Reconstruction of degeneracy region and power for

parabolic equations and systems

Veronica Danesi

Universita di Roma

In collaboration with
P. Cannarsa and A. Doubova

Third COPI2A Meeting — Castro Urdiales, 2025.12.02



Degenerate parabolic equations: Motivations & Goal

Motivations

Climatology, financial mathematics, population dynamics, ...

Heat diffusion in a body with a conductivity failure:

Ow — V (K (2)Vw) = f(z,w)
w(0,z) = wo(x)
+B.C.

o w(x,t): temperature at point x and time ¢;

o K(z): thermal conductivity can degenerate (ability to resist heat
transfer).

Inverse problem: determine K (z) from some suitable additional observations.




The degeneracy identification problem

Starting point: Cannarsa, Doubova, Yamamoto, Inverse Problems (2024)

Assume: 1-D scalar model, linear decay: K(z) = |z —al, a € (0,1)

Inverse Problem: interior degeneracy at a point a € (0, 1).

Ow — Oz (|z — a|0,w) =0 (z,t) € (0,1) x (0,T)

w(0,t) =w(l,t) =0 te(0,7T)
w(z,0) = wo(z) z € (0,1)
A

Find a € (0,1) (degeneracy point)
from suitable measurements 7 of w.

Y

Our aim

o ldentification problem for degenerate systems.
o Strong degeneracy: K(z) = |z —al’, 6 € [1,2), a € (0,1).

@ Reconstruction of the degeneracy power.




Our Identification Problem: unknown interior degeneracy point a € (0,1)

Complex parabolic equation with 8 € [1,2):
Ow — 0z(|x — a|’0pw) —cw =0 (x,t) € (0,1) x (0,7T)
w(0,t) =w(1,t) =0 te (0,7)
w(z,0) = wo(x) z € (0,1)
with given ¢ = a4+ if3, a, 8 € R, wo = uop + ivo, uo, vo real-valued functions.

+ additional observations at the boundary: n(t) = d,w(1,t).

w(x,t) = u(x,t) + iv(z,t) = Coupled real system:
ou — 0 (|x — a|’dpu) — au+ Bv =0, (x,t) € (0,1) x (0,7),

0rv — 9z (|z — a|?dpv) —av — Bu =0, (z,t) € (0,1) x (0,T),
+B. C.and I. C.

First step: introduce energy spaces which depend on the degeneracy.



Functional setting

X := L*(0,1;C), the operator A : D(A) C X — X is defined by
D(A) := H3(0,1;C) and Aw:= Au+idv A:=8,(jz —a|’8:),
Vw =u+1iv € D(A) and u,v R — valued functions,

where H2(0,1;C) {w € H}(0,1;C) | (jz — af®w'(z)) € X} and

H;(0,1;C) : {w € X | wlocally abs. cont. in (a,1] and in [0,a),

|z — a|”’?w'(z) € X and w(0) = 0 = w(1)} .

v

Operator A

e A: D(A) C X — X is dissipative, self-adjoint, with dense domain.

@ A is the infinitesimal generator of an analytic semigroup of contractions
e on X and t — w(-,t) is an analytic map for all ¢ > 0.

The problem can be recast in the abstract form

{w'(t) =(A+cDw(t) t>0,
w(0) = wo.



Direct Problem: well-posedness

The function w € C°([0, T]; X) N L?(0, T; H (0, 1; C)), given by

w(-,t) = etBFeD = elotib)t (etAuo + ietAvo) ,
is the solution of the problem in the sense of semigroup theory.
A function
w € C°([0, T]; H (0, 1;C)) N H'(0, T3 X) N L*(0,T; D(A))

is a strict solution if satisfies 9;w — 9, (| — a|’d,w) — cw = 0 a.e. in
(0,1) x (0,T), and the initial and boundary conditions for all ¢t € [0, 7] and all
z €[0,1].

If wo € Hy(0,1;C), then the solution is the unique strict solution.

.

Inverse Problem: main questions

@ Uniqueness: w* and w? solutions corresponding to a1 and as,

respectively and ' = 2. Then, do we have a; = as?

@ Stability: can we estimate |a1 — as| in terms of ' — 7?|?

@ Reconstruction: how to compute (numerically) a from 71?

.




