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Presentation and motivation

Can we obtain null-controllability for two coupled 4th order parabolic
equations (Kuramoto-Sivashinsky type) on @ = (0, L) x (0,7,

2
Ouy + 8;IU1 = Z(auaguj' + b1j8§u]' + Cljawuj' + dlju]‘) + 1uh, in Q,
J;l
Orus + 8;111,2 = Z(agjagu]' + bgjazu]' + Czjazuj + dgjuj‘), in Q,
j=1
(U1,U2)(O, t) = (u17u2)(L7t) =0, in (Oa T)7
8z(u1,u2)(07 t) = 8Z(U17UZ)(L,t) =0, in (07 T),
(u17u2)(1‘70) = (U1,’U,2)O([L‘), in (07 L)7

@ (u1,u2)® € L?(0, L)? is the initial condition and i € L*(Q) is the control.
@ coupling terms (a;, bij, cij, dij) are assumed to be in C°(Q).
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Same system written in a matrix form

U + 9,U = A02U + BO2U + C9,U + DU + 1,Gh, inQ,

U(0,t) = U(L,t) =0, in (0,7),
8,U(0,t) = 9,U(L,t) =0, in (0,7),
Ul(z,0) = U%x), in (0, L),
with U = (Z;) A= (aij), B = (b;), C = (ci;), D = (di;) and G = (é)

where (A, B, C, D) are supposed to be 2 x 2 matrices with coefficients in

C(Q)-
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Previous results

@ Control of a single KS equation in 1D

» Cerpa-Mercado 2011, Cerpa-Guzman-Mercado 2017 with boundary
controls, proofs based on moments theory and Carleman estimates

» Gao 2016 with internal control, and f a globally lipschitz function, proofs
based on Carleman estimates

Gao 2016
If 4 € H5(0, L), there exists h € L?(0, T) such that the solution of

Ay + Oy + fy, 8y, 02y) = 1uh, InQ,

y(0,t) = y(L,t) =0, in (0,7,
aacy(oa t) = 83;y(L,t) =0, in (07 T)a
y(x,O) = yo(x)v in (07 L):

satisfies y(.,T") = 0.

» Guzmann 2016 with internal control, other boundary conditions.
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@ Control of a single KS equation

» Kassab 2020 in 2D,
» Guerrero-Kassab 2019, Zongo-Robbiano 2025 in nD, with different
boundary conditions

@ Control of KS-KdV system

Oy + Y0uy + O3y + adiy + yduy = duz + 1uh, N Q,

atzfl"ainrc@zz:azerlwh, in Q,

y(0,t) = y(L,t) =0, in (0,7,
02y(0,t) = Opy(L,t) =0, in (0,7),
2(0,t) = z(L,t) =0, in (0,7),
y(x,0) = y°(2) 2(x,0) = 2°(), in (0, L),

» Cerpa-Mercado-Pazoto 2015, One control on KS equation
» Carreno-Cerpa 2016, One control on heat equation

Use Carleman estimates and the equation to eliminate one observation



Our problem

Null controllability of

U + 03U = ADU + BO2U + C9,U + DU +1,Gh, inQ,

U(O7 t) = U(L,t) =0, in (O,T)7
0,U(0,4) = 0 U (L, t) = 0, in (0.7,
U(:L‘7 0) = UO(I)7 in (0, L),

with U = (Z;) A= (aiy), B=(biy), C = (ciy), D = (diy) and G = (5) where
(A, B,C, D) are supposed to be 2 x 2 matrices with coefficients in C¢°(Q).

> Only 1 control

> highly coupled system (up to order 3)

> coupling coefficients in time and space.
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Core idea

Use fictitious control method with some algebraic resolution based on the
articles:

@ Coron-Lissy 2014 null-controllability of the 3d Navier Stokes equation

@ Duprez-Lissy 2016 and 2018 null controllability of parabolic system with
coupling of order 0 and 1.
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Core idea

Use fictitious control method with some algebraic resolution based on the
articles:

@ Coron-Lissy 2014 null-controllability of the 3d Navier Stokes equation

@ Duprez-Lissy 2016 and 2018 null controllability of parabolic system with
coupling of order 0 and 1.

