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Presentation and motivation

Can we obtain null-controllability for two coupled 4th order parabolic
equations (Kuramoto-Sivashinsky type) on Q = (0, L)× (0, T ),

∂tu1 + ∂4
xu1 =

2∑
j=1

(a1j∂
3
xuj + b1j∂

2
xuj + c1j∂xuj + d1juj) + 1ωh, in Q,

∂tu2 + ∂4
xu2 =

2∑
j=1

(a2j∂
3
xuj + b2j∂

2
xuj + c2j∂xuj + d2juj), in Q,

(u1, u2)(0, t) = (u1, u2)(L, t) = 0, in (0, T ),
∂x(u1, u2)(0, t) = ∂x(u1, u2)(L, t) = 0, in (0, T ),

(u1, u2)(x, 0) = (u1, u2)
0(x), in (0, L),

(u1, u2)
0 ∈ L2(0, L)2 is the initial condition and h ∈ L2(Q) is the control.

coupling terms (aij , bij , cij , dij) are assumed to be in C∞
c (Q).
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Same system written in a matrix form
∂tU + ∂4

xU = A∂3
xU +B∂2

xU + C∂xU +DU + 1ωGh, in Q,
U(0, t) = U(L, t) = 0, in (0, T ),
∂xU(0, t) = ∂xU(L, t) = 0, in (0, T ),
U(x, 0) = U0(x), in (0, L),

with U =

(
u1

u2

)
, A = (aij), B = (bij), C = (cij), D = (dij) and G =

(
1
0

)
,

where (A,B,C,D) are supposed to be 2× 2 matrices with coefficients in
C∞

c (Q).
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Previous results

Control of a single KS equation in 1D
▶ Cerpa-Mercado 2011, Cerpa-Guzman-Mercado 2017 with boundary

controls, proofs based on moments theory and Carleman estimates
▶ Gao 2016 with internal control, and f a globally lipschitz function, proofs

based on Carleman estimates

Gao 2016
If y0 ∈ H2

0 (0, L), there exists h ∈ L2(0, T ) such that the solution of
∂ty + ∂4

xy + f(y, ∂xy, ∂
2
xy) = 1ωh, in Q,

y(0, t) = y(L, t) = 0, in (0, T ),
∂xy(0, t) = ∂xy(L, t) = 0, in (0, T ),

y(x, 0) = y0(x), in (0, L),

satisfies y(., T ) = 0.

▶ Guzmann 2016 with internal control, other boundary conditions.
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Control of a single KS equation
▶ Kassab 2020 in 2D,
▶ Guerrero-Kassab 2019, Zongo-Robbiano 2025 in nD, with different

boundary conditions

Control of KS-KdV system

∂ty + γ∂4
xy + ∂3

xy + a∂2
xy + y∂xy = ∂xz + 1ωh, in Q,

∂tz − Γ∂2
xz + c∂xz = ∂xy + 1ωh, in Q,

y(0, t) = y(L, t) = 0, in (0, T ),
∂xy(0, t) = ∂xy(L, t) = 0, in (0, T ),
z(0, t) = z(L, t) = 0, in (0, T ),

y(x, 0) = y0(x) z(x, 0) = z0(x), in (0, L),

▶ Cerpa-Mercado-Pazoto 2015, One control on KS equation
▶ Carreno-Cerpa 2016, One control on heat equation

Use Carleman estimates and the equation to eliminate one observation
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Our problem

Null controllability of
∂tU + ∂4

xU = A∂3
xU +B∂2

xU + C∂xU +DU + 1ωGh, in Q,
U(0, t) = U(L, t) = 0, in (0, T ),
∂xU(0, t) = ∂xU(L, t) = 0, in (0, T ),

U(x, 0) = U0(x), in (0, L),

with U =

(
u1

u2

)
, A = (aij), B = (bij), C = (cij), D = (dij) and G =

(
1
0

)
, where

(A,B,C,D) are supposed to be 2× 2 matrices with coefficients in C∞
c (Q).

