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Degenerate parabolic equations: Motivations & Goal

Motivations

Climatology, financial mathematics, population dynamics, . . .

Heat diffusion in a body with a conductivity failure:


∂tw −∇ (K(x)∇w) = f(x,w)

w(0, x) = w0(x)

+B.C.

w(x, t): temperature at point x and time t;

K(x): thermal conductivity can degenerate (ability to resist heat
transfer).

Goal

Inverse problem: determine K(x) from some suitable additional observations.



The degeneracy identification problem

Starting point: Cannarsa, Doubova, Yamamoto, Inverse Problems (2024)

Assume: 1-D scalar model, linear decay: K(x) = |x− a|, a ∈ (0, 1)

Inverse Problem: interior degeneracy at a point a ∈ (0, 1).
∂tw − ∂x(|x− a|∂xw) = 0 (x, t) ∈ (0, 1)× (0, T )

w(0, t) = w(1, t) = 0 t ∈ (0, T )

w(x, 0) = w0(x) x ∈ (0, 1)

Find a ∈ (0, 1) (degeneracy point)
from suitable measurements η of w.
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Our aim

Identification problem for degenerate systems.

Strong degeneracy: K(x) = |x− a|θ, θ ∈ [1, 2), a ∈ (0, 1).

Reconstruction of the degeneracy power.



Our Identification Problem: unknown interior degeneracy point a ∈ (0, 1)

Complex parabolic equation with θ ∈ [1, 2):
∂tw − ∂x(|x− a|θ∂xw)− cw = 0 (x, t) ∈ (0, 1)× (0, T )

w(0, t) = w(1, t) = 0 t ∈ (0, T )

w(x, 0) = w0(x) x ∈ (0, 1)

with given c = α+ iβ, α, β ∈ R, w0 = u0 + iv0, u0, v0 real-valued functions.

+ additional observations at the boundary: η(t) = ∂xw(1, t).

w(x, t) = u(x, t) + iv(x, t) =⇒ Coupled real system:
∂tu− ∂x(|x− a|θ∂xu)− αu+ βv = 0, (x, t) ∈ (0, 1)× (0, T ),

∂tv − ∂x(|x− a|θ∂xv)− αv − βu = 0, (x, t) ∈ (0, 1)× (0, T ),

+B. C. and I. C.

First step: introduce energy spaces which depend on the degeneracy.



Functional setting

X := L2(0, 1;C), the operator A : D(A) ⊂ X → X is defined by

D(A) := H2
θ (0, 1;C) and Aw := Au+ iAv A := ∂x(|x− a|θ∂x) ,

∀w = u+ iv ∈ D(A) and u,v R− valued functions,

where H2
θ (0, 1;C) :=

{
w ∈ H1

θ (0, 1;C) | (|x− a|θw′(x))′ ∈ X
}

and

H1
θ (0, 1;C) :=

{
w ∈ X | w locally abs. cont. in (a, 1] and in [0, a),

|x− a|θ/2w′(x) ∈ X and w(0) = 0 = w(1)
}

.

Operator A
A : D(A) ⊂ X → X is dissipative, self-adjoint, with dense domain.

A is the infinitesimal generator of an analytic semigroup of contractions
etA on X and t 7→ w(·, t) is an analytic map for all t > 0.

The problem can be recast in the abstract form{
w′(t) = (A+ cI)w(t) t ≥ 0,

w(0) = w0.



Direct Problem: well-posedness

The function w ∈ C0([0, T ];X) ∩ L2(0, T ;H1
θ (0, 1;C)), given by

w(·, t) = et(A+cI)w0 = e(α+iβ)t
(
etAu0 + ietAv0

)
,

is the solution of the problem in the sense of semigroup theory.

A function

w ∈ C0([0, T ];H1
θ (0, 1;C)) ∩H1(0, T ;X) ∩ L2(0, T ;D(A))

is a strict solution if satisfies ∂tw − ∂x(|x− a|θ∂xw)− cw = 0 a.e. in
(0, 1)× (0, T ), and the initial and boundary conditions for all t ∈ [0, T ] and all
x ∈ [0, 1].

If w0 ∈ H1
θ (0, 1;C), then the solution is the unique strict solution.