Reconstruction of strong degeneracy region

Ow — Oz (Jx — al?d,w) —cw =0 (x,t) € (0,1) x (0,T)
w(0,t) =w(1,t) =0 te (0,7)
w(z,0) = wo(z) z € (0,1)

Strong degeneracy: |z — a|’0;w|.—o = 0 = no transmission of information
from one side of the degeneracy to the other.

The strongly degenerate problem can be decoupled into two sub-problems of
boundary degeneracy in (0,a) and (a, 1).

Aw — 0z (|z — a|’0zw) — cw = 0 (z,t) € (0,a) x (0,7
w(0,t) =0, (a—=z)°dw(z,t)| _ =0 te(0,T)
w(z,0) = wo(x), z € (0,a)
dw — 8|z — a|®pw) — cw =0 (z,t) € (a,1) x (0,T)
w(l,t) =0, (z-— a)oamw(:c,t)|m:a =0 t€(0,7T)

w(z,0) = wo(x) z € (a,1)




Spectral Analysis for the diffusion operator

Bessel functions J,(z)

{4@—@%@»%ﬂ@ € (a,1)
¢(1)=0, (z—a)’¢'(x)| _ =0

can be solved by using Bessel functions .J,,, of the
first kind and of order vy = g%é, obtaining

)\1 < )\2 <... 5 with - 00 25 50 75 100 125 150 175 200
.2 1-0 ke
Ao — g2 Jvg,n () = V2kg rT—a) 2 J . T —a
TR T T G \T=a ) T\ T

Explicit form of the normal derivative of w (z,t) = u (z,t) + v (x,t)

Do (1,1)\ ot o 2kgeAn(@)t US(a)
<8mva(1,t)) =€ 7;1 Jl,jg( % R(Bt) (V,?(a)) )

Jvgin) (Gvgn)®

Jug.n E
Ul(a) == / ’ U (a—l— (1-a) <j 2 ) o) sﬁJyg(s) ds ,
0 vg,m




Reformulation of the identification problem

The problem (boundary degeneracy) for w®(z,t) = u®(z,t) + " (z, t):

Ow — 0z ((z — a)?d,w) — cw =0 (z,t) € (a,1) x (0,T)
w(l,t) =0, (z—a)’duw(z,t)|,_ =0 te(0,T)
w(zx,0) = wo(x) z € (a,1)

Measurement: 7(t*) = d,w*(1,¢*) for some t* € (0,T).

Goal: obtain a Lipschitz stability estimate.

T
Reformulation of IP
t*
Are there initial data uo, vo such that for n(t")
some t € (0,7) and V a € [1,7] C (0,1)
0 a 1

|00 (Bew™(1,8))] > 07

Such a property would guarantee the injectivity of the map a — 9, w"(1,t) and
the Lipschitz stability estimate:

[0, w*?(1,t) — Opw™ (1,t)] > Claz — a1] .



Lipschitz stability with one-point measurement

Let 6 € [1,2) and assume ug,vo € Lip([0,1]), |uo| > 0 or |vg| > 0, = € (a,1).
Let a1,as € [1,7] C (0,1), and w®', w* the corresponding solutions to

dw — 0, ((x — a)?0pw) — (a+if)w =0 (x,t) € (a,1) x (0,T)
w(l,t) =0, (z—a)dw(x, t),_, =0 te(0,T)
w(zx,0) = wo(x) z € (a,1)
Then, 3to(uo, vo,d) > 0 and a constant C' > 0 such that the following holds:
laz — ai1| < ClO,w*?(1,t) — O, w* (1,¢)]
o for all a1, a2 € [7,v] and for all t € [to, 1], if Ai(y) >
e for all a1, as € [1,7] and for all ¢t > to, if AM1(7) < o,
o

where A1 (y) = kgm'

Idea of the proof: Check if a — |9,0,w"(1,¢)| > 0 for ¢ large enough.
Q Explicit expressions for w® and d,w"(1,t) in terms of Bessel functions.

Q Final estimates, neglecting suitable terms for large t.




