m \right).$$

2. The case $\omega \equiv \Omega$: Global controls

$$(1) \quad \begin{cases} \partial_t y - \Delta y = \textcolor{red}{v} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

The null controllability of system (1) is equivalent to: find $\textcolor{red}{v} \in L^2(Q_T)$ such that

$$(2) \quad \int_0^T \int_{\Omega} e^{-\mu_m(T-t)} \psi_m(x) \textcolor{red}{v}(x, t) dx dt = -e^{-\mu_m T} y_{0,m}, \quad \forall m \geq 1,$$

($y_{0,m}$ Fourier coefficients of y_0) and a candidate is

$$\textcolor{red}{v}(x, t) = - \sum_{m \geq 1} e^{-\mu_m T} y_{0,m} \textcolor{blue}{q}_m^0(x, T-t), \quad \forall (x, t) \in Q_T.$$

Question

Is $\textcolor{red}{v} \in L^2(Q_T)??$

2. The case $\omega \equiv \Omega$: Global controls

Let us compute $\|\mathbf{v}\|_{L^2(Q_T)}$. One has,

$$\left\{ \begin{array}{l} \|\mathbf{v}\|_{L^2(Q_T)} \leq \left(\sum_{m \geq 1} e^{-2\mu_m T} \|\mathbf{q}_m^0\|_{L^2(Q_T)}^2 \right)^{1/2} \|y_0\|_{L^2(\Omega)} \\ \leq \sqrt{2e} \left(\sum_{m \geq 1} \left(\frac{1}{T} + \mu_m \right) e^{-2\mu_m T} \right)^{1/2} \|y_0\|_{L^2(\Omega)} := S(T) \|y_0\|_{L^2(\Omega)} \end{array} \right.$$

Finally, using Weyl's law: $\boxed{\mathcal{N}(r) := \#\{m \geq 1 : \mu_m \leq r\} \leq \kappa r^{N/2}}$, $\forall r > 0$, we deduce,

$$S(T) \leq \frac{\mathcal{C}}{T^{\frac{N+2}{4}}},$$

where $\mathcal{C} > 0$ is a constant only depending on N and Ω .

We have solved the null controllability problem for system (1) when $\omega = \Omega$.

2. The case $\omega \equiv \Omega$: Global controls

$$(1) \quad \begin{cases} \partial_t y - \Delta y = \textcolor{red}{v} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

Remark

In particular ($\omega \equiv \Omega$), the set

$$\mathcal{Z}_T(y_0, \omega) := \{\textcolor{red}{v} \in L^2(Q_T) : y(\cdot, T) = 0\} \neq \emptyset,$$

and the **control cost** for system (1) at time T satisfies

$$\mathcal{K}(T, \omega) = \sup_{\|y_0\|_{L^2(\Omega)}=1} \left(\inf_{\textcolor{red}{v} \in \mathcal{Z}_T(y_0, \Omega)} \|\textcolor{red}{v}\|_{L^2(Q_T)} \right) \leq \frac{\mathcal{C}}{T^{\frac{N+2}{4}}}, \quad \forall T > 0.$$

2. The case $\omega \equiv \Omega$: Global controls

$$(1) \quad \begin{cases} \partial_t y - \Delta y = \nu & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

We have proved:

Theorem

Assume $\omega = \Omega$. Then, system (1) is null controllable at time $T > 0$ and

$$\mathcal{K}(T, \omega) \leq \frac{\mathcal{C}}{T^{\frac{N+2}{4}}},$$

where $\mathcal{C} > 0$ is a constant only depending on N and Ω .

Important:

We have used that $\mathcal{B} = \{\psi_m\}_{m \geq 1}$ is an orthonormal basis of $L^2(\Omega)$. This property is lost when ω is a proper subset of Ω : $\omega \subset \Omega$ and $\omega \not\equiv \Omega$.

3. Biorthogonal families in $L^2(\omega \times (0, T))$

[AMMAR KHODJA, BENABDALLAH, G.-B., MORANCEY, DE TERESA],
arXiv:2406.05104.

3. Biorthogonal families in $L^2(\omega \times (0, T))$

Recall

- ① $\Omega \subset \mathbb{R}^N$ is a **bounded domain** with $\partial\Omega$ regular enough ($N \geq 2$);
- ② Eigenvalues and eigenvectors of the Dirichlet-Laplace operator on $\Omega \subset \mathbb{R}^N$: $\{\mu_m\}_{m \geq 1}$ is the sequence of eigenvalues; $\{\psi_m\}_{m \geq 1}$ is the associated sequence of normalized eigenfunctions in $L^2(\Omega)$;
- ③ $F_m(x, t) := e^{-\mu_m t} \psi_m(x)$, $\forall m \geq 1$, $(x, t) \in \Omega \times (0, T)$.

