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Introduction

Motivation

Mathematical modelling is an effective tool for studying water quality in
rivers or channels, and management and operation of reservoirs created by
dams in these.
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Motivation

These models should include phosphorus transport (one of the key
nutrients affecting eutrophication) and sediment particles (since most
phosphorus in water are adsorbed by sediment particles and transported in
the particulate phase).

Internal phosphorus loading in rivers and channels refers to phosphorus
contained in bottom sediments and which, under certain conditions such
as hypoxia or pH/temperature changes, can be released into the water
column, continuing or exacerbating pollution and eutrophication problems
even after controlling external sources of phosphorus.
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Motivation

Release of phosphorus from sediment is a slow process that occurs in the
interstitial water and can cause uncontrolled algal growth and a decrease
in dissolved oxygen.

This release of previously settled phosphorus from sediments into the
water column of rivers and channels often occurs when anoxic conditions
arise. This process can significantly hinder lake restoration efforts by
providing a long-term source of phosphorus that continues to fuel algal
blooms long after external nutrient loads are reduced.
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Objectives

In this talk we deal with a model that incorporates sediment-phosphorus
interactions to the 1D hydrodynamic model.

Our main aim is related to controlling different parameters in the model in
order to maximize several possible objectives (hydropower generation in
associated dams, flood reduction, etc.), while minimizing nutrient concerns
(related to pollution levels and eutrophication) and/or sedimentation
(cause of capacity reduction and malfunction).
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Mathematical modeling

State variables

A(x, t): wet area, for (x, t) ∈ (0, L)× (0, T )

u(x, t): averaged velocity of water

Q(x, t): water flux (Q = Au)

As(x, t): settled area

z(x, t): heigth of sediment (z = B̃(As))

H(x, t): heigth of water (H = B̃(A+As)− B̃(As))

S(x, t): averaged concentration of suspended particles of
non-cohesive sediment

Cw(x, t): averaged concentration of phosphorus (P) dissolved in water

Cs(x, t): averaged concentration of P in suspended particles

C1
b (x, t): averaged concentration of P in the aerobic layer of sediment

C2
b (x, t): averaged concentration of P in the anaerobic layer
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Figure: Channel section
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Hydrodynamic model


∂A

∂t
+

∂Q

∂x
= 0 in (0, L)× (0, T )

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂

∂x
(b+ z +H) +

gP

C2

Q|Q|
A2

= 0

(1)

where:

L: length of channel

g: gravity acceleration

b(x): geometry of the river bottom (bathymetry)

P : wetted perimeter

C: Chézy friction coefficient
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Non-cohesive sediment model


∂(AS)

∂t
+

∂(QS)

∂x
− ∂

∂x

(
k1A

∂S

∂x

)
− Q

LA
(S∗ − S) = 0

ρs(1− ε)
∂As

∂t
= − Q

LA
(S∗ − S)

(2)

where:

k1: diffusion coeficient

LA: adaptation length (depending on settling velocity and hydraulic
radius)

S∗: sediment transport capacity

ρs: density of sediment particles

ε: porosity of the bottom sediment
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Phosphorus model


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b

BH2
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b
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(3)

where:

λ: net algal uptake rate of phosphorus (related to eutrophication)

B: channel width

H1, H2: thickness of aerobic and anaerobic active sediment layers

Sw, Ss, S
1
b , S

2
b : various sources of phosphorus
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These source terms can be written as:

Sw = R1 −R2 −R3 −R6 +R8

Ss = R2 −R7 +R9

S1
b = R3 − (R4 +R5) + (R6 +R7)− (R8 +R9)− (R10 −R11)

S2
b = (R4 +R5) + (R10 −R11)− (R12 −R13)

Term R1 stands for external phosphorus emissions (also including
anthropogenic sources: industrial, domestic, agricultural. . . )

Terms R2 - R5 depend on the relations between the different
concentrations of phosphorus in the corresponding layers.

Terms R6 - R13 depend on the type of riverbed deformation, that is,
whether there is sediment deposition (∂As

∂t > 0), or sediment erosion

(∂As
∂t < 0).
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To illustrate the different type of sources, we show for example the
expressions for:

R2: Adsorption of phosphorus by suspended sediment

R2 = ASk2(KadsCw − Cs)

R7: Sediment deposition from phosphorus in suspended particles

R7 =

{
ρs(1− ε)∂As

∂t Cs if ∂As
∂t ≥ 0

0 if ∂As
∂t < 0
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Initial conditions



A(x, 0) = A0(x) in (0, L)
Q(x, 0) = Q0(x)

S(x, 0) = S0(x)
As(x, 0) = A0

s(x)

Cw(x, 0) = C0
w(x)

Cs(x, 0) = C0
s (x)

C1
b (x, 0) = C1,0

b (x)

C2
b (x, 0) = C2,0

b (x)

(4)
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Boundary conditions



A(L, t) = AL(t) in (0, T )
Q(0, t) = Q0(t)

S(0, t) = S0(t)
∂S

∂x
(L, t) = SL(t)

Cw(0, t) = Cw,0(t)
∂Cw

∂x
(L, t) = Cw,L(t)

Cs(0, t) = Cs,0(t)
∂(SCs)

∂x
(L, t) = Cs,L(t)

(5)
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For the particular case of a channel with rectangular section of width B,
a non-conservative formulation could read:


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
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+ Initial Conditions (4)

+ Boundary Conditions (5)
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In several cases, diffusion effects can be considered negligible (that is,
k1 = 0).