Inverse Problem: main questions

1 Uniqueness: w1 and w2 solutions corresponding to a1 and a2,
respectively and η1 ≡ η2. Then, do we have a1 = a2?

2 Stability: can we estimate |a1 − a2| in terms of |η1 − η2|?

3 Reconstruction: how to compute (numerically) a from η?



Reconstruction of strong degeneracy region


∂tw − ∂x(|x− a|θ∂xw)− cw = 0 (x, t) ∈ (0, 1)× (0, T )

w(0, t) = w(1, t) = 0 t ∈ (0, T )

w(x, 0) = w0(x) x ∈ (0, 1)

Strong degeneracy: |x− a|θ∂xw|x=a = 0 =⇒ no transmission of information
from one side of the degeneracy to the other.

The strongly degenerate problem can be decoupled into two sub-problems of
boundary degeneracy in (0, a) and (a, 1).


∂tw − ∂x(|x− a|θ∂xw)− cw = 0 (x, t) ∈ (0, a)× (0, T )

w(0, t) = 0, (a− x)θ∂xw(x, t)
∣∣
x=a

= 0 t ∈ (0, T )

w(x, 0) = w0(x), x ∈ (0, a)


∂tw − ∂x(|x− a|θ∂xw)− cw = 0 (x, t) ∈ (a, 1)× (0, T )

w(1, t) = 0, (x− a)θ∂xw(x, t)
∣∣
x=a

= 0 t ∈ (0, T )

w(x, 0) = w0(x) x ∈ (a, 1)



Spectral Analysis for the diffusion operator−((x− a)θϕ′(x))′ = λϕ, x ∈ (a, 1)

ϕ(1) = 0, (x− a)θϕ′(x)
∣∣
x=a

= 0

can be solved by using Bessel functions Jνθ of the
first kind and of order νθ = θ−1

2−θ
, obtaining

λ1 < λ2 < . . . , with

λn = k2
θ

j2νθ,n
(1− a)2kθ

, ϕn(x) =

√
2kθ

|J ′
νθ (jνθ,n)|

(
x− a

1− a

) 1−θ
2

Jνθ

(
jνθ,n

(
x− a

1− a

)kθ
)

Explicit form of the normal derivative of wa(x, t) = ua(x, t) + iva(x, t)(
∂xu

a(1, t)
∂xv

a(1, t)

)
= eαt

∞∑
n=1

2kθe
−λn(a)t

J ′
νθ (jνθ,n) (jνθ,n)

1
2kθ

R(βt)

(
U0

n(a)
V 0
n (a)

)
,

U0
n(a) :=

∫ jνθ,n

0

u0

(
a+ (1− a)

(
s

jνθ,n

) 1
kθ

)
s

1
2kθ Jνθ (s) ds ,

V 0
n (a) :=

∫ jνθ,n

0

v0

(
a+ (1− a)

(
s

jνθ,n

) 1
kθ

)
s

1
2kθ Jνθ (s) ds .



Reformulation of the identification problem

The problem (boundary degeneracy) for wa(x, t) = ua(x, t) + iva(x, t):
∂tw − ∂x((x− a)θ∂xw)− cw = 0 (x, t) ∈ (a, 1)× (0, T )

w(1, t) = 0, (x− a)θ∂xw(x, t)
∣∣
x=a

= 0 t ∈ (0, T )

w(x, 0) = w0(x) x ∈ (a, 1)

Measurement: η(t∗) = ∂xw
a(1, t∗) for some t∗ ∈ (0, T ).

Goal: obtain a Lipschitz stability estimate.

Reformulation of IP

Are there initial data u0, v0 such that for
some t ∈ (0, T ) and ∀ a ∈ [τ, γ] ⊂ (0, 1)

|∂a (∂xw
a(1, t))| > 0 ? 1a0

T r η(t∗)
�

�
�
�

Such a property would guarantee the injectivity of the map a 7→ ∂xw
a(1, t) and

the Lipschitz stability estimate:

|∂xw
a2(1, t)− ∂xw

a1(1, t)| ≥ C|a2 − a1| .