Objective:

Prove the existence of a biorthogonal family $\{Q_m\}_{m \geq 1}$ to $\{F_m\}_{m \geq 1}$ in $L^2(\omega \times (0, T))$: $\int_0^T \int_{\omega} F_m(x, t) Q_n(x, t) dx dt = \delta_{mn}$, $\forall m, n \geq 1$, and estimate the norm.

Main difficulty: $\omega \subset \Omega$ and $\omega \not\equiv \Omega$.

3. Biorthogonal families in $L^2(\omega \times (0, T))$

We have also proved:

Theorem

Assume $\mathcal{B} = \{\psi_m\}_{m \geq 1}$ is an orthonormal basis of $L^2(\Omega)$. Then, $\forall \varepsilon \in [0, T)$, \exists a sequence $\{q_m^\varepsilon\}_{m \geq 1}$ biorthogonal in $L^2(\Omega \times (0, T))$ to $\{F_m\}_{m \geq 1}$ satisfying

$$\begin{cases} \text{Supp } (q_m^\varepsilon) \subset [\varepsilon, T] \times \overline{\Omega}, \\ \|q_m^\varepsilon\|_{L^2(Q_T)}^2 \leq 2e \left(\frac{1}{T - \varepsilon} + \mu_m \right) e^{2\varepsilon\mu_m}, \quad \forall m \geq 1. \end{cases}$$

3. Biorthogonal families in $L^2(\omega \times (0, T))$

Steps:

- ① **Main argument:** The restriction operator

$$\mathcal{R}_\omega : \psi \in L^2(\Omega \times (0, T)) \mapsto \psi|_\omega \in L^2(\omega \times (0, T))$$

from the closed subspace of $L^2_\rho(\Omega \times (0, T))$ spanned by $\{F_m\}_{m \geq 1}$ (for an appropriate weight function ρ) into the subspace of $L^2(\omega \times (0, T))$ spanned by $\{F_m\}_{m \geq 1}$ is a **bi-continuous bijection**.

- ② As a consequence, we will construct a biorthogonal family to $\{F_m\}_{m \geq 1}$ in $L^2(\omega \times (0, T))$.

3. Biorthogonal families in $L^2(\omega \times (0, T))$

1. First step. The restriction operator

3. Biorthogonal families in $L^2(\omega \times (0, T))$

1. First step. The restriction operator

Proposition (“Spectral inequality”)

Fix $\Omega \subset \mathbb{R}^N$, a bounded domain regular enough, and $\omega \subset \Omega$, an arbitrary nonempty open subset. Then, there exists a constant $\beta > 0$ (only depending on ω and Ω) s. t. $\boxed{\forall \{c_m\}_{m \geq 1} \subset \mathbb{R}}$ and $\boxed{\forall \lambda \in (1, \infty)}$, one has

$$\int_{\Omega} \left| \sum_{\sqrt{\mu_m} \leq \lambda} c_m \psi_m(x) \right|^2 dx \equiv \sum_{\sqrt{\mu_m} \leq \lambda} |c_m|^2 \leq e^{\beta \lambda} \int_{\omega} \left| \sum_{\sqrt{\mu_m} \leq \lambda} c_m \psi_m(x) \right|^2 dx,$$

where $\{\psi_m\}_{m \in \mathbb{N}}$ is the sequence of **normalized eigenfunctions** of the Dirichlet-Laplace operator in $\Omega \subset \mathbb{R}^N$.

For a proof:

[JERISON, LEBEAU], Univ. Chicago Press, Chicago, Ill., 1990.