Then, above system can be rewritten in the standard notation of a balance
law:

∂U

∂t
+

∂

∂x
K(U) = C(U, x)

where:
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U =


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b


, K(U) =


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0
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A
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A
0
0
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C(U, x) =
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In order to study the hyperbolicity of the non-diffusion system we have
that its full eigenstructure corresponds to the eigenvalues of the Jacobian
matrix of K: 

λ1 =
Q

A
+

√
g

B
A = u+

√
gH

λ2 =
Q

A
−
√

g

B
A = u−

√
gH

λ3 = λ5 = λ6 =
Q

A
= u

λ4 = λ7 = λ8 = 0

However, to pose a realistic problem, in the remainder of this work we will
include diffusion effects.
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Work in progress

Let us consider the case where at the end of the channel there exists a dam
that allows the reservoir water level to be regulated, for example, by means
of an outlet intended for energy production in a hydroelectric power plant.

Obviously, the greater the water discharge, the greater the electricity
production. Nevertheless, excessive water discharge could harm the water
quality in the system or make difficult the future refill possibility.
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An optimal control problem

In this work we are interested in finding the optimal water level at the end
of the channel (corresponding to the reservoir water level) so that the
energy production is maximized (this would be equivalent to minimizing
the wet area at the end of the channel), but at the same time the final
concentration of dissolved phosphorus in the water is minimized (in order
to reduce the possible harmful effects of eutrophication).

On the other hand, it is important that the wet zone at final end remains
within certain minimum and maximum thresholds for the system to
function properly (storage capacity, water quality. . . ).
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Mathematical formulation

* Design variable: AL (in a first phase assumed constant)

* Cost function: J(AL) = αAL +

∫ L

0
Cw(T ) dx

(weight parameter α > 0)

* Control constraints: Amin ≤ AL ≤ Amax

Optimal control problem

min
Amin≤AL≤Amax

J(AL)
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Current and future work:

Theoretical analysis of the problem: existence of optimal solutions,
optimality conditions. . .

Computational resolution of the state systems

Numerical optimization of the problem

Inclusion of state constraints

Control depending on time AL(t) (for instance, piecewise constant)

Other design variables and/or cost functions

. . .



Introduction The model Optimal control Numerics Other topics

Preliminary numerical experiences

Numerical simulation

The first step consists in the numerical solving of the hydrodynamic/
sedimentation systems. To compute the discretized A,Q, S,As we use
here our own Fortran software correponding to a Lagrange P1 finite
element technique combined with an implicit time discretization,
incorporating the method of characteristics for the convective terms.

Then, we solve the phosphorus model in a similar manner to obtain the
discretized Cw, Cs, C

1
b , C

2
b .
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Numerical optimization

Once computed the discrete state variables, we can compute the
discretized cost function J(AL) by means of any cuadrature rule.

Finally, the solution of the discrete, bound-constrained minimization
problem can be obtained by any numerical minimization algorithm
(eventually after inclusion of a penalty term to deal with the bound
constraints of the design variables):

Derivative-free algorithms: direct search, genetic, random search. . .

Gradient-type algorithms, with gradient approximated by finite
differences (since adjoint techniques seem too complex here).
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Cw(x, t), t =
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Recent topics: 1 - Optimal management of raceway

ponds for bioenergy production
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Other recent topics

Optimal management of raceway ponds for bioenergy production

A. Mart́ınez, L.J. Alvarez-Vázquez, C. Rodŕıguez, M.E.
Vázquez-Méndez. “Algal cultivation for bioenergy production: First
mathematical modeling results in raceways”, XI International
Conference on Adaptive Modeling and Simulation (ADMOS 2023),
Gothenburg, 2023.

— “Preliminary numerical results in the optimization of
bioenergy-intended raceway ponds”, in Numerical Mathematics and
Advanced Applications ENUMATH 2023, Vol. 2 (A. Sequeira et al.,
eds.), pp. 153 - 161, Springer, 2025.

— “Optimizing algaculture in open-channel raceway ponds for the
production of bioenergy”, submitted, 2025.
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2 - Control of air pollution in an urban-porous city
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Other recent topics

Control of air pollution in an urban-porous city

N. Garćıa-Chan, L.J. Alvarez-Vázquez, A. Mart́ınez, M.E.
Vázquez-Méndez. “A nonconservative macroscopic traffic flow model
in a two-dimensional urban-porous city”, Math. Comput. Simul., 233,
pp. 60 - 74, 2025.

— “A multi-model study of the air pollution related to traffic flow
model in a two-dimensional porous metropolitan area”, J. Comput.
Appl. Math., 473, 116903, 2026.

— Work in progress.
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3 - Water pollution monitorization

p̂1

p̂2

p̂3

p̂4

p̂5



Introduction The model Optimal control Numerics Other topics

Other recent topics

Water pollution monitorization

L.J. Alvarez Vázquez, A. Mart́ınez, C. Rodŕıguez, M.E. Vázquez
Méndez. “Optimal design of an estuarine water health monitoring
network by means of optimal control techniques”, in Numerical
Mathematics and Advanced Applications ENUMATH 2023, Vol. 1
(A. Sequeira et al., eds.), pp. 65 - 72, Springer, 2025.
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4 - Sustainable Development Goals (2030 Agenda)

0,97 m

1,5 m 1,213 m

12,13 m

0,6065 m



Introduction The model Optimal control Numerics Other topics

Other recent topics

Sustainable Development Goals (2030 Agenda)

M.E. Vázquez Méndez, L.J. Alvarez Vázquez, N. Garćıa Chan, A.
Mart́ınez, C. Rodŕıguez. “Mathematics for Optimal Design of
Sustainable Infrastructure”, 18th International Conference on
Environmental Science and Technology (CEST 2023), Athens, 2023.

— “Mathematics for Optimal Design of Sustainable Infrastructures”,
Euro-Mediterranean J. Environ. Integration, 9, pp. 989 - 996, 2024.
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