Lipschitz stability with one-point measurement

Theorem

Let θ ∈ [1, 2) and assume u0, v0 ∈ Lip([0, 1]), |u0| > 0 or |v0| > 0, x ∈ (a, 1).
Let a1, a2 ∈ [τ, γ] ⊂ (0, 1), and wa1 , wa2 the corresponding solutions to

∂tw − ∂x((x− a)θ∂xw)− (α+ iβ)w = 0 (x, t) ∈ (a, 1)× (0, T )

w(1, t) = 0, (x− a)θ∂xw(x, t)
∣∣
x=a

= 0 t ∈ (0, T )

w(x, 0) = w0(x) x ∈ (a, 1)

Then, ∃ t0(u0, v0, θ) > 0 and a constant C > 0 such that the following holds:

|a2 − a1| ≤ C|∂xw
a2(1, t)− ∂xw

a1(1, t)| ,
for all a1, a2 ∈ [τ, γ] and for all t ∈ [t0, t1], if λ1(γ) > α;

for all a1, a2 ∈ [τ, γ] and for all t ≥ t0, if λ1(γ) ≤ α,

where λ1(γ) = k2
θ

j2νθ,1
(1− γ)2kθ

.

Idea of the proof: Check if a 7→ |∂a∂xw
a(1, t)| > 0 for t large enough.

1 Explicit expressions for wa and ∂xw
a(1, t) in terms of Bessel functions.

2 Final estimates, neglecting suitable terms for large t.



Examples of initial conditions determining stability

Example: u0 = 0, v0 = 1, θ = 1.3, α = 1, β = 1/2

Lipschitz stability estimate: ∀ t large enough, ∀ a ∈ [τ, γ] ⊂ (0, 1)

|a2 − a1| ≤ C|∂xw
a2(1, t)− ∂xw

a1(1, t)|

Figure: lack of stability, T = 0.7 Figure: stability for t large, T = 1.4



Two more general inverse problems

Problem 1 Unknowns: degeneracy point a and initial data u0, v0
∂tw − ∂x(|x− a|θ∂xw)− cw = 0 (x, t) ∈ (a, 1)× (0, T )

w(1, t) = 0, (x− a)θ∂xw(x, t)
∣∣
x=a

= 0 t ∈ (0, T )

w(x, 0) = w0(x) x ∈ (a, 1)

Measurements: η(t) = ∂xw(1, t) for all t ∈ (t1, t2).

Problem 2 Unknowns: degeneracy point a, coefficient c and initial data u0, v0

(a, 1) :
∂tw − ∂x(|x− a|θ∂xw)− cw = 0
w(1, t) = 0,

(x− a)θ∂xw(x, t)
∣∣
x=a

= 0

w(x, 0) = w0(x)

(0, a) :
∂tw − ∂x(|x− a|θ∂xw)− cw = 0
w(0, t) = 0,

(x− a)θ∂xw(x, t)
∣∣
x=a

= 0

w(x, 0) = w0(x)

Measurements: η(t) = ∂xw(1, t) and ρ(t) = ∂xw(0, t) for all t ∈ (t1, t2).

Inverse Problems

1 Find a and w0 from η(t)

2 Find a, c and w0 from η(t) and ρ(t)

distributed measurements over a time interval
1a0

T

rrρ(t) rr η(t)



Uniqueness results for “distributed” measurements

Problem 1

Unknowns: degeneracy point a and initial data w0 = u0 + iv0
∂tw − ∂x(|x− a|θ∂xw)− cw = 0 (x, t) ∈ (a, 1)× (0, T )

w(1, t) = 0, (x− a)θ∂xw(x, t)
∣∣
x=a

= 0 t ∈ (0, T )

w(x, 0) = w0(x) x ∈ (a, 1)

Measurements: η(t) = ∂xw(1, t) for all t ∈ (t1, t2).

Theorem

Let θ ∈ [1, 2), 0 < a1, a2 < 1 and 0 < t1 < t2. Let w
a1 and wa2 be two

solutions corresponding to w0 = u0 + iv0 and w̃0 = ũ0 + iṽ0, respectively.
Assume |w0| > 0 in (a, 1), |w̃0| > 0 in (a, 1). Then, if for all t1 < t < t2

∂xw
a1(1, t) = ∂xw

a2
x (1, t) =⇒ a1 = a2 and w0 = w̃0 in (a, 1)

Idea of the proof: explicit expression of ∂xw
a(1, t) + analyticity for all t > 0

+ monotonicity of the first eigenvalue λ1 = k2
θ

j2νθ,1
(1− a)2kθ

w.r.t. a.