3. Biorthogonal families in $L^2(\omega \times (0, T))$

1. First step. The restriction operator

For $M \geq 1$, we define:

$$P_M(x, t) := \sum_{\sqrt{\mu_m} \leq M} \textcolor{blue}{a}_m^{(M)} \textcolor{red}{F}_m(x, t) = \sum_{\sqrt{\mu_m} \leq M} \textcolor{blue}{a}_m^{(M)} e^{-\mu_m t} \psi_m(x)$$

where $\textcolor{blue}{a}_m^{(M)} \in \mathbb{R}$, $1 \leq m \leq M$. Then,

Lemma

There exists $\alpha_0(T, \beta) > 0$ satisfying

$$\alpha_0(T, \beta) > 2\beta \text{ and } \lim_{T \rightarrow 0^+} \alpha_0(T, \beta) = 2\beta,$$

such that for any $M \geq 1$, any P_M and any $\alpha \geq \alpha_0(T, \beta)$, one has

$$\int_0^T \int_{\Omega} e^{-\frac{\alpha\beta}{t}} |P_M(x, t)|^2 \, dx \, dt \leq 6 \int_0^T \int_{\omega} |P_M(x, t)|^2 \, dx \, dt.$$

3. Biorthogonal families in $L^2(\omega \times (0, T))$

1. First step. The restriction operator

Main tools:

① Spectral Inequality: $\boxed{\forall \lambda \in (1, \infty)}$, one has

$$e^{-\beta\lambda} \int_{\Omega} \left| \sum_{\sqrt{\mu_m} \leq \lambda} c_m \psi_m(x) \right|^2 dx \leq \int_{\omega} \left| \sum_{\sqrt{\mu_m} \leq \lambda} c_m \psi_m(x) \right|^2 dx.$$

And

$$\boxed{P_M(x, t) := \sum_{\sqrt{\mu_m} \leq M} a_m^{(M)} F_m(x, t) = \sum_{\sqrt{\mu_m} \leq M} a_m^{(M)} e^{-\mu_m t} \psi_m(x)}$$

② Dissipation on the intervals $(0, \alpha/M)$ and $(\alpha/M, T)$.

3. Biorthogonal families in $L^2(\omega \times (0, T))$

1. First step. The restriction operator

Conclusion: We have proved:

Lemma

There exists $\alpha_0(T, \beta) > 0$ satisfying

$$\alpha_0(T, \beta) > 2\beta \text{ and } \lim_{T \rightarrow 0^+} \alpha_0(T, \beta) = 2\beta,$$

such that for any $M \geq 1$, any P_M and any $\alpha \geq \alpha_0(T, \beta)$, one has

$$\int_0^T \int_{\Omega} e^{-\frac{\alpha\beta}{t}} |P_M(x, t)|^2 \, dx \, dt \leq 6 \int_0^T \int_{\omega} |P_M(x, t)|^2 \, dx \, dt.$$

$$P_M(x, t) := \sum_{\sqrt{\mu_m} \leq M} \textcolor{blue}{a}_m^{(M)} \textcolor{red}{F}_m(x, t) = \sum_{\sqrt{\mu_m} \leq M} \textcolor{blue}{a}_m^{(M)} e^{-\mu_m t} \textcolor{blue}{\psi}_m(x)$$

where $\textcolor{blue}{a}_m^{(M)} \in \mathbb{R}$, $1 \leq m \leq M$. Then,

3. Biorthogonal families in $L^2(\omega \times (0, T))$

1. First step. The restriction operator

Let us define ($\alpha \geq \alpha_0$)

$$\eta_\alpha(x) = \begin{cases} 0 & \text{if } x \in \omega \\ \alpha \beta & \text{if } x \in \Omega \setminus \omega, \end{cases}$$

$$(f, g)_{\eta_\alpha} := \int_0^T \int_\Omega e^{-\frac{\eta_\alpha(x)}{t}} f(x, t) g(x, t) dx dt, \quad \|f\|_{\eta_\alpha}^2 := (f, f)_{\eta_\alpha}.$$

and the Hilbert spaces:

$$L^2_{\eta_\alpha}(\Omega \times (0, T)) := \left\{ f : \Omega \times (0, T) \rightarrow \mathbb{R} : \|f\|_{\eta_\alpha} < \infty \right\},$$

and

$$\begin{cases} E_{\eta_\alpha} = \overline{\text{span } \{F_m : m \geq 1\}}^{L^2_{\eta_\alpha}(\Omega \times (0, T))}, \\ E = \overline{\text{span } \{F_m|_\omega : m \geq 1\}}^{L^2(\omega \times (0, T))}, \end{cases}$$

3. Biorthogonal families in $L^2(\omega \times (0, T))$

1. First step. The restriction operator

Define the restriction operator

$$\mathcal{R}_\omega : \varphi \in L^2_{\eta_\alpha}(\Omega \times (0, T)) \mapsto \mathcal{R}_\omega(\varphi) = \varphi|_\omega \in L^2(\omega \times (0, T))$$

which satisfies $\mathcal{R}_\omega \in \mathcal{L}(L^2_{\eta_\alpha}(\Omega \times (0, T)), L^2(\omega \times (0, T)))$.