Ideas

> First prove that the system is controllable with 2 controls (Fictitious
control)

> Remove the new control with algebraic manipulations, needs a
sufficiently regular control
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Algebraic resolution

We suppose first that we already have the null-controllability result with 2
controls

to be proved later

Suppose that U° € L?(0, L)?, there exists a control H € L?(Q)? with support
C w x (0,T) := Q. such that

0,0 + 02U = AB2U + BO2U + Co,U + DU + H, inQ,

U(0,t) = U(L,t) = 0, in (0,7),
8,U(0,t) = 8,U(L,t) = 0, in (0,7),
U(ac,()) =UO(:L'), in (0, L),

satisfies U(., T) = 0.




Algebraic resolution

to be proved later

Suppose that U° € L?(0, L)?, there exists a control H € L?(Q)? with support
C w x (0,T) := Q. such that

00 + 02U = AB2U + BO2U + Co,U + DU + H, inQ,

U(0,t) = U(L,t) = 0, in (0,7),
8, U(0,t) = 8,U(L,t) =0, in (0,7),
U(x,O) = U%x), in (0, L),

satisfies U(., T) = 0.

Idea of algebraic resolution
find a trajectory (U, g) with support C w x (0,7") such that

U + 0'U = AD2U + BO2U + CO,U + DU + H +G§, in Qu,
U(0,t) = U(L,t) = 0, mmTL

9, U(0,t) = 8,U(L,t) =0, in (0,7),
U(z,0) =0, in (0, L),
Uz, T) =0, in (0, L).

Then (U, h) = (U — U, —§) is a solution of the problem.
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Algebraic resolution- How to construct (U, §)?
Let /7 = (ha, ha) with supp(H) € Q..

Denoting U = (14, Gi2), we rewrite the problem as solving
L(Ul,UQ, ) (hl hg) where
1(t

L(t1, 02, g) = ( Lo (ulA,T)w; g)

Ol + Biﬂl — Z(aljai’ﬁj + bljai’llj + Cljazﬂj =+ dlj’&j) — g
- Jj=1
2

Olio + a;lﬁQ — Z(G&jagﬁj + bgjé‘iﬁj + ngazﬂj + dzjﬁj)
Jj=1
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Algebraic resolution- How to construct (U, §)?
Let H = (ha, ha) with supp(H) C Q..

Denoting U = (14, Gi2), we rewrite the problem as solving
E(ftl, ﬂz, g) (hl hz) where

L(t1, 02, §) = < ((um)u) )

2
Ol + 6;1&1 — Z(aljag’ﬂj =+ bljaiﬁj =+ Cljazﬁj =+ dlj’&j) g
. Jj=1
T 2

Olio + a;lﬁQ — Z(G&j&iﬁj + ijazﬁj + ngazﬂj + dgjﬂj)
j=1

Can we find a partial differential operator M such that

LoM=1Idin Q.7

g/23



Algebraic resolution- How to construct (U, §)?
Let H = (}}1, ho) with supp(H) C Q..

Denoting U = (14, Gi2), we rewrite the problem as solving
[,(ftl, ﬂg, g) = (h,l, h,g) where
i, g) = (O

2
Ol + 6;1&1 — Z(aljaiﬂj =+ bljaﬁﬂj =+ Cljaz’llj =+ dljﬁj) -3
. Jj=1
T 2

Olio + a;lﬁQ — Z(G&j&iﬁj + ijaiﬁj + ngazﬂj + dgﬂlj)
j=1

Can we find a partial differential operator M such that

LoM=1Idin Q.7

We first solve L2(11,12) = ho and then take § = L£1(41,12) — hi. Solving
L2 0 My = Idin Q. is equivalent to solving

Mo Ls=1Idin Q..
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Algebraic resolution

How to solve
MsoLy=1Idin Q,?