Examples of initial conditions determining stability

Example: uo =0, v90=1,0=13, a=1

Lipschitz stability estimate: V ¢ large enough, V a € [7,7] C (0, 1)
laz — a1| < Clo,w*(1,t) — Opw™ (1,¢)]
=0, v=1,7=07,6=13 . uy=0,v=1,T=140=13
<. <.
= =
1 -@-[0.01,0.90]
. oz —m-[0.01, 0.94]
—A-[0.01, 0.99]
a
Figure: lack of stability, 7" = 0.7 Figure: stability for ¢ large, T = 1.4
v




Two more general inverse problems

Problem 1 Unknowns: degeneracy point a and initial data wg, vo

Aw — 0z (|z — a|’0zw) — cw = 0 (z,t) € (a,1) x (0,T)
w(l,t) =0, (z-— a)eazw(x,t)|$=a =0 te(0,7)
w(z,0) = wo(z) z € (a,1)

Measurements: 7)(t) = d,w(1,t) for all t € (t1,t2).

Problem 2 Unknowns: degeneracy point a, coefficient ¢ and initial data uo, vo

(a,1): (0,a) :
drw — 9 (| — a)?dpw) — cw =0 dw — 9z (|z — a|’0pw) — cw =0
w(l,t) =0, w(0,t) =0,
(x — a)? pw(z, t)|z=a =0 (z — a)?dw(x, t)‘wza =0
w(z,0) = wo(z) w(z,0) = wo(x)

Measurements: 7(t) = d,w(1,t) and p(t) = O, w(0,t) for all t € (¢1,t2).

Inverse Problems 1

@ Find a and wo from 7(t) p(t) n(t)

@ Find a, ¢ and wy from 7(t) and p(t)

distributed measurements over a time interval




Uniqueness results for “distributed” measurements

Problem 1

Unknowns: degeneracy point a and initial data wo = ug + vo

dw — 8|z — a|?dyw) — cw =0 (z,t) € (a,1) x (0,T)
w(l,t) =0, (z—a)’duw(z,t)|,_ =0 te(0,T)
w(z,0) = wo(x) z € (a,1)

Measurements: 7)(t) = d,w(1,t) for all t € (t1,¢2).

Theorem

Let 0 € [1,2), 0 < a1,a2 < 1and 0 <t < t2. Let w* and w* be two
solutions corresponding to wo = wug + vy and wo = ug + Vo, respectively.
Assume |wo| > 0 in (a,1), |wo| >0 in (a,1). Then, if for all t; < ¢ < ¢2

O,w (1,t) = dpwy?(1,t) = a1 =a2 and wo=wo in(a,1)

Idea of the proof: explicit expression of 9,w*(1,t) + analyticity for all ¢ > 0
2
.71/9,1

m w.r.t. a.

+ monotonicity of the first eigenvalue \; = k7



Uniqueness results for “distributed” measurements

Problem 2

Unknowns: degeneracy point a, coefficient ¢ and initial data wo = uo + ivo

(a,1): (0,a) :
Ow — 0z (|z — a|’dpw) — cw =0 0w — 0z (|z — a|’dpw) — cw =0
w(l,t) =0, w(0,t) =0,
(z — a)eaww(a:,t)b:a =0 (z — a)oaww(x,t)|z=a =0
w(x,0) = wo(x) w(x,0) = wo(x)

Measurements: 7(t) = d,w(1,t) and p(t) = O, w(0,t) for all t € (t1,12).

|

Theorem

Let 0 € [1,2), 0 < a1,a2 < 1and 0 <t < t2. Let w* and w* be two
solutions corresponding to the initial data wo = uo + ivg and wo = wg + iUy
and the coefficients ¢ and ¢, respectively.

Assume |wo| > 0 in (0,1), |@Wo| >0 in (0,1). Then, if for all t; <t < ¢2

azwa1 (]_71') — 83;11}‘12(1715) a1 = az, c=2¢
7 ~
azwal (07 t) = 83711}@2 (0, t) and wo = Wo in (O7 1)




Numerical reconstruction

Coupled systems:

O — 0 (|z — al®Beu) —au+Bv =0 (z,t) € (0,1) x (0,T)
O — 0z (|x — al?0pv) —av — Bu=0 (x,t) € (0,1) x (0,7T)

(o) =(0) te 1)
(460) = (i) re0.)

Test performed

@ Test 1: Find a and also the initial data from distributed two-side
measurements 7)(t) = dzu(1,t) and ¢(t) = dzv(1,t), p(t) = d-u(0,t) and
K(t) = 0;v(0,t), for t € (t1,t2).