� Only 1 control

� highly coupled system (up to order 3)

� coupling coefficients in time and space.
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Core idea

Use fictitious control method with some algebraic resolution based on the
articles:

Coron-Lissy 2014 null-controllability of the 3d Navier Stokes equation
Duprez-Lissy 2016 and 2018 null controllability of parabolic system with
coupling of order 0 and 1.

Ideas
� First prove that the system is controllable with 2 controls (Fictitious

control)
� Remove the new control with algebraic manipulations, needs a

sufficiently regular control
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Algebraic resolution

We suppose first that we already have the null-controllability result with 2
controls

to be proved later
Suppose that U0 ∈ L2(0, L)2, there exists a control H ∈ L2(Q)2 with support
⊊ ω × (0, T ) := Qω such that

∂tŨ + ∂4
xŨ = A∂3

xŨ +B∂2
xŨ + C∂xŨ +DŨ +H, in Q,

Ũ(0, t) = Ũ(L, t) = 0, in (0, T ),

∂xŨ(0, t) = ∂xŨ(L, t) = 0, in (0, T ),

Ũ(x, 0) = U0(x), in (0, L),

satisfies Ũ(., T ) = 0.
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Algebraic resolution
to be proved later
Suppose that U0 ∈ L2(0, L)2, there exists a control H ∈ L2(Q)2 with support
⊊ ω × (0, T ) := Qω such that

∂tŨ + ∂4
xŨ = A∂3

xŨ +B∂2
xŨ + C∂xŨ +DŨ +H, in Q,

Ũ(0, t) = Ũ(L, t) = 0, in (0, T ),

∂xŨ(0, t) = ∂xŨ(L, t) = 0, in (0, T ),

Ũ(x, 0) = U0(x), in (0, L),

satisfies Ũ(., T ) = 0.

Idea of algebraic resolution
find a trajectory (Û , ĝ) with support ⊊ ω × (0, T ) such that

∂tÛ + ∂4
xÛ = A∂3

xÛ +B∂2
xÛ + C∂xÛ +DÛ +H +Gĝ, in Qω,

Û(0, t) = Û(L, t) = 0, in (0, T ),

∂xÛ(0, t) = ∂xÛ(L, t) = 0, in (0, T ),

Û(x, 0) = 0, in (0, L),

Û(x, T ) = 0, in (0, L).

Then (U, h) = (Ũ − Û ,−ĝ) is a solution of the problem.
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Algebraic resolution- How to construct (Û , ĝ)?
Let H = (h1, h2) with supp(H) ⊊ Qω.
Denoting Û = (û1, û2), we rewrite the problem as solving
L(û1, û2, ĝ) = (h1, h2) where

L(û1, û2, ĝ) :=

(
L1(û1, û2)− ĝ
L2(û1, û2)

)

:=


∂tû1 + ∂4

xû1 −
2∑

j=1

(a1j∂
3
xûj + b1j∂

2
xûj + c1j∂xûj + d1j ûj)− ĝ

∂tû2 + ∂4
xû2 −

2∑
j=1

(a2j∂
3
xûj + b2j∂

2
xûj + c2j∂xûj + d2j ûj)



Can we find a partial differential operator M such that

L ◦M = Id in Qω?

We first solve L2(û1, û2) = h2 and then take ĝ = L1(û1, û2)− h1. Solving
L2 ◦M2 = Id in Qω is equivalent to solving

M∗
2 ◦ L∗

2 = Id in Qω.
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xû1 −
2∑

j=1

(a1j∂
3
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xûj + b2j∂

2
xûj + c2j∂xûj + d2j ûj)
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L(û1, û2, ĝ) = (h1, h2) where
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Algebraic resolution

How to solve
M∗

2 ◦ L∗
2 = Id in Qω?

L∗
2ϕ :=

(
A1ϕ
A2ϕ

)
=

(
∂3
x(a21ϕ)− ∂2

x(b21ϕ) + ∂x(c21ϕ)− d21ϕ
−∂tϕ+ ∂4

xϕ+ ∂3
x(a22ϕ)− ∂2

x(b22ϕ) + ∂x(c22ϕ)− d22ϕ

)
.