Lid = (-A1¢) _ ( D3(az1¢) — 02(ba1¢) + 0z(c210) — do1 @ )
20 \Aep) T \—0ip + 020 + 03(asng) — 02 (baad) + Ox(ca) — daad)

= algebraic manipulations with .A; ¢ and A5¢ in order to get ¢.
— differentiate A; k times in space and (once in time and [ times in space),

and the operator A, n times in space in order to construct a square matrix M:
k=6,l=2,n=5
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Algebraic resolution

v, (A9 D3(a21 ) — 02(ba1¢) + 0z(c210) — do1 ¢
£29:= Axp) (

—0ip + 03¢ + 03 (a220) — 02 (b220) + D (C22¢) — dozp

A1o 1 0
By Ay o 0 ®
92 A1 ¢ a2 0 b
a,éAlda o3 0 b2z
8§A1¢ a§ 0 ziz
OpAre oy 0 g
%A e a8 0 b6
Q) = 3%;“;% - Bfém Olocse=50csp =M i;i
2,02 A1 2,02 0 9z
Ag o 0 I bt
gz Ag ¢ 0 Oy Pta
92 Ao ¢ 0 a2 btex
83 Ag o o3 Pt3w
4 Ptam
22 Ag0 0 o brna
292 Age 0 a5

We clearly see that S is an operator of degree 6 in space, 1 in time, and 1-2 in
time-space, and M is a 16 x 16 square matrix depending on the coefficients

(az2,j,b2,5,c2,5,d2,5)j=1,2 and their derivatives in time and space.

10/23
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|det M (z,t)| > C, forevery (z,t) € O x (T1,T2) C Qu (1)

P, := projection on the first component

PiM™'SoLs0 = ¢.
v

(ti1, tg) = Mahe, => derive ho, 1 intime, six times in space, and 1-2 times in
time-space

g = L1(41,12) — hy = derive again ho, finaly at a maximum of 2 times in
time, 10 times in space, and 1-6 and 2-2 times in time-space.

regularity needed
hy € H*(L?) N L*(H'%) N H'(H®) n H*(H?) = L*(H'") N H*(H?).
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Carleman inequality

How to get a Carleman inequality with 10 derivatives on the LHS?

@ get a Carleman estimate for one KS equation with non-homogeneous
boundary conditions

Q Apply itto 93¢
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Carleman inequality

How to get a Carleman inequality with 10 derivatives on the LHS?

@ get a Carleman estimate for one KS equation with non-homogeneous
boundary conditions

Q Apply itto 93¢
Previous Carleman estimates for KS equations :

@ Carreno-Cerpa 2016: Carleman for KS with non-homogeneous Dirichlet
conditions but only ¢ on the LHS = no hope to get 92¢ on the LHS.

@ Gao 2016: Carleman for KS with homogeneous Neumann conditions but
with 92¢ on the LHS .
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Carleman inequality for KS with NH Neumann BC

—@t + P4z = Bo+ 0:B1 + 022 B2, inQ,
L)DQI(Oa t) = bl(t)v 3021(-[0 t) = bQ(t)7 in (Ov T)7
4,03%(0, t) = b3(t), (pgx(L, t) = b4(t), in (O7 T),
p(z,T) = o" (x), in (0, L).
Use the work of Fernandez-Cara, Gonzales-Burgos, Guerrero, Puel 2006.
@ 5 € C*([0, L]) be a function satisfying,

{ n(m) >0, Vo € (07L)7 77(0) = 77(L) =0,
|n'(z)| > 6 >0, Vz € [0, L] \ wo,

for some wy € w where this means that o C w. Thus, we have
7'(0)>dand —7n'(L) > 6.

@ usual exponential weight functions with A > 1, k > m > 0.

kN Inlloe _ Akl nllootn () A FlInlloo+n(x)

t) = t) = —————

a(z,t) tm(T — t)™ ICL) tm(T —t)ym
“(t) ;== ma ) = a(0,t) = a(L,t),
o’ (t) zren[ofz]a(w ) =a(0,t) = a(L, )