@ Test 2: Find a and also the initial data from distributed one-side
measurements 7(t) = dzu(1,t) and {(t) = dzv(1,t) for t € (t1,t2).




Test 1: distributed two-side measurements

Given: two distributed measurements in (¢1,t2) at z = 0, 1, initial datum vo.
Inverse Problem: find a € Ugy = {a:a € (6,1 — &)} (6 > 0 small) and
piecewise-constant initial data

upr if0<zx<a,
ug = 3
upe ifa<z<l,

such that u” and v“ satisfy:
du”(1,t) = n(t) , 00 (1,t) =C(t), forte (t1,t2), 0<t1 <t2<T,
0,u(0,t) = p(t) , 0,v*(0,t) = k(t) , forte (t1,t2), 0<t1 <t <T.

Reformulation (optimization problem): find a € Ug; and o that
Minimize H(a, uo1, uo2),
where H : (a,uo1,u02) € Usy X R X R — R is defined as follows:

H(a, Uuo1, UO2) =

1 [* 2 1 (' 2
=5 [ o - ool g [ o - ot o e

2 t1 ty
1 1

to ta
5 0 = a0, g [ n(e) - 20 0,0 dr
th o



Numerical results

MATLAB Optimization ToolBox: fmincon
Test 1: vo=1,0=15,a=1,8=1,T=4,t1=0,t2=T.
Initial guess: up1in = 0.5, wo2in = 1.5, a; = 0.1.

Desired: aq — 0.5, uo1d = ]., up2d = 2.

Computed a = 0.500000000 ug; = 1.000000000 ug, = 2.000000000 Current Function Values

00 00000000 O0 ¢
4 56 7 8 910111213141p

o * ugy
) 1 O ug2

N N N N N
4 567 8 910111213141p

g

O
WO
g & 2

Funcion value
H

g

33
os 2
 *
1

200

8
o ° 1o " terates
erates

Figure: The evolution of the cost. Final

Figure: Iterations in the computation of
cost =~ l.e — 18

up1 and ugo2.

We can solve the IP in (0,1) with a two-side distributed measurement! J




Test 2 - A: distributed one-side measurements

Given: a distributed measurement in (t1,¢2) at point z = 1, initial datum vo.

Inverse Problem: find a € Ugy = {a:a € (6,1 — &)} (6 > 0 small) and
piecewise-constant initial data

uor If0<zx<a,
uo = .
U2 IfCL<{E<1,

such that «® and v“ satisfy:

Bxua(l,t) = ﬁ(t) s 893’[)(1(1,75) = C(t) , forte (t1,t2) , 0t <t <T.

Reformulation (optimization problem): find a € Ug; and o that
Minimize  M(a,uo1, uo2),

where M : (a, uo1,u02) € Ugy X R X R — R is defined as follows:

1 t2 a,uw U,
Mawor o) = 5 [ In(e) = 0cu 0 (1,0 dt
t1
1

ta
+7/ IC(E) = Bpo™ o102 (1, )2 dt.
2 t



Numerical results

Test 2 - A: 1)0=0,0=1.5,C¥=1,,B=1,T=2, t1=0,to="1T.
Initial guess: uo1in = 0.5, uo2in, = 1.8 a; = 0.1.

Desired: aq = 0.5, ug1qg = 1, wo2q = 2.

Computed a = 0.552486944 ug; = 0.500000021 ugy = 1.948447949
Current Function Values

\ 5 .
000 00O0O0O0O0Oo
b 023386789 101112131415 w
16 1 85
* ul 3
N O u02 gm
08 Ces
- -
§ 123456786 101112131415 -
02 50
Dn 5 10 1 ‘50 2 4 6 8 10 12 14 1
lterates Iterates

Figure: Iterations in the computation of

Figure: The evolution of the cost.
up1 and uge2.

We cannot solve the IP in (0,1) with only a one-side distributed measurement! )




Numerical results

Test2-B: vo=0,upn=1,a=1,=1,0=15T=2,t1=0,t2=T.
Initial guess: uo2in = 1.8 a; = 0.1.

Desired: aq = 0.5, ug2q = 2.