=⇒ algebraic manipulations with A1ϕ and A2ϕ in order to get ϕ.
=⇒ differentiate A1 k times in space and (once in time and l times in space),
and the operator A2 n times in space in order to construct a square matrix M :
k = 6, l = 2, n = 5
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Algebraic resolution

L∗
2ϕ :=

(
A1ϕ
A2ϕ

)
=

(
∂3
x(a21ϕ)− ∂2

x(b21ϕ) + ∂x(c21ϕ)− d21ϕ
−∂tϕ+ ∂4

xϕ+ ∂3
x(a22ϕ)− ∂2

x(b22ϕ) + ∂x(c22ϕ)− d22ϕ

)
.

Q(ϕ) =



A1ϕ
∂xA1ϕ

∂2
xA1ϕ

∂3
xA1ϕ

∂4
xA1ϕ

∂5
xA1ϕ

∂6
xA1ϕ

∂tA1ϕ
∂t∂xA1ϕ

∂t∂
2
xA1ϕ

A2ϕ
∂xA2ϕ

∂2
xA2ϕ

∂3
xA2ϕ

∂4
xA2ϕ

∂5
xA2ϕ



=



I 0
∂x 0

∂2
x 0

∂3
x 0

∂4
x 0

∂5
x 0

∂6
x 0

∂t 0
∂t∂x 0

∂t∂
2
x 0

0 I
0 ∂x
0 ∂2

x
0 ∂3

x
0 ∂4

x
0 ∂5

x



◦ L∗
2ϕ = S ◦ L∗

2ϕ := M



ϕ
ϕx
ϕ2x
ϕ3x
ϕ4x
ϕ5x
ϕ6x
ϕ7x
ϕ8x
ϕ9x
ϕt
ϕtx
ϕtxx
ϕt3x
ϕt4x
ϕt5x



.

We clearly see that S is an operator of degree 6 in space, 1 in time, and 1-2 in
time-space, and M is a 16× 16 square matrix depending on the coefficients
(a2,j , b2,j , c2,j , d2,j)j=1,2 and their derivatives in time and space.
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If
|detM(x, t)| > C, for every (x, t) ∈ O × (T1, T2) ⊊ Qω (1)

P1 := projection on the first component

P1M
−1S︸ ︷︷ ︸

M∗
2

◦L∗
2ϕ = ϕ.

(û1, û2) = M2h2, =⇒ derive h2, 1 in time, six times in space, and 1-2 times in
time-space
ĝ = L1(û1, û2)− h1 =⇒ derive again h2, finaly at a maximum of 2 times in
time, 10 times in space, and 1-6 and 2-2 times in time-space.

regularity needed

h2 ∈ H2(L2) ∩ L2(H10) ∩H1(H6) ∩H2(H2) = L2(H10) ∩H2(H2).

11/23



Carleman inequality

How to get a Carleman inequality with 10 derivatives on the LHS?

1 get a Carleman estimate for one KS equation with non-homogeneous
boundary conditions

2 Apply it to ∂8
xϕ

Previous Carleman estimates for KS equations :
Carreno-Cerpa 2016: Carleman for KS with non-homogeneous Dirichlet
conditions but only ϕ on the LHS =⇒ no hope to get ∂2

xϕ on the LHS.
Gao 2016: Carleman for KS with homogeneous Neumann conditions but
with ∂2

xϕ on the LHS .
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Carleman inequality for KS with NH Neumann BC
−φt + φ4x = B0 + ∂xB1 + ∂xxB2, in Q,
φ2x(0, t) = b1(t), φ2x(L, t) = b2(t), in (0, T ),
φ3x(0, t) = b3(t), φ3x(L, t) = b4(t), in (0, T ),
φ(x, T ) = φT (x), in (0, L).

Use the work of Fernandez-Cara, Gonzales-Burgos, Guerrero, Puel 2006.