Uniqueness results for “distributed” measurements

Problem 2

Unknowns: degeneracy point a, coefficient c and initial data w0 = u0 + iv0

(a, 1) :
∂tw − ∂x(|x− a|θ∂xw)− cw = 0

w(1, t) = 0,

(x− a)θ∂xw(x, t)
∣∣
x=a

= 0

w(x, 0) = w0(x)

(0, a) :
∂tw − ∂x(|x− a|θ∂xw)− cw = 0

w(0, t) = 0,

(x− a)θ∂xw(x, t)
∣∣
x=a

= 0

w(x, 0) = w0(x)

Measurements: η(t) = ∂xw(1, t) and ρ(t) = ∂xw(0, t) for all t ∈ (t1, t2).

Theorem

Let θ ∈ [1, 2), 0 < a1, a2 < 1 and 0 < t1 < t2. Let w
a1 and wa2 be two

solutions corresponding to the initial data w0 = u0 + iv0 and w̃0 = ũ0 + iṽ0
and the coefficients c and c̃, respectively.
Assume |w0| > 0 in (0, 1), |w̃0| > 0 in (0, 1). Then, if for all t1 < t < t2{

∂xw
a1(1, t) = ∂xw

a2(1, t)

∂xw
a1(0, t) = ∂xw

a2(0, t)
=⇒

{
a1 = a2, c = c̃

and w0 = w̃0 in (0, 1)



Numerical reconstruction

Coupled systems:

∂tu− ∂x(|x− a|θ∂xu)− αu+ βv = 0 (x, t) ∈ (0, 1)× (0, T )

∂tv − ∂x(|x− a|θ∂xv)− αv − βu = 0 (x, t) ∈ (0, 1)× (0, T )(
u(0, t)
v(0, t)

)
=

(
0
0

)
t ∈ (0, T )(

u(x, 0)
v(x, 0)

)
=

(
u0(x)
v0(x)

)
x ∈ (0, 1)

Test performed

1 Test 1: Find a and also the initial data from distributed two-side
measurements η(t) = ∂xu(1, t) and ζ(t) = ∂xv(1, t), ρ(t) = ∂xu(0, t) and
κ(t) = ∂xv(0, t), for t ∈ (t1, t2).

2 Test 2: Find a and also the initial data from distributed one-side
measurements η(t) = ∂xu(1, t) and ζ(t) = ∂xv(1, t) for t ∈ (t1, t2).



Test 1: distributed two-side measurements

Given: two distributed measurements in (t1, t2) at x = 0, 1, initial datum v0.

Inverse Problem: find a ∈ Ua
ad = {a : a ∈ (δ, 1− δ)} (δ > 0 small) and

piecewise-constant initial data

u0 =

{
u01 if 0 < x < a,

u02 if a < x < 1,

such that ua and va satisfy:

∂xu
a(1, t) = η(t) , ∂xv

a(1, t) = ζ(t) , for t ∈ (t1, t2) , 0 ≤ t1 ≤ t2 ≤ T ,

∂xu
a(0, t) = ρ(t) , ∂xv

a(0, t) = κ(t) , for t ∈ (t1, t2) , 0 ≤ t1 ≤ t2 ≤ T .

Reformulation (optimization problem): find a ∈ Ua
ad and u0 that

Minimize H(a, u01, u02),

where H : (a, u01, u02) ∈ Ua
ad × R× R 7→ R is defined as follows:

H(a, u01, u02) =

=
1

2

∫ t2

t1

|η(t)− ∂xu
a,u01,u02(1, t)|2 dt +

1

2

∫ t2

t1

|ζ(t)− ∂xv
a,u01,u02(1, t)|2 dt

+
1

2

∫ t2

t1

|ρ(t)− ∂xu
a,u01,u02(0, t)|2 dt+ 1

2

∫ t2

t1

|κ(t)− ∂xv
a,u01,u02(0, t)|2 dt.



Numerical results

MATLAB Optimization ToolBox: fmincon

Test 1: v0 = 1, θ = 1.5, α = 1, β = 1, T = 4, t1 = 0, t2 = T .
Initial guess: u01in = 0.5, u02in = 1.5, ai = 0.1.

Desired: ad = 0.5, u01d = 1, u02d = 2.
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Figure: Iterations in the computation of
u01 and u02.
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Figure: The evolution of the cost. Final
cost ≈ 1.e− 18

We can solve the IP in (0, 1) with a two-side distributed measurement!



Test 2 - A: distributed one-side measurements

Given: a distributed measurement in (t1, t2) at point x = 1, initial datum v0.