Theorem

If $\alpha \geq \alpha_0(T, \beta)$, the operator \mathcal{R}_ω satisfies

$$\|\varphi\|_{\eta_\alpha}^2 \leq 7 \|\mathcal{R}_\omega(\varphi)\|_{L^2(\omega \times (0, T))}^2 \leq 7 \|\varphi\|_{\eta_\alpha}^2, \quad \forall \varphi \in E_{\eta_\alpha}.$$

Moreover, $\mathcal{R}_\omega(E_{\eta_\alpha}) = E$ and, therefore, $\mathcal{R}_\omega \in \mathcal{L}(E_{\eta_\alpha}, E)$ is an isomorphism.

Recall

$$\alpha_0(T, \beta) > 2\beta \text{ and } \lim_{T \rightarrow 0^+} \alpha_0(T, \beta) = 2\beta.$$

3. Biorthogonal families in $L^2(\omega \times (0, T))$

2. Conclusion

3. Biorthogonal families in $L^2(\omega \times (0, T))$

2. Conclusion

Theorem

The family $\{\mathbf{F}_m\}_{m \geq 1}$ is **minimal** in $L^2(\omega \times (0, T))$. Moreover, there exists a biorthogonal family $\{\mathbf{Q}_m\}_{m \geq 1} \subset E$ to $\{\mathbf{F}_m\}_{m \geq 1}$ in $L^2(\omega \times (0, T))$ such that

$$(3) \quad \|\mathbf{Q}_m\|_{L^2(\omega \times (0, T))}^2 \leq 14e \left(\frac{1}{T - \varepsilon} + \mu_m \right) e^{\frac{\alpha_0 \beta}{\varepsilon} + 2\varepsilon \mu_m}, \quad \forall m \geq 1,$$

for any $\varepsilon \in (0, T)$, with $\alpha_0 = \alpha_0(T, \beta) > 2\beta$ and $\lim_{T \rightarrow 0^+} \alpha_0(T, \beta) = 2\beta$.

Proof: The proof combines:

- ① Theorem 3.1: existence of a sequence $\{\mathbf{q}_m^\varepsilon\}_{m,k \geq 1}$ biorthogonal to $\{\mathbf{F}_m\}_{m \geq 1}$ in $L^2(\Omega \times (0, T))$ s.t. $\mathbf{q}_m^\varepsilon \equiv 0$ on $(0, \varepsilon)$.
- ② The restriction operator $\mathcal{R}_\omega \in \mathcal{L}(E_{\eta_\alpha}, E)$ is an **isomorphism**:
 $\exists \{\mathbf{Q}_m^\varepsilon\}_{m \geq 1} \subset E$ biorthogonal to $\{\mathbf{F}_m\}_{m \geq 1}$ in $L^2(\omega \times (0, T))$ and one has (3).
- ③ In fact, $\{\mathbf{Q}_m^\varepsilon\}_{m \geq 1} \subset E$ and the family does not depend on ε .

4. A consequence on the control cost for the N -dimensional heat equation

4. Control cost for the N -dimensional heat equation

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_{\omega} \textcolor{red}{v} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega. \end{cases}$$

Recall that null controllability of system (1) is equivalent to: find $\textcolor{red}{v} \in L^2(Q_T)$ such that

$$(2) \quad \int_0^T \int_{\omega} e^{-\mu_m(T-t)} \psi_m(x) \textcolor{red}{v}(x, t) dx dt = -e^{-\mu_m T} y_{0,m}, \quad \forall m \geq 1,$$

($y_{0,m}$ Fourier coefficients of y_0) and a solution is given by

$$\textcolor{red}{v}(x, t) = - \sum_{m \geq 1} e^{-\mu_m T} y_{0,m} \mathcal{Q}_m(x, T-t), \quad \forall (x, t) \in Q_T,$$

with $\|\mathcal{Q}_m\|_{L^2(\omega \times (0, T))}^2 \leq 14e \left(\frac{1}{T - \varepsilon} + \mu_m \right) e^{\frac{\alpha_0 \beta}{\varepsilon} + 2\varepsilon \mu_m}$, $\forall m \geq 1$, $\varepsilon \in (0, T)$ and

$$\alpha_0(T, \beta) > 2\beta \text{ and } \lim_{T \rightarrow 0^+} \alpha_0(T, \beta) = 2\beta.$$