η ∈ C4([0, L]) be a function satisfying,{
η(x) > 0, ∀x ∈ (0, L), η(0) = η(L) = 0,
|η′(x)| ≥ δ > 0, ∀x ∈ [0, L] \ ω0,

for some ω0 ⋐ ω where this means that ω̄0 ⊂ ω. Thus, we have

η′(0) ≥ δ and − η′(L) ≥ δ.

usual exponential weight functions with λ > 1, k > m > 0.

α(x, t) :=
ek

m+1
m

λ∥η∥∞ − eλ(k∥η∥∞+η(x))

tm(T − t)m
, ξ(x, t) :=

eλ(k∥η∥∞+η(x))

tm(T − t)m
,

α∗(t) := max
x∈[0,L]

α(x, t) = α(0, t) = α(L, t),

ξ∗(t) := min
x∈[0,L]

ξ(x, t) = ξ(0, t) = ξ(L, t),
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Theorem
Let B0 ∈ L2(Q), B1 ∈ L2(0, T ;H1/2(0, L)), B2 ∈ L2(0, T ;H3/2(0, L)), b1 , b2 , b3 , b4 ∈ L2(0, T ), m ≥ 1/2 and

ω ⊂ (0, L). ∃λ0 > 0 and C > 0 s.t. any solution φ of
−φt + φ4x = B0 + ∂xB1 + ∂xxB2, in Q,
φ2x(0, t) = b1(t), φ2x(L, t) = b2(t), in (0, T ),
φ3x(0, t) = b3(t), φ3x(L, t) = b4(t), in (0, T ),
φ(x, T ) = φT (x), in (0, L),

satisfies, for every λ ≥ λ0 and s ≥ C(T2m + T2m−1) , that∫∫
Q

s3λ4ξ3e−2sα|φ2x|2 + s5λ6ξ5e−2sα|φx|2 + s7λ8ξ7e−2sα|φ|2 dxdt

≤ C

(∫∫
Q

e−2sα(|B0|2 + s2λ2ξ2|B1|2 + s4λ4ξ4|B2|2)dxdt

+

∫∫
Qω

s7λ8ξ7e−2sα|φ|2 dxdt

+

∫ T

0

s3λ3ξ∗3e−2sα∗
(|b1(t)|2 + |b2(t)|2 + |B2(L, t)|2 + |B2(0, t)|2)dt

+

∫ T

0

sλξ∗e−2sα∗
(|b3(t)|2 + |b4(t)|2 + |B1(L, t)|2 + |B1(0, t)|2

+ |∂xB2(L, t)|2 + |∂xB2(0, t)|2)dt
)
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Carleman for the adjoint system
Let ΨT ∈ L2(0, L)2, η̄ ∈ L2(Q)2, (b̄1, b̄2, b̄3, b̄4) ∈ L2(Q)2,
(Π̃, Λ̃, Γ̃, Θ̃) ∈ C∞

c (Q), let m > 1/2 and ω ⊂ (0, L). There exists λ0 > 0 and
C > 0 such that any solution Ψ of

−∂tΨ+ ∂4
xΨ = Π̃∂3

xΨ+ Λ̃∂2
xΨ+ Γ̃∂xΨ+ Θ̃Ψ + η̄, in Q,

Ψ2x(0, t) = b̄1(t), Ψ2x(L, t) = b̄2(t), in (0, T ),
Ψ3x(0, t) = b̄3(t), Ψ3x(L, t) = b̄4(t), in (0, T ),
Ψ(x, T ) = ΨT (x), in (0, L),