Inverse Problem: find a ∈ Ua
ad = {a : a ∈ (δ, 1− δ)} (δ > 0 small) and

piecewise-constant initial data

u0 =

{
u01 if 0 < x < a,

u02 if a < x < 1,

such that ua and va satisfy:

∂xu
a(1, t) = η(t) , ∂xv

a(1, t) = ζ(t) , for t ∈ (t1, t2) , 0 ≤ t1 ≤ t2 ≤ T .

Reformulation (optimization problem): find a ∈ Ua
ad and u0 that

Minimize M(a, u01, u02),

where M : (a, u01, u02) ∈ Ua
ad × R× R 7→ R is defined as follows:

M(a, u01, u02) =
1

2

∫ t2

t1

|η(t)− ∂xu
a,u01,u02(1, t)|2 dt

+
1

2

∫ t2

t1

|ζ(t)− ∂xv
a,u01,u02(1, t)|2 dt.



Numerical results

Test 2 - A: v0 = 0, θ = 1.5, α = 1, β = 1, T = 2, t1 = 0, t2 = T .
Initial guess: u01in = 0.5, u02in = 1.8 ai = 0.1.

Desired: ad = 0.5, u01d = 1, u02d = 2.
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Figure: Iterations in the computation of
u01 and u02.
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Figure: The evolution of the cost.

We cannot solve the IP in (0, 1) with only a one-side distributed measurement!



Numerical results

Test 2 - B: v0 = 0, u01 = 1, α = 1, β = 1, θ = 1.5, T = 2, t1 = 0, t2 = T .
Initial guess: u02in = 1.8 ai = 0.1.

Desired: ad = 0.5, u02d = 2.
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Figure: Iterations in the computation of
u02.
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Figure: The evolution of the cost. Final
cost ≈ 1.e− 18

We can solve the IP in (a, 1) with a one-side distributed measurement in x = 1!



Reconstruction of the degeneracy power

Problem

Unknowns: degeneracy power θ and initial data w0 = u0 + iv0
∂tw − ∂x(|x− a|θ∂xw)− cw = 0 (x, t) ∈ (a, 1)× (0, T )

w(1, t) = 0, (x− a)θ∂xw(x, t)
∣∣
x=a

= 0 t ∈ (0, T )

w(x, 0) = w0(x) x ∈ (a, 1)

where a is given.
Measurements: η(t) = ∂xw(1, t) for all t ∈ (t1, t2).

Goal: uniqueness result with a one-side distributed measurements.

Theorem

Let θ1, θ2 ∈ [1, 2) and 0 < t1 < t2. Let w
θ1 and wθ2 be two solutions

corresponding to w0 = u0 + iv0 and w̃0 = ũ0 + iṽ0, respectively.
Assume |w0| > 0 in (a, 1), |w̃0| > 0 in (a, 1). Then, if for all t1 < t < t2

∂xw
θ1(1, t) = ∂xw

θ2
x (1, t) =⇒ θ1 = θ2 and w0 = w̃0 in (a, 1)



Idea of the proof

1 Explicit expression of ∂xw
θ(1, t) +

Analyticity for all t > 0.

2 Monotonicity of the first eigenvalue

λ1 = k2
θ

j2νθ,1
(1− a)2kθ

w.r.t. θ.

Abstract framework

θ < 2: compact injection of H1
θ into L2.

Variational formulation of the first eigenvalue:

λ1(θ) := min
ϕ1∈H1

θ
\{0}

∫ 1

a
(x− a)θ |ϕ′

1|2 dx∫ 1

a
|ϕ1|2 dx

,

where ϕ1 is an associated eigenfunction.

We can prove that if θ1 < θ2 =⇒ λ1(θ1) > λ2(θ2).



Conclusions

Our result

Several identification problems for degenerate coupled systems.

Strong degeneracy: K(x) = |x− a|θ, θ ∈ [1, 2), a ∈ (0, 1).

Unknowns: degeneracy point and power, zero-order coefficient and initial
data.

Reference: P. Cannarsa, V. Danesi, A. Doubova, Reconstruction of degeneracy
region and power for parabolic equations and systems.
https://arxiv.org/abs/2509.13962v2

Open questions & work in progress

Other techniques?

Degeneracy region and power in higher dimension?

Weak degeneracy with θ ∈ [0, 1)?



Thanks for your attention



Idea of the proof

Check if |∂a (∂xw
a(1, t))| > 0 for t large enough:

1 Explicit expressions for wa and ∂xw
a(1, t) in terms of Bessel functions.

2 Estimates, neglecting suitable terms for large t.
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Idea of the proof

|∂a (∂xw
a(1, t))| ≥ eαte−λ1t2kθ
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First term: From the hypothesis |u0| > 0 or |v0| > 0 in x ∈ (a, 1), we get∣∣∣∣(U0
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By fixing t, we get the stability estimate with C depending on λ1(γ) and α.