Computed a = 0.500000000 ugz = 2.000000000 Current Function Values

SORRETRN BT R A .
;

Function value

* up

0
0 1 2 3 4 5 6 7 8 9 ! 2 3 N ° ° 7 N
lerates
Iterates

Figure: The evolution of the cost. Final

Figure: lterations in the computation of
cost =& l.e — 18

UuUp2-

We can solve the IP in (a, 1) with a one-side distributed measurement in z = 1!J




Reconstruction of the degeneracy power

Problem

Unknowns: degeneracy power 6 and initial data wo = uo + ivo

dw — 8z (|z — a|’Fw) — cw =0 (z,t) € (a,1) x (0,T)
w(l,t) =0, (z— a)oazw(m,t)|z=a =0 te(0,7T)
w(z,0) = wo(z) z € (a,1)

where a is given.
Measurements: 7(t) = d,w(1,t) for all ¢t € (t1, t2).

Goal: uniqueness result with a one-side distributed measurements.

Let 61,02 € [1,2) and 0 < t1 < t2. Let w?" and w?? be two solutions
corresponding to wo = ug + ivg and wo = o + Vo, respectively.
Assume |wo| > 0 in (a,1), |wo| >0 in (a,1). Then, if for all t1 < t < t2

o,w” (1,t) = Q,wl2(1,t) = 61 =60 and wo=wo in(a,1)




Idea of the proof

Plot of Bessel Functions J,4(z)

@ Explicit expression of d,w’(1,t) +
Analyticity for all ¢ > 0.
@ Monotonicity of the first eigenvalue

-2
)\1 _ kg .71/9,1

‘ v
Abstract framework

@ 0 < 2: compact injection of Hj into L?.

o Variational formulation of the first eigenvalue:

1 0 4112
— d
)\1 (9) = min fa (x 1 a) |¢1| x)
¢1€HE\{0} [, 1|2 de

where ¢ is an associated eigenfunction.
o We can prove that if 61 < 02 = A\1(601) > A2(62).




Conclusions

QOur result

o Several identification problems for degenerate coupled systems.
o Strong degeneracy: K(z) = |z —al’, 6 € [1,2), a € (0,1).

o Unknowns: degeneracy point and power, zero-order coefficient and initial
data.

Reference: P. Cannarsa, V. Danesi, A. Doubova, Reconstruction of degeneracy
region and power for parabolic equations and systems.
https://arxiv.org/abs/2509.13962v2

Open questions & work in progress

@ Other techniques?
@ Degeneracy region and power in higher dimension?
o Weak degeneracy with 6 € [0,1)?




Thanks for your attention




Idea of the proof

Check if |9q (Ozw"(1,t))| > 0 for ¢ large enough:
Q Explicit expressions for w® and d,w"(1,t) in terms of Bessel functions.

Q Estimates, neglecting suitable terms for large ¢.
Ou”(1 t)) e 2kgeAn (@)t (Ug(a)
’ =e R(Bt) 0 5
xT “ 17 Z y y o Vn
O.v"(1,1) (Gvg.n) Grgm) 750 (a)
Ozu”(1,1t) ot o= 2kge M Fl(a)
o (Granti )| = o+ 3 2o (750
Z eate—)\lt2k9 ( 1

e e_(An_Al)t
|dV9,1|

|dug

n=2

_1
where dveﬂl = Jtlfg (jvegn) (jl/egn) *ko and

Fi(@) = [(U3) (@) — 20 22 U]

(VY (a) — 203 —oonl_voga)]

2
Fn(a) : (1 — a)2k9+1 n



Idea of the proof

Fla)\| = e MW (IFi(a)] + | Fi(a)])
()] 2 oy

1
|dV9»1|

100 (0zw” (1,1))] > e _*”21«)(

o First term: From the hypothesis |ug| > 0 or |vg| > 0 in z € (a, 1), we get
‘(U?(a)>‘>6 Vaé€[r,v] = <F11(a)> >LVac€l(ry], Vt>t
Vlo(a) =Y >, Ff(a) = > Vs = o
% ,—(n=A)t (|fl F2
o Other terms: Z c (||dn(0|)| + 1P (@) < Ki(t,a) + Ka(t, a)
n=2 vem
and lim Ki(¢t,a) =0, lim Ks(t,a) =0.
t——+oo t—+oo

= for all a1,a2 € [1,7], we get

10w (1, £)—0pw™ (1, 1) > e*te M1 (M 2g,

laz—a1|, ¥t > to(uo,vo0,0,L,0).