4. Control cost for the N -dimensional heat equation

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_{\omega} v & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

Let us compute $\|v\|_{L^2(Q_T)}^2$. One has,

$$\begin{cases} \|v\|_{L^2(Q_T)} \leq \sqrt{14e} \left(\sum_{m \geq 1} \left(\frac{1}{T - \varepsilon} + \mu_m \right) e^{-2\mu_m(T - \varepsilon)} \right)^{1/2} e^{\frac{\alpha_0 \beta}{2\varepsilon}} \|y_0\|_{L^2(\Omega)} \\ \quad := S(\varepsilon, T) e^{\frac{\alpha_0 \beta}{2\varepsilon}} \|y_0\|_{L^2(\Omega)}. \end{cases}$$

As before,

$$S(\varepsilon, T) \leq \frac{C}{(T - \varepsilon)^{\frac{N+2}{4}}}, \quad C = C(\Omega, N) > 0.$$

Then,

$$\|v\|_{L^2(Q_T)} \leq \frac{C}{(T - \varepsilon)^{\frac{N+2}{4}}} e^{\frac{\alpha_0 \beta}{2\varepsilon}} \|y_0\|_{L^2(\Omega)}, \quad \forall \varepsilon \in (0, T).$$

4. Control cost for the N -dimensional heat equation

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_{\omega} v & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

We can minimize with respect to $v \in (0, T)$

$$\|v\|_{L^2(Q_T)} \leq \frac{C}{(T - \varepsilon)^{\frac{N+2}{4}}} e^{\frac{\alpha_0 \beta}{2\varepsilon}} \|y_0\|_{L^2(\Omega)}, \quad \forall \varepsilon \in (0, T).$$

Using $\alpha_0(T, \beta) > 2\beta$ and $\lim_{T \rightarrow 0^+} \alpha_0(T, \beta) = 2\beta$, we deduce

Theorem

System (1) is null controllable at time $T > 0$ and, the **control cost** satisfies

$$C(\omega) = \limsup_{T \rightarrow 0} (T \log(\mathcal{K}(T, \omega))) \leq \beta^2.$$

where $C > 0$ is a constant only depending on N and Ω .

4. Control cost for the N -dimensional heat equation

$$(1) \quad \begin{cases} \partial_t y - \Delta y = 1_{\omega} v & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(\cdot, 0) = y_0 & \text{in } \Omega, \end{cases}$$

Conclusion

We have adapted the Lebeau-Robbiano strategy in order to obtain an appropriate biorthogonal family to $\{F_m\}_{m \geq 1}$ in $L^2(\omega \times (0, T))$. As a consequence,

- ① We have proved the null controllability of system (1) at time $T > 0$.
- ② We have obtained the behavior of the control cost $\mathcal{K}(T, \omega)$ ($\omega \neq \Omega$):

$$\mathcal{K}(T, \omega) \sim \exp\left(\frac{\beta^2}{T}\right), \quad \text{as } T \rightarrow 0.$$

4. Control cost for the N -dimensional heat equation

Remark

In [MILLER] (2010), the author adapted the Lebeau-Robbiano strategy and proved that, for all $T > 0$, the **observability inequality**

$$\|e^{-T\mathbf{A}}y_0\|_{L^2(\Omega)}^2 \leq \mathcal{K}(T, \omega)^2 \int_0^T \int_{\omega} |e^{-t\mathbf{A}}y_0(x)|^2 dx dt, \quad \forall y_0 \in L^2(\Omega),$$

holds for a positive constant $\mathcal{K}(T, \omega)$ satisfying

$$\limsup_{T \rightarrow 0} (T \ln(\mathcal{K}(T, \omega))) \leq \beta^2.$$

In the previous inequality $\{e^{-t\mathbf{A}}\}_{t \geq 0}$ denotes the semigroup generated by the Dirichlet-Laplace operator in $L^2(\Omega)$.

4. Control cost for the N -dimensional heat equation

The strategy presented in this talk can be applied to more complicated N -dimensional parabolic problems, providing controllability results where minimum control times appear.

For more details:

[AMMAR KHODJA, BENABDALLAH, G.-B., MORANCEY, DE TERESA],
arXiv:2406.05104.

Thank you for your attention!!