satisfies for every λ ≥ λ0 and s ≥ C(T 2m + T 2m−1),∫∫
Q

s3λ4ξ3e−2sα|Ψ2x|2 + s7λ8ξ7e−2sα|Ψ|2dxdt

≤ C

(∫∫
Q

e−2sα|η̄|2dxdt+ s7λ8

∫∫
Qω

e−2sαξ7|Ψ|2dxdt

+s3λ3

∫ T

0

e−2sα∗
(ξ∗)3(|b̄1|2 + |b̄2|2)dt+ sλ

∫ T

0

e−2sα∗
ξ∗(|b̄3|2 + |b̄4|2)dt

)
.
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Well-Posedness results

For the direct problem,
∂tU + ∂4

xU = A∂3
xU +B∂2

xU + C∂xU +DU + F, in Q,
U(0, t) = U(L, t) = 0, in (0, T ),
∂xU(0, t) = ∂xU(L, t) = 0, in (0, T ),
U(x, 0) = U0(x), in (0, L),

Theorem

Let (A,B,C,D) in C∞
c (Q).

If U0 ∈ L2(0, L)2 and F ∈ L1(0, T ;L2(0, L)2),
then there exists a unique solution
U ∈ C([0, T ];L2(0, L)2) ∩ L2(0, T ;H2

0 (0, L)
2) and ∃C > 0 such that

||U ||C([0,T ];L2(0,L)2)∩L2(0,T ;H2(0,L)2) ≤ C
{
||U0||L2(0,L)2 + ||F ||L1(0,T ;L2(0,L)2)

}
.
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For the adjoint problem,
−∂tΦ+ ∂4

xΦ = Π∂3
xΦ+ Λ∂2

xΦ+ Γ∂xΦ+ΘΦ+ η, in Q,
Φ(0, t) = Φ(L, t) = 0, in (0, T ),
∂xΦ(0, t) = ∂xΦ(L, t) = 0, in (0, T ),
Φ(x, T ) = ΦT (x), in (0, L).

(2)

Theorem
Rewrite (2) as −Φt := L(t)Φ + η, where L(t) = L(t, x, ∂x) and let d ∈ N. If
ΦT ∈ H4d+2(0, L)2 and η ∈ L2(0, T ;H4d(0, L)2) ∩Hd(0, T ;L2(0, L)2) satisfy the
compatibility conditions:


ḡ0 := ΦT ∈ H2

0(0, L)2,

ḡ1 := −L(T )ḡ0 − η(T, .) ∈ H2
0(0, L)2,

ḡd := −
(∑d−1

k=0

( d − 1
k

)
∂k
t L(T )ḡd−1−k

)
− ∂

d−1
t η(T, .) ∈ H2

0(0, L)2,

then Φ ∈ [C(0, T ;H4d+2(0, L)) ∩ L2(0, T ;H4d+4(0, L)) ∩Hd+1(0, T ;L2(0, L))]2, and
∃C > 0 such that

∥Φ∥
L2(0,T ;H4d+4(0,L))∩Hd+1(0,T ;L2(0,L))

≤ C

(
∥η∥

L2(0,T ;H4d(0,L)2)∩Hd(0,T ;L2(0,L)2)

+ ∥ΦT ∥
H4d+2(0,L)2

)
.
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Carleman with 10 derivatives on the LHS

Let ΦT in C∞
c (0, L)2, with the WP property, ∀d ∈ N

Φ ∈ [C(0, T ;H4d+2(0, L)) ∩ L2(0, T ;H4d+4(0, L)) ∩Hd+1(0, T ;L2(0, L))]2

We derive the adjoint system 8 times in space and with Ψ = Φ8x,
−∂tΨ+ ∂4

xΨ = Π̃∂3
xΨ+ Λ̃∂2

xΨ+ Γ̃∂xΨ+ ∆̃Ψ + η̄, in Q,
Ψ2x(0, t) = Φ10x(0, t), Ψ2x(L, t) = Φ10x(L, t), in (0, T ),
Ψ3x(0, t) = Φ11x(0, t),Ψ3x(L, t) = Φ11x(L, t), in (0, T ),
Ψ(x, T ) = ΨT (x) := ∂8xΦ

T (x), in (0, L),

where η̄ = η̄(Φ, ∂xΦ, . . . , ∂7xΦ) ∈ L2(Q), (Π̃, Λ̃, Γ̃, ∆̃) ∈ C∞
c (Q) . Furthermore,

we get Φ10x(0, t)Φ10x(L, t)Φ11x(0, t)Φ11x(L, t) ∈ L2(0, T ).