Iue,l

By fixing ¢, we get the stability estimate with C' depending on A1 () and a.



Test 3: distributed one-side measurements

Given: a distributed measurement in (¢1,¢2) at point z = 1, the degeneracy
point a, the initial datum vo and the initial datum u in (0, a).

Inverse Problem: find # € V9, = {#:6 € [1,2 — 6]} (6 > 0 small) and
piecewise-constant initial data

uor f0<z<a,
Up = .
uge ifa<ax<l,

such that u® and v® satisfy:

Ozu(1,t) = n(t) , 00 (1,t) =(C(t), fort€ (ti,t2), 0<t1 <t2<T.

Reformulation (optimization problem): find 6 € V¢, and ug» that
Minimize AN (6, uo2),

where NV : (6, ug2) € V2, x R — R is defined as follows:

1 [t
N (6, u02) = 5/ In(t) — Dpu’ 02 (1,1)[2 dt +

ty

1 t2 6,up2 2
5 [l oo ar
ty



Numerical results

Test3: a=05v=0,upn=1,a=1,=1,T=4,t1 =0,t2=T.
Initial guess: wo2in = 1.5 0in; = 1.1.

Desired: 0, = 1.5, up2q = 2.

Computed 6 = 1.500000000 upz = 2.000000000 Current Function Values

]
" 3133?831?)1’11’21’31‘2
8t

Function value

5
0 2 4 6 8 10 12 14 lerates
erates.

Figure: lterations in the computation of Figure: The evolution of the cost. Final
0 cost & l.e — 26

We can solve the IP in (a,1) with a one-side distributed measurement in z = l!J




Test : one-point measurements

Given: some t* € (0,T) and a one-point measurement.
Inverse Problem: find a € Uy, ={a:a € (6,1 —05)} (6 > 0 small) such that
u” and v* satisfy:
811ua(17t*) = n(t*) ’ 8zva(17t*) = C(t*) .
Reformulation (optimization problem): find a € Uy,
J(a) < J(a') Yad' €Uy
where J :a € US; — Ris

1

T(a) = 5hE") = G (1) + 1) = B0 (1, £°)

for some t* € (0,T).



Numerical results

Test: up=1,v9=1,60=15 T =4, t* =1.99. Initial guess: a; = 0.1.

Desired: a, = 0.5, Computed: a.

Computed a = 0.4999999999999895_t* =199 0=1.5

o % o7 8 9 610

Figure: Iterations in the computation of
a

Current function values

Figure: The evolution of the cost

Noise Cost Iterations

Gc

1% l.e-15 16 0.4967806209438190
0.1% 1l.e-16 10 0.5010448098047946
0.01% 1l.e-19 10 0.5000110001604564

0% l.e-27 10

0.4999999999999895




Test 2 - B: distributed one-side measurements

Given: a distributed measurement in the interval (¢1,¢2) at point = 1, initial
datum vy, initial datum uo in (0,a).

Inverse Problem: find a € Ugy = {a:a € (6,1 —6)} (6 > 0 small) and initial
data uo2 in (a,1)

upr f0<z<a,
ug = B
uoe ifa<ax<l1,

such that u” and v” satisfy:

Bzu“(l,t) = ’I](t) s 6zv“(1,t) = C(t) , forte (tl,tz) , 0<ti <t <T.

Reformulation (optimization problem): find a € US; and w2 that
Minimize K(a,uo2),
where K : (a, uo2) € Uzy X R x R +— R is defined as follows:
L[ au 2
Klaw) =5 [0 - ot 21,0 ds

1

to
iy 1) - ot P,
ty



Figure: Test 2-A: Iterations in
computation of a.

Computed a = 0.552486944 o1 = 0.500000021 ugy = 1.948447949

Herates

the

Computed a

0500000000

2.000000000

Figure: Test 2-B: Iterations in the

computation of a.

Computed a = 0.500000000 o = 1.000000000 ug> = 2.000000000

Herates.

B
Herates

Figure: Test 1: Iterations in the computation of a.