Test 3: distributed one-side measurements

Given: a distributed measurement in (t1, t2) at point x = 1, the degeneracy
point a, the initial datum v0 and the initial datum u0 in (0, a).

Inverse Problem: find θ ∈ Vθ
ad = {θ : θ ∈ [1, 2− δ]} (δ > 0 small) and

piecewise-constant initial data

u0 =

{
u01 if 0 < x < a,

u02 if a < x < 1,

such that ua and va satisfy:

∂xu
a(1, t) = η(t) , ∂xv

a(1, t) = ζ(t) , for t ∈ (t1, t2) , 0 ≤ t1 ≤ t2 ≤ T .

Reformulation (optimization problem): find θ ∈ Vθ
ad and u02 that

Minimize N (θ, u02),

where N : (θ, u02) ∈ Vθ
ad × R 7→ R is defined as follows:

N (θ, u02) =
1

2

∫ t2

t1

|η(t)− ∂xu
θ,u02(1, t)|2 dt+ 1

2

∫ t2

t1

|ζ(t)− ∂xv
θ,u02(1, t)|2 dt.



Numerical results

Test 3: a = 0.5, v0 = 0, u01 = 1, α = 1, β = 1, T = 4, t1 = 0, t2 = T .
Initial guess: u02in = 1.5 θini = 1.1.

Desired: θd = 1.5, u02d = 2.
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Figure: Iterations in the computation of
θ.
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Figure: The evolution of the cost. Final
cost ≈ 1.e− 26

We can solve the IP in (a, 1) with a one-side distributed measurement in x = 1!



Test : one-point measurements

Given: some t∗ ∈ (0, T ) and a one-point measurement.

Inverse Problem: find a ∈ Ua
ad = {a : a ∈ (δ, 1− δ)} (δ > 0 small) such that

ua and va satisfy:

∂xu
a(1, t∗) = η(t∗) , ∂xv

a(1, t∗) = ζ(t∗) .

Reformulation (optimization problem): find a ∈ Ua
ad

J(a) ≤ J(a′) ∀ a′ ∈ Ua
ad

where J : a ∈ Ua
ad 7→ R is

J(a) =
1

2
|η(t∗)− ∂xu

a(1, t∗)|2 + 1

2
|ζ(t∗)− ∂xv

a(1, t∗)|2

for some t∗ ∈ (0, T ).



Numerical results

Test : u0 = 1, v0 = 1, θ = 1.5, T = 4, t∗ = 1.99. Initial guess: ai = 0.1.

Desired: ad = 0.5, Computed: ac
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Figure: Iterations in the computation of
a
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Figure: The evolution of the cost

Noise Cost Iterations ac

1% 1.e-15 16 0.4967806209438190

0.1% 1.e-16 10 0.5010448098047946

0.01% 1.e-19 10 0.5000110001604564

0% 1.e-27 10 0.4999999999999895



Test 2 - B: distributed one-side measurements

Given: a distributed measurement in the interval (t1, t2) at point x = 1, initial
datum v0, initial datum u0 in (0, a).

Inverse Problem: find a ∈ Ua
ad = {a : a ∈ (δ, 1− δ)} (δ > 0 small) and initial

data u02 in (a, 1)

u0 =

{
u01 if 0 < x < a,

u02 if a < x < 1,

such that ua and va satisfy:

∂xu
a(1, t) = η(t) , ∂xv

a(1, t) = ζ(t) , for t ∈ (t1, t2) , 0 ≤ t1 ≤ t2 ≤ T .

Reformulation (optimization problem): find a ∈ Ua
ad and u02 that

Minimize K(a, u02),

where K : (a, u02) ∈ Ua
ad × R× R 7→ R is defined as follows:

K(a, u02) =
1

2

∫ t2

t1

|η(t)− ∂xu
a,u02(1, t)|2 dt

+
1

2

∫ t2

t1

|ζ(t)− ∂xv
a,u02(1, t)|2 dt.
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Figure: Test 2-A: Iterations in the
computation of a.
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Figure: Test 2-B: Iterations in the
computation of a.
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Figure: Test 1: Iterations in the computation of a.