=⇒ we use our Carleman estimate for KS with non-homogeneous Neumann
boundary conditions
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
−∂tΨ+ ∂4

xΨ = Π̃∂3
xΨ+ Λ̃∂2

xΨ+ Γ̃∂xΨ+ ∆̃Ψ + η̄, in Q,
Ψ2x(0, t) = Φ10x(0, t), Ψ2x(L, t) = Φ10x(L, t), in (0, T ),
Ψ3x(0, t) = Φ11x(0, t),Ψ3x(L, t) = Φ11x(L, t), in (0, T ),
Ψ(x, T ) = ΨT (x) := ∂8xΦ

T (x), in (0, L),

Thus, we can apply the Carleman estimate with ω8 ⋐ ω to get∫∫
Q

s3λ4ξ3e−2sα|Ψ2x|2 + s7λ8ξ7e−2sα|Ψ|2dxdt

≤ C

(∫∫
Q

e−2sα|η̄|2dxdt+ s7λ8

∫∫
Qω8

e−2sαξ7|Ψ|2dxdt

+ s3λ3

∫ T

0

e−2sα∗
(ξ∗)3(|Φ10x(0, t)|2 + |Φ10x(L, t)|2)dt

+sλ

∫ T

0

e−2sα∗
ξ∗(|Φ11x(0, t)|2 + |Φ11x(L, t)|2)dt

)
.
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Final Carleman estimate

Step 1. estimate the boundary terms on the RHS.

Step 2. compare
∫∫

Q

s3λ4ξ3e−2sα|Ψ2x|2 + s7λ8ξ7e−2sα|Ψ|2dxdt with the

desired LHS with Ψ = ∂8
xΦ

Step 3. re-estimate the right-hand side.

Carleman result
There exists C := C(L, ω), λ0 > 0 such that for all ΦT ∈ L2(0, L)2, m > 1/2
the corresponding solution Φ of adjoint system satisfies

∫∫
Q

e−2sα
10∑
r=0

(sξ)23−2rλ24−2r|∂r
xΦ|2dxdt

≤ C

∫∫
Qω

e−2sαs23λ24ξ23|Φ|2dxdt,

for every s ≥ C(T 2m + T 2m−1) and λ ≥ λ0.
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Control result with One fictitious control

Null controllability with 2 very regular controls
The system

∂tU + ∂4
xU = A∂3

xU +B∂2
xU + C∂xU +DU + θH, in Q,

U(0, t) = U(L, t) = 0, in (0, T ),
∂xU(0, t) = ∂xU(L, t) = 0, in (0, T ),
U(x, 0) = U0(x), in (0, L),

is null controllable at any time T , i.e., for any U0 ∈ L2(0, L)2, there exists a
control H ∈ L2(Q)2 such that the solution satisfies U(., T ) = 0 in (0, L).
∀K ∈ (0, 1), eKs0α

∗
H ∈ L2(0, T ;H10(0, L)2) ∩H2(0, T ;H2(0, L)2),

∥eKs0α
∗
H∥L2(0,T ;H10(0,L)2)∩H2(0,T ;H2(0,L)2) ≤ C∥U0∥L2(0,L)2 .
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Final result

we use
the null-controllability with very regular controls
the algebraic resolution

Let T > 0, L > 0 and ω be a non-empty open subset of (0, L). Let assume
that the matrix is invertible. For any U0 ∈ L2(Q)2, there exists a control
h ∈ L2(Q) such that the solution satisfies U(·, T ) = 0 in (0, L).
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Conclusion:
null controllability of a highly coupled 4th order parabolic system
New Carleman estimates for a 4th order equation with Neumann
non-homogeneous conditions
Coupling terms acting on ω+invertible matrix

Perspectives:
Case of boundary controls?
What about the 2D or 3D case?
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