5*(t) ‘= min §(m7 t) = 5(0,7&) = §(L7t)a

z€[0,L]
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Theorem
Let By € L2(Q), By € L2(0, T; HY/2(0, L)), By € L2(0, T; H3/2(0, L)), by, by, bg, by € L2(0,T), m > 1/2 and

w C (0, L).3Xg > 0and C > 0 s.t. any solution  of

—pt + paz = Bo+ 0z B1 + 0z2B2, IinQ,

‘PQz(O?t) = bl(t)a ‘PQm(La t) = bQ(t)v in (07 T),
90390(07 t) = b3(t)7 @390(L7t) = b4(t)7 in (07 T)7
o(x,T) = ¢* (x), in (0, L),

satisfies, for every X\ > Mg and s > C(T2m e T2m71),that
3143 —2sa 2 51645 —2sa 2 T\8¢7 —2sa 2
//s)\ge |p2z|” + s°A7E%e lpz|” + s A% e lp|” dadt
Q

<C (// e (| Bo|* 4+ s*N2€|B1|* + s'\'¢*| Bo|*)dzdt
Q

+// sTA%E e || daxdt
Qu

T
+/ $* AP (1by (1) + [b2(8)|* + | Ba(L, )|* + | B2(0, t)|*)dt
0

T
+/ SAE ™2 (|bs ()| + [ba(t)[* + | BL(L, )|* + |B1 (0, )|
0

T 10sBa(L, D) + |82 Ba(0.8)2)dt .

14/93




Carleman for the adjoint system

L?t EIIT~ €~L2(0, L)Z, T_] € LQ(Q) (bl b2 bg )4) L2( )
(ILA,T,0) € C2(Q), letm > 1/2and w C (0, L). There exists Ao > 0 and
C > 0 such that any solution ¥ of

—0,U 4+ 920 = IPW + AQ2V + 19,V + OF + 175, inQ,

\IIQI(O’t) = El(t)v quw(L7t) = EQ(t)a in (O7T)a
\I’3r(oat) = ES(IL’)? \IISx(Lvt) = 64(t)a in (OvT)a
U(z,T) =97 (), in (0, L),

satisfies for every A > Ao and s > C(T°?™ + T2m~1),

// 3)\ 53 —23a|\112m|2 + 57)\8576_28a|\lj|2d$dt

gc(// 6_25a|ﬁ\2dwdt+s7)\8// e 2| W P dxdt
Q Qu

T T
+83/\3/ e () (b + Ibz\g)dtJrsk/ e 2" (Jbs]* + \b4|2)dt)~
0 0
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Well-Posedness results

For the direct problem,

U + 03U = AU + BOXU + CO,U + DU+ F, inQ,

U(0,t) =U(L,t) =0, in (0,7),

0,U(0,t) = 0,U(L,t) =0, in (0,7),

U(z,0) = U°(x), in (0, L),
Theorem

Let (A, B,C,D) in C*(Q).

IfU° € L*(0,L)? and F € L'(0,T; L?(0, L)?),

then there exists a unique solution

U € C([0,T); L*(0, L)?) N L?(0,T; H3(0, L)?) and 3C > 0 such that

||U||C([O,T];L2(0,L)2)nL2(0,T;H2(0,L)2) <C {HUO||L2(0,L)2 + ||F||L1(0,T;L2(0,L)2)} .
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For the adjoint problem,

—0:D + 02D =T1O3D 4+ AO2D + 10,0+ 0P +17n, inQ,

®(0,t) = ®(L,t) =0, in (0,7), @
0, ®(0,1) = 9, ®(L,t) =0, in (0,7),
Oz, T) = o7 (x), in (0, L).

Theorem

Rewrite (2) as —®; := L(t)® + n, where L(t) = L(¢,z,0,) and letd € N. If
®T ¢ H*2(0,L)? andn € L*(0,T; H**(0, L)?) N H*(0, T; L*(0, L)*) satisfy the
compatibility conditions:

oT € HZ(0, )2,

g0 =

g1 = —L(T)go — n(T,.) € HZ(0, L),

_ - d—1 _ —

ga = - (SE23C 5 1 )oFLMIga 1 k) - 0f TIn(T. ) € HE (0. 1),

then ® € [C(0,T; H**2(0, L)) N L2(0, T; H****(0, L)) N H*T1(0,T; L(0, L))]?, and
3C > 0 such that

”®HL2(O,T;H4d+4(O,L))ﬂHd+1(O,T;L2(O,L)) =@ (”"”LZ(O,T;H4d(o,L)2)de(o,T;LQ(o,L)Q)

+ 197l graat2 0 1)2 ) -
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Carleman with 10 derivatives on the LHS

Let ®T in C2°(0, L)?, with the WP property, Vd € N
® € [C(0,T; H**2(0, L)) N L2(0, T; H**4(0, L)) n H¥*1(0,T; L?(0, L))
We derive the adjoint system 8 times in space and with U = &g,

—0 0 + 92U =TIV 4 AO?U 4+ 19,0 + AU + 7, inQ,

‘l/2$(07t) = q)l()m(oat)a \IIQz(Lat) = (I)IUI(Lat)a in (OaT)7
\I/3x(0at) = (1)11:17(07 t)) \I’Sx(Lat) = (I)llzlr(L: f)a in (OvT)a
U(z,T) = UT(z) := 05,07 (), in (0,L),

where 77 = 7j(®,0,®, ..., 9., ®) € L*(Q), (I, A, T, A) € C°(Q) . Furthermore,
we get @101(0, t) (I)l()r(L7 t) 'I>Mr(0., t) @11$(L7 t) c L2(0,T)

—> we use our Carleman estimate for KS with non-homogeneous Neumann
boundary conditions
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—0,U 4+ 920 =TIV + AO2U +T9, U + AV + 75, inQ,

‘1/2£L’(07t) = q)l()x(oat)a \IIQZ(L7t) = (I)l():r,(L:t)a in (OaT)>
\I/3w(0at) = (I)'I]Jr(os [)7 \Il3z(Lat) = (I)'l](zr(Ls [/)a in (07T)7
U(z,T) = ¥ (z) := 05, 2" (), in (0, L),

Thus, we can apply the Carleman estimate with ws € w to get

// 83)\4536_25a|\1/2z|2 +87)\8§7€_2sa|\1’|2d1}dt
Q

gc(// e—QSa\dexdtJrsUS// e 25T\ 2 dadt
Q Qug

T
4508 [ e (€010, 0.0 + (a0 (L0) )
0

T
+S>\/ 6728&*5*(|‘b111(0,t)|2 + |(I)11;,;(L.,f)2)dt> .
0
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Final Carleman estimate

@ Step 1. estimate the boundary terms on the RHS.
@ Step 2. compare // SN 259 Wy, |2 + sTABE e 7259 | W |2 dxdt with the
Q

desired LHS with ¥ = 92®
@ Step 3. re-estimate the right-hand side.

Carleman result

There exists C := C(L,w), Ao > 0 such that for all ®7 € L2(0, L)%, m > 1/2
the corresponding solution ® of adjoint system satisfies

10
// 672SQZ(S€)23727*/\Z472T|8;<I)|2dxdt
Q r=0
< C// 6_2sa823)\24§23|q)|2d1'dt7
Qu

for every s > C(T%™ + T?™~1) and A > \.
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Control result with One fictitious control

Null controllability with 2 very regular controls
The system

U + 03U = AG3U + BO2U + C9,U + DU +60H, inQ,

U(0,t) = U(L,t) = 0, in (0, 7),
8,U(0,t) = 8,U(L,t) = 0, in (0,7),
U(z,0) = U%(z), in (0, L),

is null controllable at any time 7', i.e., for any U° € L?(0, L)?, there exists a
control H € L?(Q)? such that the solution satisfies U(.,7) = 0 in (0, L).
VK € (0,1), ef%0*" H € L2(0,T; H'°(0, L)?) n H2(0,T; H*(0, L)?),

e s0e” H||r2(0,7;110(0,0)2)nH2(0,7:52(0,1)2) < ClU°||12(0,1)2-
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Final result

we use
@ the null-controllability with very regular controls
@ the algebraic resolution

Let T > 0, L > 0 and w be a non-empty open subset of (0, L). Let assume
that the matrix is invertible. For any U° € L?(Q)?, there exists a control
h € L?(Q) such that the solution satisfies U(-,7) = 0in (0, L).
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Conclusion:
@ null controllability of a highly coupled 4th order parabolic system

@ New Carleman estimates for a 4th order equation with Neumann
non-homogeneous conditions

@ Coupling terms acting on w-+invertible matrix

Perspectives:

@ Case of boundary controls?
@ What about the 2D or 3D case?
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